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Features of the dressed-quark-gluon vertex and their role in the gap and Bethe-Salpeter equations are
explored. It is argued that quenched lattice data indicate the existence of net attraction in the color-octet
projection of the quark-antiquark scattering kernel. The study employs a vertex model whose diagrammatic
content is explicitly enumerable. That enables the systematic construction of a vertex-consistent Bethe-Salpeter
kernel and thereby an exploration of the consequences for the strong interaction spectrum of attraction in the
color-octet channel. With rising current-quark mass the rainbow-ladder truncation is shown to provide an
increasingly accurate estimate of a bound state’s mass. Moreover, the calculated splitting between vector and
pseudoscalar meson masses vanishes as the current-quark mass increases, which argues for the mass of the
pseudoscalar partner of theYs1Sd to be above 9.4 GeV. With the amount of attraction suggested by lattice data
color-antitriplet diquarks are absent from the strong interaction spectrum.
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I. INTRODUCTION

Dynamical chiral symmetry breaking(DCSB) impacts
materially on the strong interaction spectrum. For example,
this phenomenon, which can even be expressed in models
that omit confinement[1–3], is responsible for the remark-
ably small value of the ratio ofp- andr-meson masses and,
inseparable from this, the generation of large constituent-like
masses for dressed-quarks. It follows both: That a sum of
constituent-like dressed-quark masses sets a baseline for the
masses of all light hadrons, except the pseudoscalar mesons;
and that pseudoscalar “meson cloud” contributions are essen-
tial to an understanding of hadron observables, such as the
masses[4,5] and form factors[6] of octet and decuplet bary-
ons.

That stated, herein a primary concern is the dressed-
quark-gluon vertex,Gn

asq;pd. We are generally interested in
its form, how that arises, and the ways it affects and is af-
fected by strong interaction phenomena. The vertex is a key
element in the gap equation1

Sspd−1 = Z2sig · p + mbmd

+ Z1E
q

L

g2Dmnsp − qd
la

2
gmSsqdGn

asq,pd, s1d

and this brings an immediate link with DCSB. The gap equa-
tion has long been used as a tool for developing insight into
the origin of DCSB, and searching for a connection between
DCSB and confinement[7]. Moreover, the vertex is essential
to a valid description of bound states and therefore to realis-
ing and understanding Goldstone’s theorem, and current con-
servation in general.

The gap equation also consists of:Dmnskd, the renormal-
ized dressed-gluon propagator;mbm, the L-dependent

current-quark bare mass; andeq
L : =ed4q/ s2pd4, which repre-

sents a translationally invariant regularization of the integral,
with L the regularization mass-scale. The quark-gluon-
vertex and quark wave function renormalization constants,
Z1,2sz2,L2d, respectively, depend onL, the renormalization
point, z, and the gauge parameter.

The gap equation’s solution is the dressed-quark propaga-
tor, which takes the form

Sspd−1 = ig · pAsp2,z2d + Bsp2,z2d

=
1

Zsp2,z2d
fig · p + Msp2,z2dg. s2d

It provides direct access to the gauge invariant vacuum quark
condensate[8–10]

− kq̄qlz
0 = lim

L→`
Z4sz2,L2dNctrDE

q

L

S0sq,zd. s3d

In Eq. (3): Z4 is the renormalization constant for the scalar
part of the quark self-energy, through which the current-
quark bare-mass is related to the running mass

Z2sz2,L2dmbmsLd = Z4sz2,L2dmszd, s4d

trD identifies a trace over Dirac indices alone; and the super-
script “0” indicates the quantity was calculated in the chiral
limit, which is unambiguously defined in an asymptotically
free theory[8–10].

It is a longstanding prediction of Dyson-Schwinger equa-
tion (DSE) studies[7,11,12] that the two-point Schwinger
functions which characterize the propagation of QCD’s el-
ementary excitations are strongly dressed at infrared length-
scales, namely,k2&2 GeV2; and it has become apparent that
this feature is materially important in explaining a wide
range of hadron properties[13].

1(We employ a Euclidean metric, with:hgm ,gnj=2dmn; gm
† =gm;

anda·b=oi=1
4 aibi.)
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Such dressing is also a feature of the dressed-quark-gluon
vertex, a three-point function, and it is certain that the infra-
red structure of this vertex has an impact on properties of the
gap equation’s solution, such as: Multiplicative renormaliz-
ability [14–16]; gauge covariance[15,17], and the existence
and realization of confinement and DCSB[1–3,18–20]. For
example, related vertex Ansätze, which agree in the ultravio-
let, can yield solutions for the dressed-quark propagator via
the gap equation with completely different analytic proper-
ties and incompatible conclusions on DCSB[21,22].

Dyson-Schwinger equation predictions for the behavior of
dressed-gluon[23–25] and dressed-quark propagators; e.g.,
[9,19,20], have been confirmed in numerical simulations of
lattice-regularized QCD[26,27]. Detailed study provides an
understanding of the circumstances in which pointwise
agreement is obtained[28]. This level of sophistication does
not yet prevail with the quark-gluon vertex but is a realizable
contemporary goal.

In Sec. II, we recapitulate on a nonperturbative DSE trun-
cation scheme[29,30] that has already enabled some system-
atic study of the connection between the dressed-quark-gluon
vertex and the expression of symmetries in strong interaction
observables. In doing this we are led to propose an extension
of earlier work, one which facilitates an exploration of the
impact that aspects of the three-gluon vertex have on hadron
phenomena. To amplify the illustrative efficacy of our analy-
sis we introduce a simple model to describe the propagation
of dressed-gluons[31] that reduces the relevant DSEs to a set
of coupled algebraic equations which, notwithstanding their
simplicity, exhibit characteristics essential to the strong inter-
action.

In Sec. III we chronicle features of the dressed-quark-
gluon vertex and dressed-quark propagator that are common
to our model and QCD. Of particular interest are the effects
of net attraction in the color-octet quark-antiquark scattering
kernel which we are able to identify. We follow that in Sec.
IV with an analysis of the Bethe-Salpeter equations which
can be constructed, consistent with the fully dressed-quark-
gluon vertex, so that the Ward-Takahashi identities associ-
ated with strong interaction observables are automatically
satisfied. This property is crucial to understanding hadron
properties and interactions[8,32–35]. Section IV also con-
tains an analysis of color-antitriplet diquark correlations.

We close our presentation with a summary in Sec. V.

II. DRESSED QUARK-GLUON VERTEX

A. General features

This Schwinger function can be calculated in perturbation
theory but, since we are interested in the role it plays in
connection with confinement, DCSB and bound state prop-
erties, that is inadequate for our purposes: These phenomena
are essentially nonperturbative. Instead we begin by observ-
ing that the dressed vertex can be written

iGm
asp,qd =

i

2
laGmsp,qd = :laGmsp,qd, s5d

viz., the color structure factorizes, and that twelve Lorentz
invariant functions are required to completely specify the
remaining Dirac-matrix-valued function; i.e.,

Gmsp,qd = gmĜ1sp,qd + g · sp + qdsp + qdmĜ2sp,qd

− isp + qdmĜ3sp,qd + f. . .g, s6d

where the ellipsis denotes contributions from additional
Dirac matrix structures that play no part herein. Since QCD
is renormalizable, the bare amplitude associated withgm is
the only function in Eq.(6) that exhibits an ultraviolet diver-
gence at one-loop in perturbation theory.

The requirement that QCD’s action be invariant under lo-
cal color gauge transformations entails[36]

kmiGmsp,qd = F gsk2dhf1 − Bsp,qdgSspd−1

− Ssqd−1f1 − Bsp,qdgj, s7d

wherein F gsk2d, k=p−q, is the dressing function that ap-
pears in the covariant-gauge ghost propagator

Dgsk2,z2d = −
F gsk2,z2d

k2 , s8d

and Bsp,qd is the renormalized ghost-quark scattering ker-
nel. At one-loop order on the domain in which perturbation
theory is a valid tool

F gsk2,z2d = Fask2d
asz2dGgg/b1

, s9d

with the anomalous dimensionsgg=−s3/8dNc in Landau
gauge, which we use throughout, andb1=−s11/6dNc

+s1/3dNf, whereNf is the number of active quark flavors.
This result may be summarized asF gsk2d<1 on the pertur-
bative domain, up to lnp2/LQCD

2 -corrections. In a similar
sense,Bsp,qd<0 in Landau gauge on this domain.2

Equation (7) is a Slavnov-Taylor identity. It is an ana-
logue of the Ward-Takahashi identity that applies to the
fermion-photon vertex, which entails that in the vertex de-
scribing the coupling of a photon to a dressed-quark:

Ĝ1
gsp,pd = Asp2,z2d, s10d

Ĝ2
gsp,pd = 2

d

dp2Asp2,z2d, s11d

Ĝ3
gsp,pd = 2

d

dp2Bsp2,z2d. s12d

Appreciating this nontrivial structure of the dressed-quark-
photon vertex has been crucial in describing the electromag-
netic properties of mesons[37,38].

The similarity between the Slavnov-Taylor and Ward-
Takahashi identities has immediate, important consequences.
For example, if the result

2(An even closer analogy is a kindred result forZsp2d in Eq. (2);
viz., in Landau gaugef1−Zsp2,z2dg;0 at one loop in perturbation
theory and hence, on the perturbative domain, corrections to this
result are modulated by ln lnp2/LQCD

2 . This very slow evolution is
exhibited, e.g., in the numerical results of Ref.[19].)
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0 , F gsk2df1 − Bsp,qdg, s13d

also prevails on the nonperturbative domain then, because of
the known behavior of the dressed-quark propagator, Eq.
(13) is sufficient grounds for Eq.(7) to forecast that in the

renormalized dressed-quark-gluon vertex 1,Ĝ1sp,pd at in-
frared spacelike momenta. This result, an echo of Eq.(10),
signals that the complete kernel in the DSE satisfied by
Gm

asp,qd is attractive.

B. Vertex in the gap equation

The ability to use the gap equation as the basis for robust
statements about DCSB rests on the existence of a system-
atic, nonperturbative and chiral symmetry preserving trunca-
tion scheme. One such scheme, introduced in Ref.[29], may
be described as a dressed-loop expansion of the quark-gluon
vertex wherever it appears in the half-amputated dressed-
quark-antiquark(or -quark-quark) scattering matrix:S2K, a
renormalization-group invariant, whereK is the dressed-
quark-antiquark(or -quark-quark) scattering kernel. Thereaf-
ter, all n-point functions involved in connecting two particu-
lar quark-gluon vertices arefully dressed.

The effect of this truncation in the gap equation, Eq.(1),
is realized through the following representation of the
dressed-quark-gluon vertex[30]

Z1Gmsk,pd = gm + L2
−sk,pd + L2

+sk,pd + f. . .g, s14d

with

L2
−sk,pd =

1

2Nc
E

,

L

g2Drssp − ,dgrSs, + k − pdgmSs,dgs,

s15d

L2
+sk,pd =

Nc

2
E

,

L

g2Ds8ss,dDt8ts, + k − pd

3 gt8Ssp − ,dgs8Gstm
3g s,,− k,k − pd, s16d

wherein G3g is the dressed-three-gluon vertex. The lowest
order contribution to each term written explicitly is Osg2d.
The ellipsis in Eq.(14) represents terms whose leading con-
tribution is Osg4d; e.g., crossed-box and two-rung dressed-
gluon ladder diagrams, and also terms of higher leading-
order.

TheL2
− term in Eq.(14) only differs from a kindred term

in QED by the color factor. However, that factor is signifi-
cant because it flips the sign of the interaction in this channel
with respect to QED; i.e., since

lalbla = H1

2
C2sGd − C2sRdJlb =

1

2Nc
lb

cf . la1cl
a = − C2sRd1c = −

Nc
2 − 1

2Nc
1c, s17d

then single gluon exchange between a quark and antiquark is
repulsive in the color-octet channel. Attraction in the octet

channel is provided by theL2
+ term in Eq. (14), which in-

volves the three-gluon vertex. These observations emphasize
that Eq.(7) cannot be satisfied if the contribution from the
three gluon vertex is neglected because the Slavnov-Taylor
identity signals unambiguously that on the perturbative do-
main there is net attraction in the octet channel.

It is apparent, too, that the term involving the three gluon
vertex is numerically amplified by a factor ofNc

2 cf. the L2
−

(Abelian-like) vertex correction. Hence, if the integrals are of
similar magnitude then theNc

2-enhanced three-gluon term
must dominate in the octet channel. This expectation is borne
out by the one-loop perturbative calculation of the two inte-
grals exhibited in Eqs.(15) and(16) and, moreover, the sum
of both terms is precisely that combination necessary to sat-
isfy the Slavnov-Taylor identity at this order[39].

C. Vertex model

In illustrating features of the DSE truncation scheme in-
troduced in Ref.[29] in connection, for example, with
DCSB, confinement and bound state structure, Ref.[30] em-
ployed a dressed-quark-gluon vertex obtained by resumming
a subclass of diagrams based onL2

− alone; namely, the vertex
obtained as a solution of

Gm
−sk+,k−d = Z1

−1gm +
1

2Nc
E

,

L

g2Drssp − ,d

3 grSs,+dGm
−s,+,,−dSs,−dgs. s18d

It was acknowledged that this subclass of diagrams is
1/Nc-suppressed but, in the absence of nonperturbative in-
formation aboutL2

+ in general, and the dressed-three-gluon
vertex in particular, this limitation was accepted.

Herein we explore a model that qualitatively ameliorates
this defect while preserving characteristics that make calcu-
lations tractable and results transparent; viz., in Eq.(14) we
write

L2
− + L2

+ < L2
C, s19d

where

L2
Csk,pd: = − CC2sRdE

,

L

g2Drssp − ,d

3grSs, + k − pdgmSs,dgs, s20d

and work with the vertex obtained as the solution of

Gm
C sk+,k−d = Z1

−1gm − CC2sRdE
,

L

g2Drssp − ,d

3 grSs,+dGm
C s,+,,−dSs,−dgs. s21d

To explain this model we remark that the parameterC is a
global coupling strength modifier.(NB. The value C=
−s1/8d reproduces the vertex resummed in Ref.[30].) It is
introduced so that ourAnsatzmay mimic the effects of at-
traction in the color-octet channel without specifying a form
for the three-gluon vertex. This expedient will give a faithful
model so long as the integrals over the momentum depen-
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dence ofL2
− and L2

+ that appear in our calculations are not
too dissimilar. This is plausible because: They are both one-
loop integrals projected onto the same Dirac and Lorentz
structure and hence are pointwise similar at this order in
perturbation theory; and their direct sum must conspire to
give the simple momentum dependence in Eq.(7). Moreover,
as we shall demonstrate, the model has material illustrative
capacity and that alone is sufficient justification for proceed-
ing.

D. Interaction model

A simplification, important to our further analysis, is a
confining model of the dressed-gluon interaction in Eq.(21).
We use[31]

Dmnskd: = g2Dmnskd = Sdmn −
kmkn

k2 Ds2pd4G2d4skd. s22d

The constantG sets the model’s mass-scale and henceforth
we mainly setG=1 so that all mass-dimensioned quantities
are measured in units ofG. Furthermore, since the model is
ultraviolet-finite, we will usually remove the regularization
mass-scale to infinity and set the renormalization constants
equal to one.

The model defined by Eq.(22) is a precursor to an effi-
cacious class of models that employ a renormalization-
group-improved effective interaction and whose contempo-
rary application is reviewed in Refs.[11–13]. It has many
features in common with that class and moreover its distinc-
tive momentum-dependence works to advantage in reducing
integral equations to algebraic equations that preserve the
character of the original. There is a drawback: The simple
momentum dependence also leads to some model-dependent
artefacts, but they are easily identified and hence not cause
for concern.

E. Algebraic vertex and gap equations

If Eq. (22) is used in Eq.(21) then that part of the vertex
which acts in the gap equation has no dependence on the
total momentum of the quark-antiquark pair; i.e., only
Gm

C spd : =Gm
C sp,pd contributes. In this case just the terms writ-

ten explicitly in Eq.(6) are supported in the dressed vertex,
which can be expressed

Gm
C spd = gma1

Csp2d + g · ppma2
Csp2d − ipma3

Csp2d. s23d

Hence we obtain information about all the amplitudes that
survive when the vertex is evaluated at zero gluon momen-
tum. The vertex equation is

Gm
C spd = gm − CgrSspdGm

C spdSspdgr, s24d

where we have usedC2sRd=4/3 for Nc=3. Equation(24)
possesses the solution

Gm
C spd = o

i=0

`

Gm,i
C spd s25d

=o
i=0

`

fgma1,i
C sp2d + g · ppma2,i

C sp2d − ipma3,i
C sp2dg,

s26d

whereGm,i
C spd satisfies a recursion relation

Gr,i+1
C spd = − CgmSspdGr,i

C spdSspdgm, s27d

with Gm,i=0
C =gm, the bare vertex, so thata1,0

C =1, a2,0
C =0

=a3,0
C . It follows that sDssd=sA2ssd+B2ssdd:

a1
C =

D

D − 2C , s28d

a2
C = −

4CA2

D2 + 2CsB2 − sA2d − 8C2

sD − 4Cd
sD − 2Cd

, s29d

a3
C = −

8CAB

D2 + 2CsB2 − sA2d − 8C2 . s30d

It is evident that the momentum dependence of the vertex
is completely determined by that of the dressed-quark propa-
gator whose behavior, however, the vertex itself influences
because it appears in the gap equation. Subject to Eq.(23),
that gap equation expresses two coupled algebraic equations:

Assd = 1 +
1

Dssd
fAs2a1

C − sa2
Cd − Ba3

Cg, s31d

Bssd = m+
1

Dssd
fBs4a1

C + sa2
Cd − sAa3

Cg. s32d

The dressed-quark propagator and -quark-gluon vertex fol-
low from the solution of these equations, which is generally
obtained numerically.

In the chiral limit, which here is simply implemented by
settingm=0, a realization of chiral symmetry in the Wigner-
Weyl mode is always possible: It corresponds to theB;0
solution of the gap equation. However, since the phenomena
of QCD are built on a Nambu-Goldstone realization of chiral
symmetry, we do not consider the Wigner-Weyl mode any
further. Its characterization can be achieved in a straightfor-
ward manner by adapting the analysis of Ref.[30] to our
improved vertex model.

III. PROPAGATOR AND VERTEX SOLUTIONS

A. Algebraic results

At this point some observations are useful in order to
establish a context for our subsequent results. To begin we
explore the ultraviolet behavior of the model. It is ultraviolet
finite and hence at large spacelike momenta,s@1 (in units of
G2)

Assd < 1 +
aI1

s
, Bssd < m+

bI1

s
, s33d

with m the model’s finite current-quark mass. The model is
useful because these results persist in asymptotically free
theories, up to lnp2/LQCD

2 -corrections. With this behavior it
follows from Eqs.(28)–(33) that:

a1
Cssd < 1 +

2C
s

, s34d
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a2
Cssd < −

4C
s2 , a3

Cssd < − m
8C
s2 , s35d

and these results, in turn, mean that in the ultraviolet the
behavior of the massive dressed-quark propagator is deter-
mined by thea1 term in the vertex, so that

aI1 = 2,bI1 = 4m. s36d

The expansion ofa1ssd around 1/s=0 reported in Eq.
(34) is the same as that which arises in QCD, apart from the
usual lnss/LQCD

2 d-corrections. However, the leading terms in
a2,3 are different: On the perturbative domain in QCD
these functions both begin with a term of order
s1/sdflnss/LQCD

2 dgd, with d some combination of anomalous
dimensions. The reason for the mismatch is readily under-
stood. At one-loop order in QCD

Bsp2d = m̂f 1
2lnsp2/LQCD

2 dgg1
m/b1, s37d

with m̂ the renormalization point invariant current-quark
mass andg1

m=s3/2dC2sRd. (This makes explicit the logarith-
mic correction to the leading term in Eq.(33).) For the pur-
pose of this explanation then, on the perturbative domain,
with F gsk2d<1 andBsp,qd<0, the Slavnov-Taylor identity,
Eq. (7), is approximately equivalent to the Ward-Takahashi
identity. Hence, via Eq.(12)

a3ssd <
m̂

s

g1
m

b1
F1

2
lnsp2/LQCD

2 dGg1
m/b1−1

. s38d

It is thus evident that in QCD, even though they are not
themselves divergent, the leading order terms in botha2,3 are
induced by the momentum-dependent renormalization of el-
ements contributing to their evaluation. Such terms are natu-
rally missing in our ultraviolet finite model. Hence the ab-
sence of 1/s terms in Eq.(35) is a readily identifiable model
artefact.

We note that forC.0, sa1
C−1d is necessarily positive on

the perturbative domain anda2,3
C are negative. These results

are also true in QCD(a1
C.1 up to logarithmic corrections).

It would be exceptional if these statements were not also true
on the nonperturbative domain.

We now turn to the infrared and focus ons=0 but con-
sider 0,m!1, in which case

Ass= 0,md < a0
0 + a0

1m, Bss= 0,md < b0
0 + b0

1m. s39d

Upon insertion of these expressions into the gap equation
one obtains

a0
0 = 2

2 + 3C
2 +C , a0

1 = − Î 2
4 + 20C + 15C2

s2 +Cd5/2 , s40d

b0
0 = Î4 + 2C, b0

1 =
2

sb0
0d2 =

1

2 +C ; s41d

viz., results which show that in the neighborhood ofs=0 and
with attraction in the color-octet channel,Assd decreases with
increasing current-quark mass whileBssd increases. At this
order the mass function is

Mss= 0,md =
Bs0,md
As0,md

= m0
0 + m0

1m, s42d

with

m0
0 =

b0
0

a0
0 =

Î2s2 +Cd3/2

4 + 6C , s43d

m0
1 =

b0
1

a0
0 −

b0
0a0

1

sa0
0d2 =

6 + 23C + 15C2

2s2 + 3Cd2 . s44d

For C.−s1/3d the mass function also increases with rising
m. These patterns of evolution are observed in simulations of
lattice-QCD[27].

The infrared behavior of the dressed-quark-gluon vertex
follows via Eqs.(28)–(30); using which one finds

ai
Css= 0,md < ai,0

C + ai,1
C m, i = 1,2,3, s45d

a1,0
C = 1 +

C
2

, a1,1
C = −

1

Î8

C
Î2 +C , s46d

a2,0
C = −

Cs2 −Cds2 + 3Cd
s2 +Cd2 , s47d

a2,1
C =

2Î2Cs8 + 20C + 2C2 − 9C3d
s2 +Cd7/2 , s48d

a3,0
C = −

Î8C
Î2 +C , a3,1

C =
2Cs5 + 6Cd

s2 +Cd2 . s49d

These algebraic formulas show clearly the effect on the
dressed-quark-gluon vertex of attraction in the projection of
the quark-antiquark scattering kernel onto the color-octet

channel. Attraction causesĜ1sp,pd to be enhanced in the

infrared cf. the bare vertex; and it drivesĜ2,3sp,pd to mag-
nified, negative values. These results also signal that attrac-
tion ensures that a current-quark mass acts to reduce the
vertex function in magnitude.

B. Numerical results

In choosing a value forC we elect to be guided by results
from quenched lattice-QCD simulations of the dressed-quark
propagator[27] and dressed-quark gluon vertex[40]. We fo-
cus on a current-quark mass common to both simulations;
namely, 60 MeV, at which value the lattice dressed-quark
propagator has[28]: Zqus0d<0.7, Mqus0d<0.42. Then, so as
to work with dimensionless quantities, we setm60
=0.06/Mqus0d and, using Eqs.(39)–(49), require a least-
squares fit to3

Asm60d = 1.4, s50d

3(There is a confusion of positive and negative signs in Ref.[40]
concerningl2, l3, as defined therein. Our signs are correct. With
the conventions expressed in Eq.(23): 4l2=−a2 and 2l3=a3.)
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a1
Cs0,m60d = 2.1, s51d

− Ms0,m60d2a2
Cs0,m60d = 7.1, s52d

− Ms0,m60da3
Cs0,m60d = 1.0. s53d

This procedure yields

C = C̄ = 0.51 s54d

with an average relative errorr̄ =25% and standard deviation
sr =70%. We note that forC=0.6: r̄ =21%, sr =72%, while
for C=0.4: r̄ =31%,sr =67%. If one omits Eq.(52) from the
fitting requirements thenC=0.49 with r̄ =2.5% and sr
=63%. It is evident that competing requirements bound the
amount of attraction necessary in the kernel. We can now
illustrate the results for the dressed-quark propagator and
dressed-quark-gluon vertex.

A comparison of the curves in the upper panel of Fig.1

shows clearly that the presence of net attraction in the color-
octet quark-antiquark scattering kernel uniformly increases
the magnitude ofAsp2d at all momenta. This effect is pro-
nounced at infrared spacelike momenta and particularly on
the timelike domain,s,0. In this and the following figures
C=0 corresponds to the rainbow-ladder DSE truncation; i.e.,
the leading order term of the truncation scheme introduced in
Ref. [29].

In the lower panel one sees that on the spacelike domain,
s.0, the one-, two-, three- and four-loop corrected vertices
yield a result forAsp2d that is little different from that pro-
duced by the completely resummed vertex. However, that is
not true on the timelike domain, whereupon confinement is
expressed and hence nonperturbative effects become impor-
tant. In our model confinement is realized via the absence of
a particle-like singularity in the dressed-quark propagator
[3]. The cusp displayed byAsp2d in the timelike domain is
one manifestation of this feature. The figure shows that con-
vergence to the solution obtained with the completely re-
summed vertex proceeds via two routes: One followed by
solutions obtained with an odd number of loop corrections to
the vertex; and another by those obtained using a vertex with
an even number of corrections. This effect is absent with net
repulsion in the color-octet projection of the quark-antiquark
scattering kernel.

We remark thatAsp2d evolves slowly with the current-
quark mass when that mass is significantly smaller than the
model’s mass-scale. However, when the current-quark mass
becomes commensurate with or exceeds that mass-scale, it
acts to very effectively dampen this function’s momentum
dependence so thatAsp2d<1. This is also true in QCD.

We plot the dressed-quark mass function in Fig. 2. The
existence of a nontrivial solution in the chiral limit is the
realization of DCSB, in our model and QCD. For current-
quark masses less than the model’s mass-scale,G, the dy-
namically generated mass determines the scale of observ-
ables. However, form*G, this explicit chiral symmetry
breaking mass-scale overwhelms that generated dynamically
and enforcesMsp2d<m. This is the behavior of theb-quark
mass function in QCD[32].

From a comparison of the rainbow-ladder result,C=0, in
the lower panel with theC=−1/8 andC=0.51 results, it is
apparent that vertex dressing driven by net attraction in the
color-octet scattering kernel reduces the magnitude of the
mass function at infrared momenta, a trend which is reversed
for spacelike momentas*G.4 This effect has an impact on
the magnitude of the vacuum quark condensate. For ex-
ample, the mapping of Eq.(3) into our model is

− kq̄ql0 =
3

4p2E
0

s0

ds s
ZssdMssd
s+ Mssd2 , s55d

wheres0 is the spacelike point at which the model’s mass
function vanishes in the chiral limit, and we find

4(This pattern of behavior is familiar from explorations[20,22] of
the effect in the gap equation of vertex Ansätze[14,41]; i.e., vertex
models whose diagrammatic content is unknown but which exhibit
properties in common with our calculatedC.0 result.)

FIG. 1. Upper panel– C-dependence ofAssd. For all curvesm
=0.015. Solid line:C=C=0.51; dash-dot-dot line:C=1/4; dotted
line: C=0; and dash-dot curve:C=−1/8. Lower panel–Truncation-
dependence ofAssd, C=C. Solid line: complete solution; dash-dash-
dot line - result obtained with only thei =0,1 terms retained in Eq.
(25), the one-loop corrected vertex; short-dash line - two-loop cor-
rected; long-dash line - three-loop corrected; and short-dash-dot
line: four-loop corrected. In this and subsequent figures, unless oth-
erwise noted, dimensioned quantities are measured in units ofG in
Eq. (22). A fit to meson observables requiresG=0.69 GeV and
hencem=0.015 corresponds to 10 MeV.
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− kq̄qlC=C
0 = s0.231Gd3 = s0.16 GeVd3, s56d

with G=0.69 GeV. The rainbow-ladder result is −kq̄qlC=0
0

=G3/ s10p 2d=s0.15 GeVd3 so that

kq̄qlC=0
0

kq̄qlC=C̄
0 = 0.82. s57d

This ratio drops to 0.50 whenC=1.0 is used to calculate the
denominator.

It is thus evident that with attraction in the scattering ker-
nel and at a common mass-scale, the condensate is signifi-
cantly larger than that produced by a ladder vertex owing to
an expansion of the domain upon which the dressed-quark
mass function has nonzero support.

It is natural to ask for the pattern of behavior in the pres-
ence of repulsion. In this case Fig. 2 indicates that withC=
−1/8 the value of the mass function is enhanced ats=0. The
magnitude of the mass function grows larger still with a fur-
ther decrease inC and its domain of nonzero support ex-
pands. Therefore here, too, the condensate is larger than with
the ladder vertex; e.g.,

kq̄qlC=0
0

kq̄ql
C=−1

8

0 = 0.92, s58d

and the ratio drops to 0.49 whenC=−3/8 is used to evaluate
the denominator.

The implication of these results is that in general, with a
given mass-scale and a common model dressed-gluon inter-
action, studies employing the rainbow-ladder truncation will
materially underestimate the magnitude of DCSB relative to
those that employ a well-constrained dressed-quark-gluon
vertex. Naturally, in practical phenomenology, alterations of
the mass-scale can compensate for this[20].

In Fig. 3 we portray theC-dependence of the scalar func-
tion associated withgm in the dressed-quark-gluon vertex,
a1

Csp2d. It is particularly useful here to employ the rainbow-
ladder result,C=0, as our reference point because this makes
the contrast between the effect of attraction and repulsion in
the color-octet quark-antiquark scattering kernel abundantly
clear. Attraction uniformly increases the magnitude of
a1

Csp2d, while the opposite outcome is produced by omitting
the effect of the three-gluon-vertex in the DSE for the
dressed-quark-gluon vertex. We remark that, as withAsp2d,
a1

Csp2d evolves slowly with the current-quark mass but again,
when the current-quark mass becomes commensurate with or
exceeds the theory’s mass-scale, it acts to very effectively
dampen the momentum dependence of this function so that
a1

Csp2d<1. This effect is apparent in the rainbow vertex
model employed in Ref.[28] to explain quenched-QCD lat-
tice data.

Figure 4 illustrates theC-dependence ofa2
Csp2d, the scalar

function modulating the sub-leading Dirac vector component
of the dressed-quark-gluon vertex. The qualitative features of
the completely resummed result fora1

Csp2d are also manifest
here. However, for this component of the vertex, which is
purely dynamical in origin, there is a marked difference at
timelike momenta between the result obtained with an odd
number of loop corrections in the vertex and that obtained
with an even number. We note that the magnitude of this

FIG. 2. Upper panel– Current-quark-mass-dependence of the
dressed-quark mass function. For all curvesC=C=0.51. Dotted line:
m=m60; solid line:m=0.015; dashed line: chiral limit,m=0. Lower
panel–C-dependence ofMssd. For all curvesm=0.015. Solid line:
C=C=0.51; dash-dot-dot line:C=1/4; dotted line:C=0; and dash-
dot curve:C=−1/8. In addition, forC=0.51: dash-dash-dot line -
Mssd obtained with one-loop corrected vertex; and short-dash line -
with two-loop-corrected vertex.

FIG. 3. C-dependence ofa1
Cssd in Eq. (23). For all curvesm

=0.015. Solid line:C=C=0.51; dash-dot-dot line:C=1/4; dotted
line: C=0; and dash-dot curve:C=−1/8. In addition, forC=0.51:
dash-dash-dot line - one-loop correcteda1ssd; and short-dash line -
two-loop-corrected result.
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function also decreases with increasing current-quark mass.
It is notable that the size of our complete result fora2

Csp2d
is an order of magnitude smaller than that reported in Ref.
[40]. This is an isolated case, however. The calculated mag-
nitudes of the other functions in the dressed-quark propaga-
tor and -quark-gluon vertex are commensurate with those
obtained in quenched lattice-QCD. We remark in addition
that the lattice result is an order of magnitude larger than that
obtained with a commonly used vertexAnsatz [41]. This
discrepancy deserves study in more sophisticated models.

In Fig. 5 we display what might be called the scalar part
of the dressed-quark-gluon vertex; viz.,a3

Csp2d. This is the
piece of the vertex whose ultraviolet behavior is most sensi-
tive to the current-quark mass. The figure demonstrates that
at infrared momentaa3

Csp2d, too, is materially affected by the
scale of DCSB, Eq.(56): at s=0 the deviation from its
rainbow-truncation value is approximately four times that
exhibited bya1

Csp2d. Hence, this term can be important at
infrared and intermediate momenta.

Finally, since they are absent in rainbow truncation, it is
illuminating to unfold the different roles played bya2

Cssd and
a3

Cssd in determining the behavior of the gap equation’s self-
consistent solution. Some of these effects are elucidated in
Fig. 6. The key observation is thata3

Cssd alone is the source
of all coupling between Eqs.(31) and(32) that is not already
present in rainbow-ladder truncation:a3

CB appears in the
equation forAssd anda3

CsA appears in the equation forBssd.
The action ofa2

C is merely to modify the rainbow-ladder
coupling strengths.

A consideration of Eqs.(31) and (32) suggests that omit-
ting a3

Cssd will affect Assd at infrared momenta but notBssd.
That is easily substantiated by repeating the analysis that
gave Eqs.(40) and(41), and is apparent in the figure. It will
readily be appreciated that neithera2

Cssd nor a3
Cssd can affect

the deep ultraviolet behavior of the gap equation’s solution,
Eqs. (33) and (36), because they vanish too rapidly as 1/s
→0. This is plain in Fig. 6.

At intermediate spacelike momenta botha2
Cssd anda3

Cssd
are negative and hence act to magnifyAssd with respect to

the value obtained using a bare vertex. However, they com-
pete in Eq.(32): a2

Cssd works to diminishBssd anda3
Cssd acts

to amplify it. Therefore, in the absence ofa3
Cssd one should

expectMssd=Bssd /Assd to be suppressed at intermediate mo-
menta, and consequently a condensate much reduced in mag-
nitude. Omittinga2

Cssd should yield the opposite effect. This
is precisely the outcome of our numerical studies:

U kq̄qlC=0
0

kq̄qlC=C̄
0 U

a
3
C;0

= 1.97; andU kq̄qlC=0
0

kq̄qlC=C̄
0 U

a
2
C;0

= 0.40.

s59d

These aspects of our model provide an algebraic illustra-
tion of results obtained with more sophisticatedAnsätze, as
apparent from a comparison with, for example, Refs.[20,22].

IV. BETHE-SALPETER EQUATION

The renormalized homogeneous Bethe-Salpeter equation
(BSE) for the quark-antiquark channel denoted byM can be
compactly expressed as

FIG. 4. C-dependence of ofa2
Cssd. For all curvesm=0.015. Solid

line: C=C=0.51; dash-dot-dot line:C=1/4; anddash-dot curve:C
=−1/8. Moreover, forC=0.51: dash-dash-dot line - one-loop result
for a2

Cssd; short-dash line - two-loop result; long-dash line - three-
loop; and short-dash-dot line: four-loop. ForC=0, a2

Cssd;0.

FIG. 5. Upper panel – Current-quark-mass-dependence of
a3

Cssd. For all curvesC=C=0.51. Dash-dot line:m=2; dotted line:
m=m60; solid line:m=0.015; dashed line: chiral limit,m=0. Lower
panel–C-dependence ofa3

Cssd. For all curvesm=0.015. Solid line:
C=C=0.51; dash-dot-dot line:C=1/4; and dash-dot curve:C=
−1/8. Moreover, forC=0.51: dash-dash-dot line - one-loop result
for a3

Cssd; short-dash line - two-loop result; long-dash line - three-
loop; and short-dash-dot line: four-loop. ForC=0, a3

Cssd;0.
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fGMsk;PdgEF =E
q

L

fKsk,q;PdgEF
GHfxMsq;PdgGH, s60d

where: k is the relative momentum of the quark-antiquark
pair andP is their total momentum;E, . . . ,H represent color,
flavor and spinor indices; and

xMsk;Pd = Ssk+dGMsk;PdSsk−d, s61d

with GMsq;Pd the meson’s Bethe-Salpeter amplitude. In Eq.
(60), K is the fully-amputated dressed-quark-antiquark scat-
tering kernel.

A. Vertex consistent kernel

The preservation of Ward-Takahashi identities in those
channels related to hadron observables requires a conspiracy
between the dressed-quark-gluon vertex and the Bethe-
Salpeter kernel[29,42]. The manner in which these con-
straints are realized for vertices of the class considered
herein was made explicit in Ref.[30]. In that systematic and
nonperturbative truncation scheme the rainbow gap equation
and ladder Bethe-Salpeter equation represent the lowest-
order Ward-Takahashi identity preserving pair. Beyond this,

each additional term in the vertex generates a unique collec-
tion of terms inK, a subset of which are always nonplanar.

For any dressed-quark-gluon vertex in the gap equation,
which can be represented expressly by an enumerable series
of contributions, the Bethe-Salpeter kernel that guarantees
the validity of all Ward-Takahashi identities is realized in

GMsk;Pd =E
q

L

Dmnsk − qdlagmfxMsq;PdlaGnsq−,k−d

+ Ssq+dLMn
a sq,k;Pdg, s62d

where

LMn
a sq,k;Pd = o

n=0

`

LMn
a;nsq,k;Pd, s63d

with herein

−
1

8CLMn
a;ns,,k;Pd =E

q

L

Drss, − qdlbgrxMsq;Pd

3 laGn,n−1
C sq−,q−+ k − ,dSsq−+ k − ,dlbgs

+E
q

L

Drssk − qdlbgrSsq+ + , − kd

3 laGn,n−1
C sq+ + , − k,q+dxMsq;Pdlbgs

+E
q8

L

Drss, − q8dlbgrSsq+8d

3 Ln
a;n−1sq8,q8 + k − ,;Pd

3Ssq−8 + k − ,dlbgs. s64d

This last equation is a recursion relation, which is to be
solved subject to the initial conditionLMn

a;0 ;0.
The Bethe-Salpeter amplitude for any meson can be writ-

ten in the form

GMsk;Pd = Ico
i=1

NM

Gisk;PdfM
i sk2,k · P;P2d = :fGg fM , s65d

whereGisk;Pd are those independent Dirac matrices required
to span the space containing the meson under consideration.
It then follows upon substitution of this formula that Eq.(64)
can be written compactly as:

LMn
a;n = hfKMn

i ai;n−1
C g + fLLMn

a;n−1gj fM . s66d

This states thatLMn
a;n can be considered as a matrix operating

in the space spanned by the independent components of the
Bethe-Salpeter amplitude, with its Dirac and Lorentz struc-
ture projected via the contractions in the BSE. The first term
sKMd in Eq. (66) represents the contribution from the first
two integrals on the right-hand side(r.h.s.) of Eq. (64). This
is the driving term in the recursion relation. The second term
sLd represents the last integral, which enacts the recursion.

FIG. 6. Upper panel– Impact ofa2
Cssd and a3

Cssd on Assd. For
C=C, Eq. (54), solid line: result obtained with both terms present;
dashed-line:a2

Cssdomitted; dash-dot line:a3
Cssd omitted. The dotted

line is the result obtained with both terms present in the vertex but
C=−1/8. Lower panel–Impact ofa2

Cssd and a3
Cssd on Mssd. In all

casesm=0.015.
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B. Solutions of the vertex-consistent meson
Bethe-Salpeter equation

1. p-meson

With the model of the dressed-gluon interaction in Eq.
(22) the relative momentum between a meson’s constituents
must vanish. It follows that the general form of the Bethe-
Salpeter amplitude for a pseudoscalar meson of equal-mass

constituents issP̂2=1d

GpsPd = g5fi f 1
psP2d + g · P̂f2

psP2dg. s67d

To obtain the vertex-consistent BSE one must first deter-
mine Lpn

a;1. That is obtained by substituting Eq.(67) into the
r.h.s. of Eq.(64). Only the first two integrals contribute be-
cause of the initial condition and they are actually algebraic
expressions when Eq.(22) is used. This givesKpn

i in Eq.
(66). Explicit calculation shows this to be identically zero,
and henceLpn

a;1;0. Since this is the driving term in the re-
cursion relation then

Lpn
a sk,k;Pd ; 0. s68d

While this result is not accidental[30], it is not a general
feature of the vertex-consistent Bethe-Salpeter kernel.

One thus arrives at a particularly simple vertex-consistent
BSE for the pion(Q=P/2):

GpsPd = − gmSsQdGpsPdSs− QdGm
C s− Qd. s69d

Consider the matrices

P1 = −
i

4
g5, P2 =

1

4
g · P̂g5, s70d

which satisfy

f i
psPd = trDPiGpsPd. s71d

They may be used to rewrite Eq.(69) in the form

fpsPd = HpsP2dfpsPd, s72d

whereinHpsP2d is a 232 matrix

HpsP2di j = −
d

df j
p trDPigmSsQdGpsPdSs− QdGm

C s− Qd.

s73d

Equation(72) is a matrix eigenvalue problem in which the
kernelH is a function ofP2. This equation has a nontrivial
solution if, and only if, at someM2

detfHpsP2d − I gP2+M2=0 = 0. s74d

The value ofM for which this characteristic equation is sat-
isfied is the bound state’s mass. In the absence of a solution
there is no bound state in this channel.

We have solved Eq.(74) for the pion and the results are
presented in Table I. That the vertex-consistent Bethe-
Salpeter kernel ensures the preservation of the axial-vector
Ward-Takahashi identity, and hence guarantees the pion is a
Goldstone boson in the chiral limit, is abundantly clear: irre-
spective of the value ofC and the order of the truncation,

mp=0 for m=0. Away from this symmetry-constrained point
the results indicate that, with net attraction in the color-octet
quark-antiquark scattering kernel, the rainbow-ladder trunca-
tion overestimates the mass; i.e., it yields a value greater than
that obtained with the fully resummed vertexsn=`d. More-
over, the approach to the exact result for the mass is not
monotonic. On the other hand, given two truncations for
which solutions exist, characterised byn1- andn2-loop inser-
tions, respectively, then

uMH
n=` − MH

n2u , uMH
n=` − MH

n1u, n2 . n1, s75d

viz., correcting the vertex improves the accuracy of the mass
estimate.

2. r-meson

In our algebraic model the complete form of the Bethe-
Salpeter amplitude for a vector meson is

Gr
lsPd = g · e lsPdf1

rsP2d + smnem
lsPdP̂nf2

rsP2d. s76d

This expression, which has only two independent functions,
is simpler than that allowed by a more sophisticated interac-
tion, wherein there are eight terms. Nevertheless, Eq.(76)
retains the amplitudes that are found to be dominant in more
sophisticated studies[43]. In Eq. (76), hem

lsPd ;l=−1,0,
+1j is the polarization four-vector:

P · elsPd = 0, ∀ l; e lsPd · e l8sPd = d ll8. s77d

The construction of the vertex-consistentr-meson BSE
for the class of vertices under consideration herein is fully
described in Ref.[30]. The pion case illustrates the key
modification. Brevity requires that we omit further details.
Suffice to say, one arrives via a mechanical procedure at the

TABLE I. Calculated p and r meson masses, in GeV.(G
=0.69 GeV, in which casem=0.015G=10 MeV. In the notation of
Ref. [29], this value ofG corresponds toh=1.39 GeV.) n is the
number of loops retained in dressing the quark-gluon vertex, see
Eq. (25), and hence the order of the vertex-consistent Bethe-
Salpeter kernel. NB.n=0 corresponds to the rainbow-ladder trun-
cation, in which casemr=Î2G, and that is why this column’s results
are independent ofC.

MH
n=0 MH

n=1 MH
n=2 MH

n=`

C=−s1/8d p, m=0 0 0 0 0

p, m=0.01 0.149 0.153 0.154 0.154

r, m=0 0.982 1.074 1.089 1.091

r, m=0.01 0.997 1.088 1.103 1.105

C=s1/4d p, m=0 0 0 0 0

p, m=0.01 0.149 0.140 0.142 0.142

r, m=0 0.982 0.789 0.855 0.842

r, m=0.01 0.997 0.806 0.871 0.858

C=C=0.51 p, m=0 0 0 0 0

p, m=0.01 0.149 0.132 0.140 0.138

r, m=0 0.982 … 0.828 0.754

r, m=0.01 0.997 … 0.844 0.770
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characteristic equation for ther-meson, which we solved.
The results are presented in Table I. With increasing net

attraction in the quark-antiquark scattering kernel the amount
by which the rainbow-ladder truncation overestimates the ex-
act mass also increases: With the amount of attraction sug-
gested by lattice data then=0 mass is 27% too large. A
related observation is that the bound state’s mass decreases
as the amount of attraction between its constituents in-
creases. Furthermore, with increasing attraction, even though
the fully resummed vertex and consistent kernel always yield
a solution, there is no guarantee that a given truncated sys-
tem supports a bound state: the one-loop corrected vertex
and consistent kernelsn=1d do not have sufficient binding to
support ar-meson. This is overcome at the next order of
truncation, which yields a mass 9.7% too large. The obser-
vation that a given beyond-rainbow-ladder truncation may
not support a bound state, even though one is present in the
solution of the complete and consistent system, provides a
valuable and salutary tip for model building and hadron phe-
nomenology.

Finally, as has often been observed, and independent of
the truncation, bound state solutions of gap-equation-
consistent BSEs always yield the full amount ofp-r mass
splitting, even in the chiral limit. This splitting is driven by
the DCSB mechanism. Its true understanding, therefore, re-
quires a veracious realization of that phenomenon.

3. Dependence on the current-quark mass

In connection with this last observation it is relevant to
explore the evolution with current-quark mass of the pseu-
doscalar and vector meson masses, and of the difference be-
tween them. The results for pseudoscalar mesons should be
interpreted with the following caveat in mind. In construct-
ing the vertex and kernel we omitted contributions from
gluon vacuum polarization diagrams. These contribute only
to flavor diagonal meson channels. Hence, for light-quarks in
the pseudoscalar channel, wherewith such effects may be
important[44,45], our results should be understood to apply
only to flavor nonsinglets. In principle, the same is true for
light vector mesons. However, experimentally, thev and f
mesons are almost ideally mixed; i.e., thev exhibits nos̄s
content whereas thef is composed almost entirely of this
combination. We therefore assume that the vacuum polariza-
tion diagrams we have omitted are immaterial in the study of
vector mesons.(NB.It is an artefact of Eq.(22) that this
model supports neither scalar nor axial-vector meson bound
states[30,31].)

We fix the model’s current-quark masses via a fit to vector
meson masses and the results are presented in Table II. The
model we are employing is ultraviolet finite and hence our
current-quark masses cannot be directly compared with
QCD’s current-quark mass-scales. Nevertheless, the values
are quantitatively consistent with the pattern of flavour-
dependence in the explicit chiral symmetry breaking masses
of QCD.

Our calculated results for the current-quark mass-
dependence of pseudoscalar and vector meson masses are
presented in Fig. 7. In the neighborhood of the chiral limit
the vector meson mass is approximately independent of the

current-quark mass whereas the pseudoscalar meson mass
increases rapidly, according to(in GeV)

m0−
2 < 1.33m m! G, s78d

thereby reproducing the pattern predicted by QCD[8].
With the model’s value of the vacuum quark condensate,

Eq. (56), this result allows one to infer the chiral-limit value

TABLE II. Current-quark masses required to reproduce the ex-
perimental masses of the vector mesons. The values ofmhc

, mhb
are

predictions. Experimentally[46], mhc
=2.9797±0.000 15 andmhb

=9.30±0.03. NB. 0ss̄
− is a fictitious pseudoscalar meson composed

of unlike-flavor quarks with massms, which is included for com-
parison with other nonperturbative studies. All masses are listed in
GeV.

mu,d=0.01 ms=0.166 mc=1.33 mb=4.62
mr=0.77 mf=1.02 mJ/c=3.10 mYs1Sd=9.46
mp=0.14 m0

ss̄
− =0.63 mhc

=2.97 mhb
=9.42

FIG. 7. Evolution of pseudoscalar and vectorqq̄ meson masses
with the current-quark mass. Solid line: pseudoscalar meson trajec-
tory obtained withC=C=0.51, Eq.(54), using the completely re-
summed dressed-quark-gluon vertex in the gap equation and the
vertex-consistent Bethe-Salpeter kernel; short-dash line: this trajec-
tory calculated in rainbow-ladder truncation. Long-dash line: vector
meson trajectory obtained withC using the completely resummed
vertex and the consistent Bethe-Salpeter kernel; dash-dot line:
rainbow-ladder truncation result for this trajectory. The dotted ver-
tical lines mark the current-quark masses in Table II.

ASPECTS AND CONSEQUENCES OF A DRESSED-… PHYSICAL REVIEW C 70, 035205(2004)

035205-11



of fp
0=0.079 GeV via the Gell-Mann–Oakes–Renner rela-

tion. It is a model artefact that the relative-momentum-
dependence of Bethe-Salpeter amplitudes is described by
d 4spd and so a direct calculation of this quantity is not real-
istic. The value is low, as that of the condensate is low,
because the model is ultraviolet finite. In QCD the conden-
sate and decay constant are influenced by the high-
momentum tails of the dressed-quark propagator and Bethe-
Salpeter amplitudes[9,43].

The curvature in the pseudoscalar trajectory persists over
a significant domain of current-quark mass. For example,
consider two pseudoscalar mesons, one composed of unlike-
flavour quarks each with mass 2ms and another composed of
such quarks with massms. In this case

m02ms

−
2

m0ms

−
2 = 2.4, s79d

which indicates that the nonlinear evolution exhibited in Eq.
(78) is still evident for current-quark masses as large as twice
that of thes-quark. With this result we reproduce a feature of
more sophisticated DSE studies[47–49] and a numerical
simulation of quenched lattice-QCD[50].

The mode of behavior just described is overwhelmed
when the current-quark mass becomes large:m@G. In this
limit the vector and pseudoscalar mesons become degener-
ate, with the mass of the ground state pseudoscalar meson
rising monotonically to meet that of the vector meson. In our
model

Um1−

m0−
U

m=mc

= 1.04, s80d

with a splitting of 130 MeV, and this splitting drops to just
40 MeV atmb; viz., only 5% of its value in the chiral limit.
In addition to the calculated value, the general pattern of our
results argues for the mass of the pseudoscalar partner of the
Ys1Sd to lie above 9.4 GeV. Indeed, we expect the mass
splitting to be less thanmJ/c−mhc

, not more.(See also; e.g.,
Ref. [51].)

In Fig. 8 one observes that on a material domain of
current-quark masses:m1−

2 −m0−
2 <0.56 GeV, an outcome

consistent with experiment that is not reproduced in numeri-
cal simulations of quenched lattice-QCD[50]. The difference
is maximal in the vicinity of mc, a result which re-
emphasises that heavy-quark effective theory is not an appro-
priate tool for the study ofc-quarks[32].

Figure 9 is instructive. It shows that with growing current-
quark mass the rainbow-ladder truncation provides an in-
creasingly accurate estimate of the ground state vector meson
mass. At thes-quark mass the relative error is 20% but that
has fallen to,4% at thec-quark mass.

Similar statements are true in the valid pseudoscalar chan-
nels. In fact, in this case the agreement between the truncated
and exact results is always better; e.g., the absolute differ-
ence reaches its peak of<60 MeV at m,4ms whereat the
relative error is only 3%. This behavior is fundamentally
because of Goldstone’s theorem, which requires that all le-

gitimate truncations preserve the axial-vector Ward-
Takahashi identity and hence give a massless pseudoscalar
meson in the chiral limit. It is practically useful, too, because
it indicates that the parameters of a model meant to be em-
ployed in a rainbow-ladder truncation study of hadron ob-
servables may reliably be fixed by fitting to the values of
quantities calculated in the neighborhood of the chiral limit.

The general observation suggested by Fig. 9 is that with
increasing current-quark mass the contributions from nonpla-
nar diagrams and vertex corrections are suppressed in both
the gap and Bethe-Salpeter equations. Naturally, they must
still be included in precision spectroscopic calculations. It
will be interesting to reanalyze this evolution in a generali-
zation of our study to mesons composed of constituents with
different current-quark masses, and thereby extend and
complement the limited such trajectories in Refs.[47,48].

FIG. 8. Evolution with current-quark mass of the difference be-
tween the squared-masses of vector and pseudoscalar mesonssC
=0.51d using the completely resummed dressed-quark-gluon vertex
in the gap equation and the vertex-consistent Bethe-Salpeter kernel.
The dotted vertical lines mark the current-quark masses in Table II.

FIG. 9. Evolution with current-quark mass of the relative differ-
ence between the meson mass calculated in the rainbow-ladder
truncation and the exact value. Solid lines: vector meson trajecto-
ries; and dashed-lines; pseudoscalar meson trajectories. The dotted
vertical lines mark the current-quark masses in Table II. We used

C̄=0.51.
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C. Bethe-Salpeter equation for diquarks

Color antitriplet quark-quark correlations(diquarks) have
long been a focus of attempts to understand baryon structure
[52]. An appreciation of their importance has grown and a
modern picture of diquark correlations in baryons is realized
through their role in a Poincaré covariant Faddeev equation
[4,53–55]. Lorentz scalar and axial-vector correlations are
most important.

In rainbow-ladder truncation color-antitriplet diquarks are
true bound states[56,57]. (NB. Color sextet diquarks are
never bound since even single gluon exchange is repulsive in
that channel.) In spite of this, the addition ofL−

2sk,pd, Eq.
(15), to the quark-gluon vertex, along with the three terms it
generates in the color-antitriplet quark-quark scattering ker-
nel, overwhelms the attraction produced by single gluon ex-
change and eliminates diquarks from the spectrum[29]. The
repulsive effect owing toL2

−sk,pd is consummated when the
series it generates is fully resummed[30]. With that vertex
the characteristic polynomial obtained from the Bethe-
Salpeter equation exhibits a pole, which is the antithesis of
the zero associated with a bound state.

Herein we have introduced a new element into the con-
sideration of diquarks; namely, our model for the quark-
antiquark scattering kernel exhibits attraction, which is a
property not possessed byL2

−sk,pd. The dressed-quarks that
appear in the diquark Bethe-Salpeter equation are described
by the gap equation elucidated already. However, the manner
in which diagrams are combined and resummed in the
vertex-consistent color-antitriplet diquark Bethe-Salpeter
kernel is different from that which maintains for color singlet
mesons. Fortunately, the modifications necessary in the class
of Ansätzecontaining our model were elucidated in Ref.[30]
and we need only adapt them to our particular case.

Brevity requires that we omit all details and herein it must
suffice to say that we examined the behavior of the scalar
and axial-vector diquarks’ characteristic equations as the pa-
rameterC in Eq. (20) was varied. Our results are summarised
in Fig. 10. A value ofC=0 implements the rainbow-ladder
truncation. In this case, as promised, both scalar and axial-
vector diquarks are bound, withm0+=1.55 GeV andm1+

=1.70 GeV, in agreement with Ref.[29].
WhenC is evolved to negative values(net repulsion in the

color-octet projection of the quark-antiquark scattering ker-
nel) the zero in both characteristic equations moves deeper
into the timelike region; i.e., the diquark masses increase.
This continues briefly until, atC1+

− <−0.023<−1/43, the
characteristic equation for the axial-vector diquark no longer
has a solution. For the scalar diquark this happens atC0+

− <
−0.027<−1/37. It is therefore clear that very little repulsion
in the color-octet quark-antiquark scattering kernel is suffi-
cient to prevent the appearance of diquark bound states.(NB.
If one considers single-gluon exchange between the quark
and antiquark then a value ofC=−1/8 is obtained, Eq.(17).
This is approximately five-times larger than these critical
values, an observation which further elucidates the results in
Refs.[29,30].)

The evolution ofC to positive values provides altogether
new information and insight. To begin, the bound diquarks

that existed in rainbow-ladder truncation survive and their
masses decrease continuously with increasingC. Such behav-
ior might have been anticipated on the basis of continuity,
and a decrease in a bound state’s mass with increasing attrac-
tion between its constituents is not unusual. This smooth
development continues, for the axial-vector diquark until
C1+

+ <0.34 and for the scalar diquark untilC0+
+ <0.36, at

which point it changes dramatically. The masses suddenly
begin to increase rapidly and their behavior thereafter is de-
scribed by

1

m0+
= 5.59Î0.388 −C,

1

m1+
= 5.75Î0.363 −C, s81d

an evolution represented by the dotted lines in Fig. 10.
The value of C at which the behavior of the masses

changes qualitatively is correlated with the movement of the
cusp evident in Figs. 1–5 into the domain that affects the
position of the zero in the characteristic polynomials. This
means that, with net attraction in the color-octet quark-
antiquark scattering channel, the expulsion of diquarks from
the bound state spectrum follows immediately upon the ac-
tive expression of confinement by the dressed-quark propa-
gator in the bound state equation.

There are no bound diquarks in the spectrum obtained
with the value ofC=C in Eq. (54) suggested by the lattice
data.

V. EPILOGUE

We explored the character of the dressed-quark-gluon ver-
tex and its role in the gap and Bethe-Salpeter equations. Our
results are relevant to the mechanism and realization of con-
finement and dynamical chiral symmetry breaking, and the
formation of bound states.

We employed a simple model for the dressed-gluon inter-
action to build anAnsatzfor the quark-gluon vertex whose
diagrammatic content is expressly enumerable. The model
reduces coupled integral equations to algebraic equations and
thereby provides a useful intuitive tool. We used this frame-

FIG. 10. Evolution of the reciprocal diquark masses, calculated
in the chiral limit, with the parameterC: solid line – scalar diquark,
dashed line – axial-vector diquark. The dotted lines are explained in
connection with Eq.(81). G=0.69 GeV.
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work to argue that data obtained in lattice simulations of
quenched-QCD indicate the existence of net attraction in the
color-octet projection of the quark-antiquark scattering ker-
nel.

We observed that the presence of such attraction can ma-
terially affect the uniformity of pointwise convergence to
solutions of the gap and vertex equations. Our results illus-
trate that the solutions of two gap equations that are defined
via vertex truncations orAnsätzewhich appear similar at
spacelike momenta need not yield qualitatively equivalent
results for the dressed-quark propagator.

The dependence of our calculated dressed-quark-gluon
vertex on the current-quark mass is weak until that mass
becomes commensurate in magnitude with the theory’s in-
trinsic mass-scale. For masses of this magnitude and above,
vertex dressing is suppressed and the dressed vertex is well
approximated by the bare vertex.

The feature that the diagrammatic content of our model
for the vertex is explicitly enumerable enabled the systematic
construction of quark-antiquark kernels that ensure the pres-
ervation of all Ward-Takahashi identities associated with
strong interaction observables. This guarantees that the pion
is automatically realized as a Goldstone mode in the chiral
limit. Such a result is impossible if one merely guesses a
form for the vertex.

We illustrated that with increasing current-quark mass the
rainbow-ladder truncation provides an increasingly reliable
estimate of the model’s exact vector meson mass. For pseu-
doscalar mesons, this is even more true because the rainbow-
ladder and exact results are guaranteed by the Ward-

Takahashi identity to agree in the chiral limit. Moreover,
both in rainbow-ladder truncation and with the complete ver-
tex and kernel, the splitting between pseudoscalar and vector
meson masses vanishes as the current-quark mass increases.
In our complete model calculation this splitting is 130 MeV
at thec-quark mass and only 40 MeV at theb-quark mass, a
pattern which suggests that the pseudoscalar partner of the
Ys1Sd cannot have a mass as low as that ascribed currently
to thehbs1Sd.

Color-antitriplet diquark correlations form bound states in
rainbow-ladder truncation. However, we demonstrated that
introducing a very small amount of repulsion into the kernel
eliminates these states from the spectrum. If, on the other
hand, one introduces a small amount of color-octet attraction,
these diquarks persist as bound states. However, with the
amount of attraction suggested by lattice data, diquarks van-
ish from the spectrum.
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