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Aspects and consequences of a dressed-quark-gluon vertex
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Features of the dressed-quark-gluon vertex and their role in the gap and Bethe-Salpeter equations are
explored. It is argued that quenched lattice data indicate the existence of net attraction in the color-octet
projection of the quark-antiquark scattering kernel. The study employs a vertex model whose diagrammatic
content is explicitly enumerable. That enables the systematic construction of a vertex-consistent Bethe-Salpeter
kernel and thereby an exploration of the consequences for the strong interaction spectrum of attraction in the
color-octet channel. With rising current-quark mass the rainbow-ladder truncation is shown to provide an
increasingly accurate estimate of a bound state’s mass. Moreover, the calculated splitting between vector and
pseudoscalar meson masses vanishes as the current-quark mass increases, which argues for the mass of the
pseudoscalar partner of th&1S) to be above 9.4 GeV. With the amount of attraction suggested by lattice data
color-antitriplet diquarks are absent from the strong interaction spectrum.
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I. INTRODUCTION current-quark bare mass; ayigi: = [d*q/(2m)*, which repre-

Dynamical chiral symmetry breakingDCSB) impacts sents a translationally invariant regularization of the integral,
eWith A the regularization mass-scale. The quark-gluon-

materially on the strong interaction spectrum. For example,

this phenomenon, which can even be expressed in modelertex and quark wave function renormalization constants,

that omit confinemenf1-3], is responsible for the remark- 21,2(52'/\2)' respectively, depend oA\, the renormalization

ably small value of the ratio of-- and p-meson masses and, POINt ¢, and the gauge parameter.
inseparable from this, the generation of large constituent-like The gap equation’s solution is the dressed-quark propaga-

masses for dressed-quarks. It follows both: That a sum of°f, Which takes the form
constituent-like dressed-quark masses sets a baseline for the

-1_; 2 2 2 2
masses of all light hadrons, except the pseudoscalar mesons; Sp) =iy - pAP%E) +B(p%{)
and that pseudoscalar “meson cloud” contributions are essen- 1 )
tial to an understanding of hadron observables, such as the = W[W' p+M(p, 9] 2
masse$4,5] and form factorg6] of octet and decuplet bary- '
ons. It provides direct access to the gauge invariant vacuum quark

That stated, herein a primary concern is the dreSSEdCondensatQS—lq
quark-gluon vertex]3(q; p). We are generally interested in
its form, how that arises, and the ways it affects and is af- A
fected by strong interaction phenomena. The vertex is a key - (q9)? = lim Z4(§2,A2)ther (,9). (3)
element in the gap equatibn A q

SP)t=Zy(iy - p+m) In Eq. (3): Z, is the renormalization constant for the scalar
A A8 part of the quark self-energy, through which the current-
+ Zlf gZDW(p— q)EyﬂS(q)I“’;‘(q,p), 1) qguark bare-mass is related to the running mass

q

2 A2\mib — 2 A2
and this brings an immediate link with DCSB. The gap equa- Zy(L%, A2)MP™(A) = Z4(8%,A%)m(Q), 4)

:Ir?en ﬁr?sir:O;QDl?gg uasrfg ::a?c:\?r?l f?orr1e\c/§|lf?npgc]gc;28ll)ge?\fv:an;?{° identifies a trace over Dirac indices alone; and the super-
DCSB%nd confiner’nerﬁV] Moreovger the vertex is essential script “0” indicates the quantity was calculated in the chiral
: ' limit, which is unambiguously defined in an asymptotically

to a valid description of bound states and therefore to real'sf'ree theory[8—10.

;ne%\fl;[%zr}gerzzaenrgllng Goldstone’s theorem, and current con- It is a longstanding prediction of Dyson-Schwinger equa-
g - . ) tion (DSE) studies[7,11,13 that the two-point Schwinger
The gap equation also consists BX,,(k), the renormal- f : hich ch e th . ¢ s ol
ized dressed-gluon propagatomP™ the A-dependent unctions which characterize the propagation o QCDrs el-
’ ementary excitations are strongly dressed at infrared length-

scales, namelk?><2 Ge\?; and it has become apparent that

Y(We employ a Euclidean metric, witHzy,,y,}=23,,,; 'yL:'yM; this feature is materially important in explaining a wide
anda-b=3%, ab;.) range of hadron propertig43].
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Such dressing is also a feature of the dressed-quark-gluon - i
vertex, a three—goint function, and it is certain tha?the ingfra— Lulp.@) =7 l1(p.0) + v (P+Q(P+A),laA(P,Q)
red structure of this vertex has an impact on properties of the —i(p+q),lap,a) +[...], (6)
gap equation’s solution, such as: Multiplicative renormaliz- a
ability [14-14; gauge covariancgl5,17, and the existence where the ellipsis denotes contributions from additional
and realization of confinement and DC$B-3,18—-2(. For  Dirac matrix structures that play no part herein. Since QCD
example, related vertex Ansatze, which agree in the ultraviois renormalizable, the bare amplitude associated wijthis
let, can yield solutions for the dressed-quark propagator vighe only function in Eq(6) that exhibits an ultraviolet diver-
the gap equation with completely different analytic proper-gence at one-loop in perturbation theory.
ties and incompatible conclusions on DCEA,,22. The requirement that QCD’s action be invariant under lo-
Dyson-Schwinger equation predictions for the behavior ofca| color gauge transformations entdiBs]
dressed-gluorj23-23 and dressed-quark propagators; e.g.,
[9,19,20, have been confirmed in numerical simulations of kil u(p,q) = F9kA{[1 - B(p,q)IS(p)
lattice-regularized QCI)26,27. Detailed study provides an -1
understanding of the circumstances in which pointwise -S@ 11-Bp.gl, ()
agreement is obtaing@8]. This level of sophistication does wherein F9(k?), k=p-q, is the dressing function that ap-
not yet prevail with the quark-gluon vertex but is a realizablepears in the covariant-gauge ghost propagator
contemporary goal.
In Sec. I, we recapitulate on a nonperturbative DSE trun- FOK2, %)
cation schem@29,3Q that has already enabled some system- K
atic study of the connection between the dressed-quark-gluon . ) )
vertex and the expression of symmetries in strong interactioAnd B(p,q) is the renormalized ghost-quark scattering ker-
observables. In doing this we are led to propose an extensidtel- At one-loop order on the domain in which perturbation
of earlier work, one which facilitates an exploration of the theory is a valid tool

DY(K%, (%) = - (8

impact that aspects of the three-gluon vertex have on hadron (k3) ]
phenomena. To amplify the illustrative efficacy of our analy- FIKE, ) = [a—z] , 9)
sis we introduce a simple model to describe the propagation a({)

of dressed-gluong31] that reduces the relevant DSEs to a st i1, the anomalous dimensiong,=—(3/8)N; in Landau
. . . . . . c

of cogpled alg_e_bralc equat_lons which, _notwnhstandlng_thelrgauge, which we use throughout, ang,=-(11/6)N,

simplicity, exhibit characteristics essential to the strong |nter-+(1/3)N whereN; is the number of active quark flavors

action. f f .

i i 2 =~ -
In Sec. Ill we chronicle features of the dressed-quark--rh'.S result may be sumn;anéed A5(1c) ~1on the pertur
tive domain, up to Ip*/Agcp-corrections. In a similar

gluon vertex and dressed-quark propagator that are comm ~0in Land his doméi
to our model and QCD. Of particular interest are the effectssenseB(P'q)”“ ) In Landau gauge on t IS domatin.
Equation(7) is a Slavnov-Taylor identity. It is an ana-

of net attraction in the color-octet quark-antiquark scattering] L . .
kernel which we are able to identify. We follow that in Sec. °9ue of the Ward-Takahashi identity that applies to the
Hfermion-photon vertex, which entails that in the vertex de-

IV with an analysis of the Bethe-Salpeter equations which™"" " X )
can be constructed, consistent with the fully dressed-quarkecriPing the coupling of a photon to a dressed-quark:

gluon vertex, so that the Ward-Takahashi identities associ- . Cap2
ated with strong interaction observables are automatically I'{(p,p) =A(P% £, (10)
satisfied. This property is crucial to understanding hadron

properties and interaction8,32—33. Section IV also con- Sy L d s,
tains an analysis of color-antitriplet diquark correlations. F3p.p) = 2dp2A(p 49, (11)
We close our presentation with a summary in Sec. V.
Il. DRESSED QUARK-GLUON VERTEX ~ d
N Fi(p.p) = 2 B2, (12)

A. General features

This Schwinger function can be calculated in perturbationAppreciating this nontrivial structure of the dressed-quark-
theory but, since we are interested in the role it plays inphoton vertex has been crucial in describing the electromag-
connection with confinement, DCSB and bound state propnetic properties of mesorj87,3§.
erties, that is inadequate for our purposes: These phenomenaThe similarity between the Slavnov-Taylor and Ward-
are essentially nonperturbative. Instead we begin by obser#akahashi identities has immediate, important consequences.
ing that the dressed vertex can be written For example, if the result

. | I
II‘Z(p,q) = Exarﬂ(p,Q) = 3|aF,L(p,Q)' (5) 2(An even closer analogy is a kindred result #(p?) in Eq. (2);
viz., in Landau gauggl -Z(p?,%)]=0 at one loop in perturbation
viz., the color structure factorizes, and that twelve Lorentzheory and hence, on the perturbative domain, corrections to this
invariant functions are required to completely specify theresult are modulated by InIpZ/AéCD. This very slow evolution is
remaining Dirac-matrix-valued function; i.e., exhibited, e.g., in the numerical results of Rgf9].)
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0< FYKA[1-B(p,q)], (13)  channel is provided by th€} term in Eq.(14), which in-

_ _ _ volves the three-gluon vertex. These observations emphasize
also prevails on the nonperturbative domain then, because @fat Eq.(7) cannot be satisfied if the contribution from the
the known behavior of the dressed-quark propagator, Eqnree gluon vertex is neglected because the Slavnov-Taylor
(13) is sufficient grounds for Eq(7) to forecast that in the jgentity signals unambiguously that on the perturbative do-
renormalized dressed-quark-gluon vertex II;(p,p) at in-  main there is net attraction in the octet channel.

frared spacelike momenta. This result, an echo of (&), It is apparent, too, that the term involving the three gluon
signals that the complete kernel in the DSE satisfied byertex is numerically amplified by a factor Nﬁ cf. the £;
Fi(p,q) is attractive. (Abelian-like) vertex correction. Hence, if the integrals are of

similar magnitude then thexlﬁ-enhanced three-gluon term
must dominate in the octet channel. This expectation is borne
B. Vertex in the gap equation out by the one-loop perturbative calculation of the two inte-

The ability to use the gap equation as the basis for robusqrals exhibiteq in Eqsﬁ.lS) and(16) and, moreover, the sum
statements about DCSB rests on the existence of a systerfit POth terms is precisely that combination necessary to sat-
atic, nonperturbative and chiral symmetry preserving truncalSfy the Slavnov-Taylor identity at this ord¢9).
tion scheme. One such scheme, introduced in R&j, may

be described as a dressed-loop expansion of the quark-gluon C. Vertex model
vertex wherever it appears in the half-amputated dressed- | , ) )
quark-antiquarkor -quark-quark scattering matrixK, a In illustrating features of the DSE truncation scheme in-

renormalization-group invariant, wheré is the dressed- froduced in Ref.[29] in connection, for example, with
quark-antiquarkor -quark-quarkscattering kernel. Thereaf- PCSB, confinement and bound state structure, [ em-
ter, all n-point functions involved in connecting two particu- Ployed a dressed-quark-gluon vertex obtained by resumming

lar quark-gluon vertices areilly dressed a subclass of diagrams based®nalone; namely, the vertex
The effect of this truncation in the gap equation, Fy, ~ OPtained as a solution of
is realized through the following representation of the 1 (A
dressed-quark-gluon vertg¢20] Ik ko) = ZIlyM + oL g°D poP=1)
cJ ¢

P T uN T = —/ro

with It was acknowledged that this subclass of diagrams is
_ 1™ 5 1/N-suppressed but, in the absence of nonperturbative in-
Lo(k,p) = N, 9 Dpo(p = €)%, S + k= P) 7, €) ¥, formation aboutZ; in general, and the dressed-three-gluon
et vertex in particular, this limitation was accepted.

(15 Herein we explore a model that qualitatively ameliorates
this defect while preserving characteristics that make calcu-

N Ne (A ’ lations tractable and results transparent; viz., in @4) we

’CZ(k! p) = EL g Do”o'(e)DT’ T(€ +k- p) write
- + C
X v S(p=0)7, 1%, (6.~kk-p), (16 Lot Lo=La (19
whereinI'® is the dressed-three-gluon vertex. The IowestWhere

order contribution to each term written explicitly is(g3). A

The ellipsis in Eq(14) represents terms whose leading con- Ly(k,p): = —CCz(R)f 9°D,,(p~{)

tribution is Q(g*); e.g., crossed-box and two-rung dressed- ¢

gIL(Jjon ladder diagrams, and also terms of higher leading- X, +k=p)y,S€) Ve, (20)
order.

The £; term in Eq.(14) only differs from a kindred term and work with the vertex obtained as the solution of
in QED by the color factor. However, that factor is signifi- A
cant because it flips the sign of the interaction in this channel Fi(k+, ko) = Zl'lyﬂ - CCZ(R)J 9°D,,(p—¢)
with respect to QED; i.e., since ¢

e Lo -cqm e L Xy ST (€, €)S(L) (21)
272 2 2N, To explain this model we remark that the paramétés a

global coupling strength modifiefNB. The value C=

g_ —(1/8) reproduces the vertex resummed in R&0].) It is
cf. 191 J%=-Cy(R)1. = - 1., (17)  introduced so that ouAnsatzmay mimic the effects of at-

2N Co . g
¢ traction in the color-octet channel without specifying a form

then single gluon exchange between a quark and antiquark fer the three-gluon vertex. This expedient will give a faithful
repulsive in the color-octet channel. Attraction in the octetmodel so long as the integrals over the momentum depen-
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dence of£; and £ that appear in our calculations are not wherel‘fb]i(p) satisfies a recursion relation
too dissimilar. This is plausible because: They are both one- c B c

loop integrals projected onto the same Dirac and Lorentz Fp,i+1(p)__Cyﬂs(p)rp,i(p)s(p)yﬂ’ (27)
structtére_andhhenc.e a:je Eo!nt\é\(ise similar at this orqer i%t? rc,i:o: 7, the bare vertex, so thatfyozl, ag,o=0
perturbation theory; and their direct sum must conspire to__asyo_ [t follows that (A(s)=sA2(s) +BX(S)):
give the simple momentum dependence in Eg. Moreover,

as we shall demonstrate, the model has material illustrative c A

_capacity and that alone is sufficient justification for proceed- @ = A-2C' (28)
ing.
D. Interaction model c 4CA? (A-40) 29
a,=— ,
A simplification, important to our further analysis, is a 2 A?+20(B*-sA?)-8C*(A-20)
confining model of the dressed-gluon interaction in E&1).
We use[31] 8CAB
a5 = (30

k kV 3 - .
D,,(K):=gD,,,(K) = (% -7 )(277)4g254(k). (22) A%+2C(B* - sA) - 8C7
, It is evident that the momentum dependence of the vertex
The constany sets the model's mass-scale and henceforths completely determined by that of the dressed-quark propa-
we mainly setg=1 so that all mass-dimensioned quantitiesgator whose behavior, however, the vertex itself influences
are measured in units ¢f. Furthermore, since the model is pacause it appears in the gap equation. Subject taZ3y,

ultraviolet-finite, we will usually remove the regularization 4t gap equation expresses two coupled algebraic equations:
mass-scale to infinity and set the renormalization constants

equal to one. _ 1 c c c

The model defined by Eq22) is a precursor to an effi- Als)=1 +E[A(2al ~sap) ~ Bag, (31)
cacious class of models that employ a renormalization-
group-improved effective interaction and whose contempo- 1
rary application is reviewed in Ref§11-13. It has many B(s)=m+ —[B(4a§+5a§) —sAag]. (32
features in common with that class and moreover its distinc- A(s)
tive momentum-dependence works to advantage in reducinghe dressed-quark propagator and -quark-gluon vertex fol-

integral equations to algebraic equations that preserve thew from the solution of these equations, which is generally
character of the original. There is a drawback: The simplesptained numerically.

momentum dependence also leads to some model-dependentn the chiral limit, which here is simply implemented by
artefacts, but they are easily identified and hence not causgsttingm=0, a realization of chiral symmetry in the Wigner-
for concern. Weyl mode is always possible: It corresponds to Bxe0
solution of the gap equation. However, since the phenomena
of QCD are built on a Nambu-Goldstone realization of chiral

If Eq. (22) is used in Eq(21) then that part of the vertex symmetry, we do not consider the Wigner-Weyl mode any
which acts in the gap equation has no dependence on th@rther. Its characterization can be achieved in a straightfor-
total momentum of the quark-antiquark pair; i.e., onlyward manner by adapting the analysis of R@&0] to our
Fi(p): :Fi(p,p) contributes. In this case just the terms writ- improved vertex model.

ten explicitly in Eq.(6) are supported in the dressed vertex,
which can be expressed Ill. PROPAGATOR AND VERTEX SOLUTIONS

ri(p) = VMai(pz) +y- ppﬂa‘é(pz) - ipﬂag(pz). (23) A. Algebraic results

Hence we obtain information about all the amplitudes that At this point some observations are useful in order to
survive when the vertex is evaluated at zero gluon momen€Stablish a context for our subsequent results. To begin we
tum. The vertex equation is explore the ultraviolet behavior of the model. It is ultraviolet

finite and hence at large spacelike momestal (in units of

E. Algebraic vertex and gap equations

C — C
I.(p) =7, = Cy, P (PSP)y,, 249 @3
where we have use@,(R)=4/3 for N.=3. Equation(24) a b,
possesses the solution Als) =1+ o B(s) =~ m+ 3 (33
Fi(p) = Fi,i(P) (250 with m the model’s finite current-quark mass. The model is
i=0 useful because these results persist in asymptotically free

theories, up to IrpZ/AéCD-corrections. With this behavior it

“ _ follows from Egs.(28)«33) that:
=2 [,04,(p?) + v - PP.a5(p%) —ip,.a5,(p7)],

= S~ 14 2 4
- (9 =1+—, (34
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and these results, in turn, mean that in the ultraviolet thavith

behavior of the massive dressed-quark propagator is deter-

mined by thea, term in the vertex, so that
(36)

The expansion ofw;(s) around 15=0 reported in Eq.

=2,b=4m.

(34) is the same as that which arises in QCD, apart from the Moo= "o

usual Ir(s/AéCD)-corrections. However, the leading terms in
a, 3 are different: On the perturbative domain in QCD

B(0,m)
M(s=0,m) = AO.M) = ud+ udm, (42)
ﬂo_b_g _ 22 +0)%2 (43
0= 0~ '
ag 4+6C
bt blal 6+23+152
1_DPo  Bodg _ (44)

al (a2 22+3)?

For C>-(1/3) the mass function also increases with rising

these functions both begin with a term of order m. These patterns of evolution are observed in simulations of

(1/5)[In(s/AéCD)]d, with d some combination of anomalous

lattice-QCD[27].

dimensions. The reason for the mismatch is readily under- The infrared behavior of the dressed-quark-gluon vertex

stood. At one-loop order in QCD

B(p?) = | 2In(p?AZcp) 141, (37)

with m the renormalization point invariant current-quark

mass andy;"=(3/2)C,(R). (This makes explicit the logarith-
mic correction to the leading term in E@3).) For the pur-

follows via Egs.(28)—«30); using which one finds

pose of this explanation then, on the perturbative domain,

with F9(k?) ~1 andB(p,q) =0, the Slavnov-Taylor identity,

Eq. (7), is approximately equivalent to the Ward-Takahashi

identity. Hence, via Eq(12)
M ,ylm{ 1, } Yy1B1-1
~ ——| ZIn(p“/AGcp)
s :81 QCD

> (38)

a(s)

It is thus evident that in QCD, even though they are not

themselves divergent, the leading order terms in logthare

induced by the momentum-dependent renormalization of el-

ements contributing to their evaluation. Such terms are nat

sence of 1¢ terms in Eq(35) is a readily identifiable model
artefact.

We note that foilC>0, (af—l) is necessarily positive on
the perturbative domain and; ; are negative. These results
are also true in QCDa% > 1 up to logarithmic corrections

a(s=0m ~a,+dm =123, (45)
1 C
C C
=1+-, S 46
a0 a1 8\2+cC (46)
C2-0)(2+30)
c __SeTther )
a2,0_ (2 +C)2 ’ (47)
o 22c(8 +2a + 22— 9C?)
a2,1: (2 +C)7/2 ' (48)
18C 2C(5 + 6C)
C _ \ C _
- = . 49
a3,0 \’,2 +C 83,1 (2 +C)2 ( )

rally missing in our ultraviolet finite model. Hence the ab-uThese algebraic formulas show clearly the effect on the

dressed-quark-gluon vertex of attraction in the projection of
the quark-antiquark scattering kernel onto the color-octet

channel. Attraction causef%l(p,p) to be enhanced in the

infrared cf. the bare vertex; and it drivés s(p,p) to mag-
nified, negative values. These results also signal that attrac-

It would be exceptional if these statements were not also truion ensures that a current-quark mass acts to reduce the

on the nonperturbative domain.
We now turn to the infrared and focus @0 but con-
sider 0<m<1, in which case

A(s=0,m) = aj+aym, B(s=0,m) = bd+bim. (39

vertex function in magnitude.

B. Numerical results

In choosing a value fo€ we elect to be guided by results
from quenched lattice-QCD simulations of the dressed-quark

Upon insertion of these expressions into the gap equatiopropagatof27] and dressed-quark gluon vertgQ]. We fo-

one obtains
0_22+% . 324+2CC+15(32 40
0T ok TN (2+¢)%2 (40
— 2 1
0 [ 1
=4 + == 41
bo N 2C, bO (bg)z 2+Ci ( )

viz., results which show that in the neighborhoodse and
with attraction in the color-octet channél(s) decreases with
increasing current-quark mass whiBs) increases. At this
order the mass function is

cus on a current-quark mass common to both simulations;
namely, 60 MeV, at which value the lattice dressed-quark
propagator haf28]: Z,,(0)=0.7,M(0)=0.42. Then, so as

to work with dimensionless quantities, we setg
=0.06M(0) and, using Eqs(39—49), require a least-
squares fit to

A(mgg) = 1.4, (50

3(There is a confusion of positive and negative signs in [Rkd]
concerning\,, A3, as defined therein. Our signs are correct. With
the conventions expressed in Eg3): 4\ ,=—a, and 2A3=a3.)
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shows clearly that the presence of net attraction in the color-
octet quark-antiquark scattering kernel uniformly increases
the magnitude ofA(p?) at all momenta. This effect is pro-
nounced at infrared spacelike momenta and particularly on
the timelike domains<<0. In this and the following figures
C=0 corresponds to the rainbow-ladder DSE truncation; i.e.,
the leading order term of the truncation scheme introduced in
Ref. [29].

In the lower panel one sees that on the spacelike domain,
s>0, the one-, two-, three- and four-loop corrected vertices
yield a result forA(p?) that is little different from that pro-
duced by the completely resummed vertex. However, that is
not true on the timelike domain, whereupon confinement is
expressed and hence nonperturbative effects become impor-
tant. In our model confinement is realized via the absence of
a particle-like singularity in the dressed-quark propagator
[3]. The cusp displayed bj(p?) in the timelike domain is
one manifestation of this feature. The figure shows that con-
vergence to the solution obtained with the completely re-
summed vertex proceeds via two routes: One followed by
solutions obtained with an odd number of loop corrections to
the vertex; and another by those obtained using a vertex with
an even number of corrections. This effect is absent with net
repulsion in the color-octet projection of the quark-antiquark
scattering kernel.

We remark thatA(p?) evolves slowly with the current-
quark mass when that mass is significantly smaller than the
model's mass-scale. However, when the current-quark mass
becomes commensurate with or exceeds that mass-scale, it
acts to very effectively dampen this function’s momentum
dependence so tha&i(p?) =~ 1. This is also true in QCD.

FIG. 1. Upper panel- C-dependence of\(s). For all curvesm
=0.015. Solid line:C=C=0.51; dash-dot-dot line€=1/4; dotted

line: C=0; and dash-dot curv&:=-1/8. Lower panetTruncation- L .
IO - We plot the dressed-quark mass function in Fig. 2. The
dependence 0A(s), C=C. Solid line: complete solution; dash-dash- . . . . . Lo
existence of a nontrivial solution in the chiral limit is the

dot line - result obtained with only the=0, 1 terms retained in Eq. A .
(25), the one-loop corrected vertex; short-dash line - two-loop cor-reahza‘tlorl of DCSB, in our model and QCD. For current-

rected; long-dash line - three-loop corrected; and short-dash-dcquar,k masses less than the modells mass-scaléhe dy-
line: four-loop corrected. In this and subsequent figures, unless otfl@mically generated mass determines the scale of observ-
erwise noted, dimensioned quantities are measured in unisirof ables. However, fom=¢, this explicit chiral symmetry

Eq. (22. A fit to meson observables requir¢s=0.69 GeV and Preaking mass-scale overwhelms that generated dynamically
hencem=0.015 corresponds to 10 MeV. and enforceM(p?) =~m. This is the behavior of thb-quark

mass function in QCD32].

C _ From a comparison of the rainbow-ladder res@i,0, in
(0.meg) = 2.1, (51) the lower panel with the€=-1/8 andC=0.51 results, it is
5 C apparent that vertex dressing driven by net attraction in the
= M(0,mgo)“a5(0,mgg) = 7.1, (52 color-octet scattering kernel reduces the magnitude of the
mass function at infrared momenta, a trend which is reversed
- M(0,mgo)a5(0,mgo) = 1.0. (53)  for spacelike momenta=g.* This effect has an impact on

the magnitude of the vacuum quark condensate. For ex-

This procedure yields ample, the mapping of E@3) into our model is

C=C=051 (54)

3 (% Z(s)M(s)
. . _ o —@J>O=?I dss—=——, (55)
with an average relative error 25% and standard deviation 47 Jo s+ M(s)

0,=70%. We note that fo€=0.6:1=21%, o,=72%, while . ) . . ,

for C=0.4:7=31%, 5, =67%. If one omits Eq(52) from the ~ WNEr€Sy is the spacelike point at which the model's mass

fitting requirements therC=0.49 with T=2.5% and o function vanishes in the chiral limit, and we find

=63%. It is evident that competing requirements bound the

amount of attraction necessary in the kernel. We can now %This pattern of behavior is familiar from exploratiof0,22 of

illustrate the results for the dressed-quark propagator anthe effect in the gap equation of vertex Ansétté,41]; i.e., vertex

dressed-quark-gluon vertex. models whose diagrammatic content is unknown but which exhibit
A comparison of the curves in the upper panel of Fig.1lproperties in common with our calculat€i>0 result)
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M(s)
a,(s)

oN

] FIG. 3. C-dependence obzf(s) in Eq. (23). For all curvesm
=0.015. Solid line:C=C=0.51; dash-dot-dot line€=1/4; dotted
line: C=0; and dash-dot curv&:=-1/8. In addition, forC=0.51:
dash-dash-dot line - one-loop correcieds); and short-dash line -
two-loop-corrected result.

1.5

% o ]
= y ) qc O-
| S : <q‘1_2co =0.92, (58)
05 | @>Cz_%

and the ratio drops to 0.49 whéi=—-3/8 is used to evaluate
[, T the denominator.

22 -1 1 2 The implication of these results is that in general, with a
given mass-scale and a common model dressed-gluon inter-
FIG. 2. Upper panel— Current-quark-mass-dependence of the@ction, studies employing the rainbow-ladder truncation will
dressed-quark mass function. For all curde=0.51. Dotted line: ~ materially underestimate the magnitude of DCSB relative to
m=mgg; solid line:m=0.015; dashed line: chiral limim=0.Lower ~ those that employ a well-constrained dressed-quark-gluon
panekC-dependence of(s). For all curvesm=0.015. Solid line: ~ vertex. Naturally, in practical phenomenology, alterations of

C=C=0.51; dash-dot-dot line=1/4; dotted line:C=0; and dash- the mass-scale can compensate for [A{.

wo

dot curve:C=-1/8. In addition, forC=0.51: dash-dash-dot line - In Fig. 3 we portray the&-dependence of the scalar func-
M(s) obtained with one-loop corrected vertex; and short-dash line tion associated withy, in the dressed-quark-gluon vertex,
with two-loop-corrected vertex. a$(p?). It is particularly useful here to employ the rainbow-
ladder resultC=0, as our reference point because this makes
- (@)= (0.2316)3= (0.16 GeV®, (56)  the contrast between the effect of attraction and repulsion in

the color-octet quark-antiquark scattering kernel abundantly
with G=0.69 GeV. The rainbow-ladder result igag)2.,  clear. Attraction uniformly increases the magnitude of
=G%/(107?)=(0.15 GeV® so that af(pz), while the opposite outcome is produced by omitting
the effect of the three-gluon-vertex in the DSE for the

@)2:0 -082 (57) dressed-quark-gluon vertex. We remark that, as Witp?),
@>2—E T af(pz) evolves slowly with the current-quark mass but again,

when the current-quark mass becomes commensurate with or

This ratio drops to 0.50 whefi=1.0 is used to calculate the €xceeds the theory’s mass-scale, it acts to very effectively
denominator. dampen the momentum dependence of this function so that
It is thus evident that with attraction in the scattering ker-a5(p?)=1. This effect is apparent in the rainbow vertex

nel and at a common mass-scale, the condensate is signifiodel employed in Ref.28] to explain quenched-QCD lat-
cantly larger than that produced by a ladder vertex owing tdice data.
an expansion of the domain upon which the dressed-quark Figure 4 illustrates thé-dependence af5(p?), the scalar
mass function has nonzero support. function modulating the sub-leading Dirac vector component
It is natural to ask for the pattern of behavior in the pres-of the dressed-quark-gluon vertex. The qualitative features of
ence of repulsion. In this case Fig. 2 indicates that With  the completely resummed result faf(pz) are also manifest
—-1/8 the value of the mass function is enhancesi. The  here. However, for this component of the vertex, which is
magnitude of the mass function grows larger still with a fur-purely dynamical in origin, there is a marked difference at
ther decrease i@ and its domain of nonzero support ex- timelike momenta between the result obtained with an odd
pands. Therefore here, too, the condensate is larger than wittumber of loop corrections in the vertex and that obtained
the ladder vertex; e.g., with an even number. We note that the magnitude of this
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0.5 T e T .

o,(s)

Al '

asf

—_——.
1

FIG. 4. C-dependence of af5(s). For all curvesn=0.015. Solid
line: C=C=0.51; dash-dot-dot line€=1/4; anddash-dot curveC
=-1/8. Moreover, folC=0.51: dash-dash-dot line - one-loop result
for ag(s); short-dash line - two-loop result; long-dash line - three-
loop; and short-dash-dot line: four-loop. Fé=0, ag(s)zo.

function also decreases with increasing current-quark mass. %-» !
It is notable that the size of our complete result &¢p? )
is an order of magnitude smaller than that reported in Ref.
[40]. This is an isolated case, however. The calculated mag-
nitudes of the other functions in the dressed-quark propaga-
tor and -quark-gluon vertex are commensurate with those
obtained in quenched lattice-QCD. We remark in addition
that the lattice result is an order of magnitude larger than that
obtained with a commonly used verténsatz[41]. This FIG. 5. Upper panel — Current-quark-mass-dependence of
discrepancy deserves study in more sophisticated models. ag(s), For all curvesC=C=0.51. Dash-dot linem=2; dotted line:
In Fig. 5 we display what might be called the scalar partm=m; solid line:m=0.015; dashed line: chiral limitm=0. Lower
of the dressed-quark-gluon vertex; vizzg(pz). This is the  panetC-dependence O&g(s). For all curvesm=0.015. Solid line:
piece of the vertex whose ultraviolet behavior is most sensi€=C=0.51; dash-dot-dot lineC=1/4; and dash-dot curveC=
tive to the current-quark mass. The figure demonstrates thatl/8. Moreover, forC=0.51: dash-dash-dot line - one-loop result
at infrared momentag(pz), too, is materially affected by the for a5(s); short-dash line - two-loop result; long-dash line - three-
scale of DCSB, Eq(56): at s=0 the deviation from its 100p; and short-dash-dot line: four-loop. FOF0, ag(s) =0.
rainbow-truncation value is approximately four times that
exhibited byaf(pz). Hence, this term can be important at the value obtained using a bare vertex. However, they com-
infrared and intermediate momenta. pete in Eq(32): ag(s) works to diminishB(s) andag(s) acts
Finally, since they are absent in rainbow truncation, it isto amplify it. Therefore, in the absence oﬁ(s) one should
illuminating to unfold the different roles played tm;g(s) and  expectM(s)=B(s)/A(s) to be suppressed at intermediate mo-
ag(s) in determining the behavior of the gap equation’s self-menta, and consequently a condensate much reduced in mag-
consistent solution. Some of these effects are elucidated initude. Omittingag(s) should yield the opposite effect. This
Fig. 6. The key observation is that(s) alone is the source s precisely the outcome of our numerical studies:
of all coupling between Eq$31) and(32) that is not already

present in rainbow-ladder truncationéB appears in the (@abe-o =197 and CTea -0.40
equation forA(s) and aSsA appears in the equation f&(s). ()’ ~ o IGT o
. C . 3 . . aq c=C | = aq c=C| ,C—
The action ofa; is merely to modify the rainbow-ladder 30 =0
coupling strengths. (59
A consideration of Eq¥:31) and(32) suggests that omit- ) o
ting ag(s) will affect A(s) at infrared momenta but n@&(s). These aspects of our model provide an algebraic illustra-

That is easily substantiated by repeating the analysis th4ton ©f results obtained with more sophisticaidsatze as
gave Eqgs(40) and(41), and is apparent in the figure. It will aPparentfrom a comparison with, for example, RE28,22.
readily be appreciated that neithé(s) nor ag(s) can affect
the deep ultraviolet behavior of the gap equation’s solution,
Egs. (33) and (36), because they vanish too rapidly ass1/
—0. This is plain in Fig. 6. The renormalized homogeneous Bethe-Salpeter equation
At intermediate spacelike momenta bo:tg‘(s) and ag(s) (BSE) for the quark-antiquark channel denoted Mycan be
are negative and hence act to magnis) with respect to compactly expressed as

IV. BETHE-SALPETER EQUATION
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5 each additional term in the vertex generates a unique collec-

tion of terms inK, a subset of which are always nonplanar.

For any dressed-quark-gluon vertex in the gap equation,
which can be represented expressly by an enumerable series
of contributions, the Bethe-Salpeter kernel that guarantees
the validity of all Ward-Takahashi identities is realized in

A
FM(kvP) = f D;w(k_Q)la'Y;L[XM(QvP)IaFV(Q—:k—)
q

i +8(g) Ay (a.k;P)], (62
1
4 where
A (a.k;P) = 2 ARk P), (63
n=0
with herein
@ 1 an A b
= —gaAMA&kﬁﬁ= . D, (€ = PI°y,xm(a;P)

X TS (0, 0-+ k= 0)S(g-+ k= 0)I°y,

—_— ] A
e ] + f D,o(k=9)1°y,S(q. + € = K)
s .

22 X

nwor
-
N

X 180S (G + € — K, Q) (@ PPy,
FIG. 6. Upper panel- Impact ofag(s) and ag(s) on A(s). For A
C=C, Eq.(54), solid line: result obtained with both terms present; +J Dol - q’)lbypS(qL)

dashed-linex5(s)omitted; dash-dot linex(s) omitted. The dotted q

line is the result obtained with both terms present in the vertex but an-1/ 1 .
C=-1/8. Lower panetimpact ofag(s) and ag(s) on M(s). In all X AL k- 6P)
casesn=0.015. XS(q +k=€)IPy,. (64)

A This last equation is a recursion relation, which is to be
[Tw(k; P)]Ep=f [K(k,a;P)IeFLxm(a;P)ler,  (60)  solved subject to the initial conditio&°=0.
q The Bethe-Salpeter amplitude for any meson can be writ-

where:k is the relative momentum of the quark-antiquark (€N in the form

pair andP is their total momentumk, ... ,H represent color,
flavor and spinor indices; and

xm(K;P) = Sk)y(k;P)Sk-), (61)

with I'y(g; P) the meson’s Bethe-Salpeter amplitude. In Eq.whereg'(k; P) are those independent Dirac matrices required
(60), K is the fully-amputated dressed-quark-antiquark scatto span the space containing the meson under consideration.
tering kernel. It then follows upon substitution of this formula that E§4)

can be written compactly as:

Nm
Tu(k;P) =12 G'(k; P)fy (K k- P;P?) = [G] fy, (65)
i=1

A. Vertex consistent kernel AN = {[Kil\/lvaﬁn—l] + [ﬁA?/;Ir;—l]} fy. (66)
The preservation of Ward-Takahashi identities in those

channels related to hadron observables requires a conspirathis states thadf;’, can be considered as a matrix operating
between the dressed-quark-gluon vertex and the Bethén the space spanned by the independent components of the
Salpeter kerne[29,42. The manner in which these con- Bethe-Salpeter amplitude, with its Dirac and Lorentz struc-
straints are realized for vertices of the class considereture projected via the contractions in the BSE. The first term
herein was made explicit in Rgf30]. In that systematic and (KCy) in Eq. (66) represents the contribution from the first
nonperturbative truncation scheme the rainbow gap equatiotwo integrals on the right-hand sideh.s) of Eq. (64). This
and ladder Bethe-Salpeter equation represent the lowess the driving term in the recursion relation. The second term
order Ward-Takahashi identity preserving pair. Beyond this(£) represents the last integral, which enacts the recursion.
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B. Solutions of the vertex-consistent meson TABLE |. Calculated 77 and p meson masses, in GeVg
Bethe-Salpeter equation =0.69 GeV, in which cass=0.015G=10 MeV. In the notation of

Ref. [29], this value ofG corresponds tay=1.39 GeV) n is the
number of loops retained in dressing the quark-gluon vertex, see

With the model of the dressed-gluon interaction in Eq.Ed. (25, and hence the order of the vertex-consistent Bethe-
(22) the relative momentum between a meson’s constituent§alpeter kernel. NBn=0 corresponds to the rainbow-ladder trun-
must vanish. It follows that the general form of the Bethe- cation, in which casen, =126, and that is why this column’s results
Salpeter amplitude for a pseudoscalar meson of equal-madse independent df.

constituents igP2=1)

1. ar-meson

n=0 n=1 n=2 n=ow
M M My My

I (P) = %[if {(P?) + y - Pf5(P?)]. (67)  c=—(1/8) 7, m=0 0 0 0 0
To obtain the vertex-consistent BSE one must first deter- m,m=0.01 0149 0153 0154 0.154
mine A%L. That is obtained by substituting E¢G7) into the p, m=0 0.982 1.074 1089 1.091
rh.s. of Eq (64). Only the first two integrals contribute be- p,m=0.01 0997 1.088 1103 1.105
cause of the initial condition and they are actually algebraig=(1/4) m, m=0 0 0 0 0
expressions when Eq22) is used. This givesC!, in Eq. 7 m=001 0.149 0140 0.142 0.142
(66). Explicit calculation shows this to be identically zero, ;J, m=0 0982 0789 0855 0842

and henceA*!=0. Since this is the driving term in the re-

cursion relation then p,m=0.01 0997 0806 0.871 0.858

C=C=0.51 7, m=0 0 0 0 0
A2 (k,k;P)=0. (68) 7, m=0.01 0.149 0.132 0.140 0.138
p,m=0 0982 ... 0828 0.754

While this result is not accidentdBQ], it is not a general
feature of the vertex-consistent Bethe-Salpeter kernel. p,m=0.01  0.997 .. 0.844  0.770

One thus arrives at a particularly simple vertex-consistent
BSE for the pion(Q=P/2):

c m,_=0 for m=0. Away from this symmetry-constrained point
I'2(P) =~ %, QI (P)S-QI,(-Q). (69)  the results indicate that, with net attraction in the color-octet
quark-antiquark scattering kernel, the rainbow-ladder trunca-

Consider the matrices tion overestimates the mass; i.e., it yields a value greater than

i 1 - that obtained with the fully resummed vertéx=«). More-
7’1:—275, 732::17' Pys, (70 over, the approach to the exact result for the mass is not
monotonic. On the other hand, given two truncations for
which satisfy which solutions exist, characterised by andn,-loop inser-
tions, respectively, then
£7(P) = trp P (P). (71) Pecivel

n=o _ naNo n=oo _ anaNg
They may be used to rewrite E9) in the form M = M < IME™ =M, np>ny, (75)

f(P) = H(P)f (P), (72)

wherein,(P?) is a 2X 2 matrix

viz., correcting the vertex improves the accuracy of the mass
estimate.

2. p-meson

HA(P?); =~ iﬁteri ¥, SQI(P)S(- Q)ri(— Q). In our algebraic model the complete form of the Bethe-
of; Salpeter amplitude for a vector meson is

(73)

Equation(72) is a matrix eigenvalue problem in which the ) _ ) _
kernel H is a function ofP2. This equation has a nontrivial This expression, which has only two independent functions,

TA(P) =y eNP)IL(P) +0,,es(P)P,f£L(P?).  (76)

solution if, and only if, at som&12 is simpler than that allowed by a more sophisticated interac-
, tion, wherein there are eight terms. Nevertheless, (Z6)
de{H -(P°) = I ]p2em2=0=0. (74  retains the amplitudes that are found to be dominant in more

sophisticated studie$43]. In Eq. (76), {e)(P);x=-1,0,

The value ofM for which this characteristic equation is sat-
+1} is the polarization four-vector:

isfied is the bound state’s mass. In the absence of a solution
there is no bound state in this channel. _ . NPy = A

We have solved Eq.74) for the pion and the results are P-&(P)=0, OA; €'(P)-e"(P)=o™. (77)
presented in Table |. That the vertex-consistent Bethe- The construction of the vertex-consistgiimeson BSE
Salpeter kernel ensures the preservation of the axial-vectdor the class of vertices under consideration herein is fully
Ward-Takahashi identity, and hence guarantees the pion isdescribed in Ref[30]. The pion case illustrates the key
Goldstone boson in the chiral limit, is abundantly clear: irre-modification. Brevity requires that we omit further details.
spective of the value o€ and the order of the truncation, Suffice to say, one arrives via a mechanical procedure at the
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characteristic equation for themeson, which we solved. TABLE II. Current-quark masses required to reproduce the ex-
The results are presented in Table I. With increasing neperimental masses of the vector mesons. The values,oim, are
attraction in the quark-antiquark scattering kernel the amouriredictions. Experimentally46], m, =2.9797+0.000 15 and,
by which the rainbow-ladder truncation overestimates the ex=9.30+0.03. NB. (is a fictitious pseudoscalar meson composed
act mass also increases: With the amount of attraction sugf unlike-flavor quarks with mass, which is included for com-
gested by lattice data the=0 mass is 27% too large. A parison with other nonperturbative studies. All masses are listed in
related observation is that the bound state’s mass decreasg§V-
as the amount of attraction between its constituents in=
creases. Furthermore, with increasing attraction, even thoughMa=0.01  m;=0.166 me=1.33 my=4.62
the fully resummed vertex and consistent kernel always yield mﬂ;o'ﬁ ;nb?‘:lo'%% rrr#/d,:—g 'é? mn‘g(lﬂ 594‘21'6
a solution, there is no guarantee that a given truncated sys- " s T T "
tem supports a bound state: the one-loop corrected vertex

and consistent kernélhz_l)_do not have sufficient binding to current-quark mass whereas the pseudoscalar meson mass
support ap-meson. This is overcome at the next order of;

truncation, which yields a mass 9.7% too large. The Obserl_ncreases rapidly, according (m GeV)

vation that a given beyond-rainbow-ladder truncation may m(z)fz 1.33m m<g, (78)

not support a bound state, even though one is present in the

solution of the complete and consistent system, provides thereby reproducing the pattern predicted by QBD

valuable and salutary tip for model building and hadron phe- With the model’s value of the vacuum quark condensate,

nomenology. Eq. (56), this result allows one to infer the chiral-limit value
Finally, as has often been observed, and independent of

the truncation, bound state solutions of gap-equation-

consistent BSEs always yield the full amount ®fp mass

splitting, even in the chiral limit. This splitting is driven by

[
T

the DCSB mechanism. Its true understanding, therefore, re- %‘2.5}
quires a veracious realization of that phenomenon. g |
o 2F

3. Dependence on the current-quark mass é :

15

In connection with this last observation it is relevant to § .
explore the evolution with current-quark mass of the pseu- g 1E

doscalar and vector meson masses, and of the difference be-
tween them. The results for pseudoscalar mesons should be
interpreted with the following caveat in mind. In construct- oo i
ing the vertex and kernel we omitted contributions from 0 0.3 0.6 0.9 1.2
gluon vacuum polarization diagrams. These contribute only current-quark-mass (GeV)
to flavor diagonal meson channels. Hence, for light-quarks in T ————rrrrr
the pseudoscalar channel, wherewith such effects may be 8l
important[44,45, our results should be understood to apply
only to flavor nonsinglets. In principle, the same is true for
light vector mesons. However, experimentally, theand ¢
mesons are almost ideally mixed; i.e., theexhibits noss
content whereas the is composed almost entirely of this
combination. We therefore assume that the vacuum polariza-

nd
»n
AR

o

meson mass (GeV)

tion diagrams we have omitted are immaterial in the study of 05¢

vector mesons(NB.It is an artefact of Eq(22) that this 025

model supports neither scalar nor axial-vector meson bound . :

states[30,31].) oas| 22
We fix the model’s current-quark masses via a fit to vector 0.01

0.1 1
meson masses and the results are presented in Table II. The current-quark-mass (GeV)

model we are employing is UItraViOIeF finite and hence OL.” FIG. 7. Evolution of pseudoscalar and vectr meson masses
current-quark masses cannot be directly compared W'tkMth the current-quark mass. Solid line: pseudoscalar meson trajec-
QCD's current-quark mass-scales. Nevertheless, the valugsy optained withc=C=0.51, Eq.(54), using the completely re-
are quantitatively consistent with the pattern of flavour-gymmed dressed-quark-gluon vertex in the gap equation and the
dependence in the explicit chiral symmetry breaking massegertex-consistent Bethe-Salpeter kernel; short-dash line: this trajec-
of QCD. tory calculated in rainbow-ladder truncation. Long-dash line: vector

Our calculated results for the current-quark massmeson trajectory obtained wiih using the completely resummed
dependence of pseudoscalar and vector meson masses @fex and the consistent Bethe-Salpeter kernel; dash-dot line:

presented in Fig. 7. In the neighborhood of the chiral limitrainbow-ladder truncation result for this trajectory. The dotted ver-
the vector meson mass is approximately independent of thecal lines mark the current-quark masses in Table I1.
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of ffj=0.079 GeV via the Gell-Mann-Oakes—Renner rela- L A AL B AR
tion. It is a model artefact that the relative-momentum- [ ]
dependence of Bethe-Salpeter amplitudes is described by 0.3} -

5%(p) and so a direct calculation of this quantity is not real- /

o~
C | ]
istic. The value is low, as that of the condensate is low, g"’o.s'_ . ]
because the model is ultraviolet finite. In QCD the conden- 0 1

£

Nl>

E

sate and decay constant are influenced by the high-
momentum tails of the dressed-quark propagator and Bethe-
Salpeter amplitudef,43). [ ]

The curvature in the pseudoscalar trajectory persists over 0.2 -
a significant domain of current-quark mass. For example, [ ]
consider two pseudoscalar mesons, one composed of unlike- ol RN T B |
flavour quarks each with mass2and another composed of 0.01 cu"em_g'l}ark_mass (Gev;
such quarks with mags,. In this case

2 FIG. 8. Evolution with current-quark mass of the difference be-

mogms tween the squared-masses of vector and pseudoscalar mgsons

5 = 2.4, (790 =0.51) using the completely resummed dressed-quark-gluon vertex

O, in the gap equation and the vertex-consistent Bethe-Salpeter kernel.
The dotted vertical lines mark the current-quark masses in Table 1.

which indicates that the nonlinear evolution exhibited in Eq.

(78) is still evident for current-quark masses as large as twice
that of thes-quark. With this result we reproduce a feature Ofgitimate truncations preserve the axial-vector Ward-
more sophisticated DSE studi¢47-49 and a numerical Takahashi identity and hence give a massless pseudoscalar
simulation of quenched lattice-QC[30]. meson in the chiral limit. It is practically useful, too, because
The mode of behavior just described is overwhelmedt indicates that the parameters of a model meant to be em-
when the current-quark mass becomes large:g. In this  ployed in a rainbow-ladder truncation study of hadron ob-
limit the vector and pseudoscalar mesons become degenafervables may reliably be fixed by fitting to the values of
ate, with the mass of the ground state pseudoscalar mesejyantities calculated in the neighborhood of the chiral limit.
rising monotonically to meet that of the vector meson. Inour  The general observation suggested by Fig. 9 is that with

m

model increasing current-quark mass the contributions from nonpla-
me nar diagrams and vertex corrections are suppressed in both
i =1.04, (80) the gap and Bethe-Salpeter equations. Naturally, they must
Mo- m=m, still be included in precision spectroscopic calculations. It

_ o ) o ~will be interesting to reanalyze this evolution in a generali-
with a splitting of 130 MeV, and this splitting drops to just zation of our study to mesons composed of constituents with
40 MeV atmy; viz., only 5% of its value in the chiral limit.  gifferent current-quark masses, and thereby extend and

In addition to the calculated value, the general pattern of ougomplement the limited such trajectories in Ré#7,48.
results argues for the mass of the pseudoscalar partner of the

Y (19 to lie above 9.4 GeV. Indeed, we expect the mass
splitting to be less thamJ,lJ,—m,,C, not more.(See also; e.g., SIS S B AR

Ref. [51].) . :
In Fig. 8 one observes that on a material domain of 025k 1
current-quark massesm;_—np-~0.56 GeV, an outcome 3 f :
consistent with experiment that is not reproduced in numeri- = 02F :
cal simulations of quenched lattice-Q@80]. The difference 2 ]
is maximal in the vicinity of m, a result which re- 5 OF ]
emphasises that heavy-quark effective theory is notan appro- 8 | ]
priate tool for the study o€-quarks[32]. g o S 1
Figure 9 is instructive. It shows that with growing current- 0.05F //” \\\\ ]
quark mass the rainbow-ladder truncation provides an in- F N ]
creasingly accurate estimate of the ground state vector meson %"7. YT EPUVITY RPN B PRI i s
mass. At thes-quark mass the relative error is 20% but that 0:0001 °'°°:,u,,em?d‘:,‘ark_masgleev) !

has fallen to<4% at thec-quark mass.

Similar statements are true in the valid pseudoscalar chan- FIG. 9. Evolution with current-quark mass of the relative differ-
nels. In fact, in this case the agreement between the truncatetice between the meson mass calculated in the rainbow-ladder
and exact results is always better; e.g., the absolute diffetruncation and the exact value. Solid lines: vector meson trajecto-
ence reaches its peak 6f60 MeV atm~ 4m, whereat the ries; and dashed-lines; pseudoscalar meson trajectories. The dotted
relative error is only 3%. This behavior is fundamentally v_ertical lines mark the current-quark masses in Table Il. We used
because of Goldstone’s theorem, which requires that all le€=0.51.
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C. Bethe-Salpeter equation for diquarks L S B B R B L B R

Color antitriplet quark-quark correlatiorgdiquarkg have
long been a focus of attempts to understand baryon structure
[52]. An appreciation of their importance has grown and a
modern picture of diquark correlations in baryons is realized
through their role in a Poincaré covariant Faddeev equation
[4,53-55. Lorentz scalar and axial-vector correlations are
most important. )
In rainbow-ladder truncation color-antitriplet diquarks are o2l
true bound state$56,57. (NB. Color sextet diquarks are [
never bound since even single gluon exchange is repulsive in ]
that channe). In spite of this, the addition of:2(k,p), Eq. 0 01 c 0.2 03 04
(15), to the quark-gluon vertex, along with the three terms it
generates in the color-antitriplet quark-quark scattering ker- FIG. 10. Evolution of the reciprocal diquark masses, calculated
nel, overwhelms the attraction produced by single gluon exin the chiral limit, with the parametet: solid line — scalar diquark,
change and eliminates diquarks from the spectf28). The  dashed line — axial-vector diquark. The dotted lines are explained in
repulsive effect owing taC;(k, p) is consummated when the connection with Eq(81). G=0.69 GeV.
series it generates is fully resummggD]. With that vertex

the characteristic polynomial obtained from the Bethe-that existed in rainbow-ladder truncation survive and their
Salpeter equation exhibits a pole, which is the antithesis ofnasses decrease continuously with increasiruch behav-

the zero associated with a bound state. ior might have been anticipated on the basis of continuity,

Herein we have introduced a new element into the conand a decrease in a bound state’s mass with increasing attrac-

sideration of diquarks; namely, our model for the quark-tion between its constituents is not unusual. This smooth
antiquark scattering kernel exhibits attraction, which is adevelopment continues, for the axial-vector diquark until
property not possessed I (k,p). The dressed-quarks that ¢, ~0.34 and for the scalar diquark unil}.~0.36, at
appear in the diquark Bethe-Salpeter equation are describgghich point it changes dramatically. The masses suddenly

by the gap equation elucidated already. However, the manngjagin to increase rapidly and their behavior thereafter is de-
in which diagrams are combined and resummed in thecriped by

vertex-consistent color-antitriplet diquark Bethe-Salpeter
kernel is different from that which maintains for color singlet 1 5 SQ\’WS—C
mesons. Fortunately, the modifications necessary in the class Mo+ OOV '
of Ansatzecontaining our model were elucidated in REH0)
and we need only adapt them to our particular case. an evolution represented by the dotted lines in Fig. 10.
Brevity requires that we omit all details and herein it must The value ofC at which the behavior of the masses
suffice to say that we examined the behavior of the scalaghanges qualitatively is correlated with the movement of the
and axial-vector diquarks’ characteristic equations as the pa&usp evident in Figs. 1-5 into the domain that affects the
rameterC in Eq.(20) was varied. Our results are summarisedposition of the zero in the characteristic polynomials. This
in Fig. 10. A value ofC=0 implements the rainbow-ladder means that, with net attraction in the color-octet quark-
truncation. In this case, as promised, both scalar and axiaBntiquark scattering channel, the expulsion of diquarks from
vector diquarks are bound, witmy:=1.55 GeV andmy+ the bound state spectrum follows immediately upon the ac-
=1.70 GeV, in agreement with ReR9]. tive expression of confinement by the dressed-quark propa-
When( is evolved to negative valugget repulsion in the ~gator in the bound state equation.
color-octet projection of the quark-antiquark scattering ker- There are no bound diquarks in the spectrum obtained
nel) the zero in both characteristic equations moves deepé¥ith the value ofC=C in Eq. (54) suggested by the lattice
into the timelike region; i.e., the diquark masses increasedata.
This continues briefly until, aC ,~-0.023~-1/43, the
characteristic equation for the axial-vector diquark no longer
has a solution. For the scalar diquark this happeng,at

-0.027=-1/37. It is therefore clear that very little repulsion ~ We explored the character of the dressed-quark-gluon ver-
in the color-octet quark-antiquark scattering kernel is suffi-tex and its role in the gap and Bethe-Salpeter equations. Our
cient to prevent the appearance of diquark bound stdt#s.  results are relevant to the mechanism and realization of con-
If one considers single-gluon exchange between the quarknement and dynamical chiral symmetry breaking, and the
and antiquark then a value 6&-1/8 is obtained, Eq17).  formation of bound states.
This is approximately five-times larger than these critical We employed a simple model for the dressed-gluon inter-
values, an observation which further elucidates the results iaction to build anAnsatzfor the quark-gluon vertex whose
Refs.[29,30.) diagrammatic content is expressly enumerable. The model
The evolution ofC to positive values provides altogether reduces coupled integral equations to algebraic equations and
new information and insight. To begin, the bound diquarksthereby provides a useful intuitive tool. We used this frame-

0.4

-1
1/mqq (GeV )

! =5.75/0.363-C, (81)

l+

V. EPILOGUE
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work to argue that data obtained in lattice simulations ofTakahashi identity to agree in the chiral limit. Moreover,
guenched-QCD indicate the existence of net attraction in theoth in rainbow-ladder truncation and with the complete ver-
color-octet projection of the quark-antiquark scattering kertex and kernel, the splitting between pseudoscalar and vector
nel. meson masses vanishes as the current-quark mass increases.
We observed that the presence of such attraction can Mg our complete model calculation this splitting is 130 MeV
terially affect the uniformity of pointwise convergence to at thec-quark mass and only 40 MeV at thequark mass, a
solutions of the gap and vertex equations. Our results '”Uspattern which suggests that the pseudoscalar partner of the

trate that the solutions of two gap equations that are definegt(15) cannot have a mass as low as that ascribed currently
via vertex truncations oAnsatzewhich appear similar at tto the 7,(1S)

spacelike momenta need not yield qualitatively equivalen Color-antitriplet diquark correlations form bound states in

results for the dressed-quark propagator. rr?inbow—ladder truncation. However, we demonstrated that

The dependence of our calculated dressed-quark-gluo] . S
vertex on the current-quark mass is weak until that mas troducing a very small amount of repulsion into the kernel

becomes commensurate in magnitude with the theory’s in(_aliminates_these states from the spectrum. If, on the o?her
trinsic mass-scale. For masses of this magnitude and abovgand, one introduces a small amount of color-octet attraction,
vertex dressing is suppressed and the dressed vertex is wil€se diquarks persist as bound states. However, with the
approximated by the bare vertex. amount of attraction suggested by lattice data, diquarks van-

The feature that the diagrammatic content of our modeish from the spectrum.
for the vertex is explicitly enumerable enabled the systematic
construction of quark-antiquark kernels that ensure the pres-
ervation of all Ward-Takahashi identities associated with ACKNOWLEDGMENTS
strong interaction observables. This guarantees that the pion
is automatically realized as a Goldstone mode in the chiral We are pleased to acknowledge valuable interactions with
limit. Such a result is impossible if one merely guesses &R. Alkofer, A. Kizilersu, and F. J. Llanes Estrada. This work
form for the vertex. was supported by: the Austrian Research Foundafdr,

We illustrated that with increasing current-quark mass theerwin-Schrodinger-StipendiuiNo. J2233-N08; the Depart-
rainbow-ladder truncation provides an increasingly reliablement of Energy, Office of Nuclear Physics, Contract No.
estimate of the model’s exact vector meson mass. For psei¥-31-109-ENG-38; theA.v. Humboldt-Stiftungria a FW.
doscalar mesons, this is even more true because the rainbo®essel Forschungspreisnd the National Science Founda-
ladder and exact results are guaranteed by the Wardion under Contract Nos. INT-0129236 and PHY-0301190.

[1] J. Papavassiliou and J. M. Cornwall, Phys. Rev4l 1285 (1996.
(1991). [16] J. C. R. Bloch, Few-Body Sys83, 111 (2003.

[2] F. T. Hawes, C. D. Roberts, and A. G. Williams, Phys. Rev. D[17] Z.-h. Dong, H. J. Munczek, and C. D. Roberts, Phys. Lett. B
49, 4683(1994). 333 536(1994).

[3] F. T. Hawes, P. Maris, and C. D. Roberts, Phys. Lett44), [18] D. Atkinson and P. W. Johnson, Phys. Rev4D, 1661(1990.
353(1998. [19] A. G. Williams, G. Krein, and C. D. Roberts, Ann. Phys.

[4] M. B. Hecht, M. Oettel, C. D. Roberts, S. M. Schmidt, P. C. (N.Y.) 210 464(199).
Tandy, and A. W. Thomas, Phys. Rev. 5, 055204(2002. [20] F. T. Hawes and A. G. Williams, Phys. Lett. B68 271

[5] D. Morel and S. Capstick, nucl-th/0204014. (1991
[6] E. J. Hackett-Jones, D. B. Leinweber, and A. W. Thomas,[21] H. J. Munczek, Phys. Lett. B75 215(1986.
Phys. Lett. B489, 143(2000; 494, 89 (2000. [22] C. J. Burden, C. D. Roberts, and A. G. Williams, Phys. Lett. B
[7] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phgs, 285, 347(1992.
477 (1994. [23] L. von Smekal, R. Alkofer, and A. Hauck, Phys. Rev. Lét®,
[8] P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett4B), 3591(1997; L. von Smekal, A. Hauck and R. Alkofer, Ann.
267 (1998. Phys.(N.Y.) 267, 1(1998; 269 182(1998.
[9] P. Maris and C. D. Roberts, Phys. Rev.56, 3369(1997). [24] D. Atkinson and J. C. R. Bloch, Phys. Rev. B8, 094036
[10] K. Langfeld, H. Markum, R. Pullirsch, C. D. Roberts, and S. (1998; D. Atkinson and J. C. R. Bloch, Mod. Phys. Lett. A
M. Schmidt, Phys. Rev. G7, 065206(2003. 13, 1055(1998).
[11] C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. PH5;. [25] K. I. Kondo, hep-th/0303251.
S1(2000. [26] UKQCD Collaboration, D. B. Leinweber, J. I. Skullerud, A. G.
[12] R. Alkofer and L. v. Smekal, Phys. Re853 281 (2002. Williams, and C. Parrinello Phys. Rev. B0, 094507(1999);
[13] P. Maris and C. D. Roberts, Int. J. Mod. Phys. 2, 297 61, 079901(2000.
(2003. [27] P. O. Bowman, U. M. Heller, D. B. Leinweber, and A. G.
[14] D. C. Curtis and M. R. Pennington, Phys. Rev.42, 4165 Williams, Nucl. Phys. B(Proc. Supp). 119, 323(2003.
(1990. [28] M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C.
[15] A. Bashir and M. R. Pennington, Phys. Rev. BB, 4694 Tandy, Phys. Rev. B8, 015203(2003.

035205-14



ASPECTS AND CONSEQUENCES OF A DRESSED- PHYSICAL REVIEW C 70, 035205(2004)

[29] A. Bender, C. D. Roberts, and L. von Smekal, Phys. Lett. B[44] D. Kekez and D. Klabtar, Phys. Rev. D65, 057901(2002.

380, 7 (1996. [45] A. Scarpettini, D. Gomez Dumm, and N. N. Scoccola, Phys.
[30] A. Bender, W. Detmold, A. W. Thomas, and C. D. Roberts, Rev. D 69, 114018(2002.
Phys. Rev. C65, 065203(2002. [46] Particle Data Group, K. Hagiwarat al, Phys. Rev. D66,
[31] H. J. Munczek and A. M. Nemirovsky, Phys. Rev. Z3, 181 010001(2002; and 2003 off-year partial update for the 2004
(1983. edition available at http://pdg.Ibl.gov/
[32] M. A. Ivanov, Y. L. Kalinovsky, and C. D. Roberts, Phys. Rev. [47] P. Maris, inQuark Confinement and the Hadron Spectrum IV
D 60, 034018(1999. edited by W. Lucha and K. Maung Maurgg\Vorld Scientific,

[33] P. Bicudo, S. Cotanch, F. Llanes-Estrada, P. Maris, E. Ribeiro,  Singapore, 2002
and A. Szczepaniak, Phys. Rev. &, 076008(2002; P. Bi- [48] P. C. Tandy, Prog. Part. Nucl. PhyS0, 305(2003.

cudo, Phys. Rev. 57, 035201(2003. [49] C. D. Roberts, Nucl. Phys. B, Proc. Supdlog8 227 (2002.

[34] S. R. Cotanch and P. Maris, Phys. Rev.6B, 116010(2002); [50] UKQCD Collaboration, K. C. Bowleet al., Phys. Rev. D62,
68, 036006(2003. 054506(2000.

[35] A. Krassnigg and C. D. Roberts, nucl-th/0308039; A. Holl, A. [51] F. J. Llanes-Estrada, S. R. Cotanch, A. P. Szczepaniak and E.
Krassnigg and C. D. Roberts, nucl-th/0311033. S. Swanson, hep-ph/0402253.

[36] W. J. Marciano and H. Pagels, Phys. Rep., Phys. 1361.137 [52] M. Ida and R. Kobayashi, Prog. Theor. Phy6, 846 (1966);
(1978. D. B. Lichtenberg and L. J. Tassie, Phys. Red65 1601

[37] C. D. Roberts, Nucl. Phys. A&05 475(1996. (1967).

[38] P. Maris and P. C. Tandy, Phys. Rev.6d, 045202(2000; 62, [53] R. T. Cahill, C. D. Roberts, and J. Praschifka, Aust. J. Phys.
055204(2000; 65, 045211(2002. 42, 129(1989.

[39] A. I. Davydychev, P. Osland, and L. Saks, Phys. Rev6® [54] M. Oettel, G. Hellstern, R. Alkofer, and H. Reinhardt, Phys.
014022(200D. Rev. C 58, 2459(1998).

[40] J. I. Skullerud, P. O. Bowman, A. Kizilers, D. B. Leinweber, [55] H. Mineo, W. Bentz, and K. Yazaki, Phys. Rev. €D, 065201
and A. G. Williams, JHEP0304 047 (2003. (1999.

[41] J. S. Ball and T. W. Chiu, Phys. Rev. B2, 2542(1980. [56] R. T. Cahill, C. D. Roberts, and J. Praschifka, Phys. Re@@

[42] H. J. Munczek, Phys. Rev. 32, 4736(1995. 2804 (1987).

[43] P. Maris and P. C. Tandy, Phys. Rev.6D, 055214(1999; [57] P. Maris, Few-Body Syst32, 41 (2002.

035205-15



