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Causal diffusion and the survival of charge fluctuations in nuclear collisions
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Diffusion may obliterate fluctuation signals of the QCD phase transition in nuclear collisions at SPS and
RHIC energies. We propose a hyperbolic diffusion equation to study the dissipation of net charge fluctuations.
This equation is needed in a relativistic context, because the classic parabolic diffusion equation violates
causality. We find that causality substantially limits the extent to which diffusion can dissipate these

fluctuations.
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|. INTRODUCTION Il. CAUSAL DIFFUSION

To understand why the propagation speed in classic diffu-
on is essentially infinite, recall that the diffusion of par-

. . ticles through a medium is equivalent to a random walk in
ties such as net electric charge, baryon number, and stran 9 N

fluctuate wh d in limited iditv int ie continuum limit. The variance of the particle’s displace-
ness can fluctuate when measured in limited rapidity in er'ngent increases b= (Ax?)« At in the time intervalAt be-

vals. These fluctuations occur mainly because the number Qleen random steps. The average propagation speed

produced particles varies with each collision event due to_ d/At diverges in the continuum limit, whert—0 with

differences in impact parameter, energy deposition, an PP - o '
baryon stopping. A variety of interesting dynamic effects can%e diffusion coefficientD=d"/At held fixed. Correspond-

also contribute to these fluctuatiofig]. In particular, fluc- Egg/i’ﬁigg:ia}gtjongtggudses?:gyviﬂ]ktea:fs'?;;?gﬁgﬁglghi/nz%tead
tuations of mearp;, net charge, and baryon number may y ' Y.

probe the hadronization mechanism of the quark-gluon A causal alternative to the diffusion equation is the Tele-
graph equation,

Net-charge fluctuations are measured in nuclear collisiongi
by many RHIC and SPS experimeijfy. Conserved quanti-

plasma[3].
Fluctuations of conserved quantities are perhaps the best J 5
probes of hadronization, because conservation laws limit the Tdﬁn + En =DV-n, (1

dissipation they suffer after hadronization has occuf#ef|.

This dissipation occurs by diffusion. While the effect of dif- whereD is the diffusion coefficient and is the relaxation
fusion on charge and baryon fluctuations has been studied irme for diffusion [11-13. Signals propagate at the finite
Refs.[5,6], the classic diffusion equations used are problemspeedv=(D/7y9)"?, so that a delta function spike spreads
atic in a relativistic context, because they allow signals tobehind a front traveling at, as shown in Fig. 1. The classic
propagate with infinite speed, violating causality. diffusion equation omits the term7y. Classic diffusion de-

In this paper we study the dissipation of net charge flucscribes the matter well behind the front at timiesry. This
tuations in RHIC collisions using a causal diffusion equation.contrasting behavior is generic of hyperbolic equations such
We find that causality inhibits dissipation, so that extraordi-as (1), which include a second-order time derivative, com-
nary fluctuations, if present, may survive to be detected. Irpared to parabolic equations, like the classic first-order dif-
Sec. Il we discuss how the classic approach to diffusion viofusion equatior{14].
lates causality, and present a causal equation that resolves Causality concerns are not restricted to relativistic quarks
this problem. The derivation we include facilitates our workor pions diffusing through a quark gluon plasma or hadron
in later sections. We generalize this equation for relativisticgas. They are common—and constantly debated—whenever
fluids in nuclear collisions in Sec. lll. Related causal fluid
equations for viscosity and heat conduction have been intro-
duced in[7,8] with different heavy-ion applications in mind. B,

Our causal formulation can be crucial for the description . AN
of net-charge fluctuations, which involve rapid changes in n ‘ N
the inhomogeneous collision environmgat. We turn to this e N
problem in Secs. IV=VI. In Sec. IV we discuss fluctuation e N
measurements and their relation to two-particle correlation - o
functions. In Sec. V we introduce techniques fr¢f®] to
compute the effect of causal and classic diffusion on these
correlation functions. We then estimate the impact of causal FIG. 1. Density vs position for causasolid) and classic
diffusion on fluctuation measurements in Sec. VI. Thesgdashed diffusion assuming an initial delta function distribution.
three sections are close in spirit to work by Shuryak andrhe spikes represent the right and left moving diffusion fronts of
Stephanov, where a classic diffusion model is u&d velocity v==+(D/ g2
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time varying diffusion and heat conduction phenomena are J . ]

discussed15]. However, for most nonrelativistic systems, T4 X0 +j(x,t) ==D V n(x,1), (8)
causality violations are minuscule, so that classic diffusion

can be used. This need not be the case for relativistic fluidthe Maxwell-Cattaneo relatioril]. Combining(8) with cur-
produced in nuclear collisionNg-9]. rent conservatiorin/dt+V -j=0 yields (1). We will extend

To motivate (1) and understand its limitations, we first this argument in Sec. V to derive EG0).
derive the diffusion coefficient using the Boltzmann equation Classic diffusion follows from(8) when thery term is
in the relaxation time approximation; see, e[d.6]. Equa- negligible, a result known as Fick’s law. Fick’s law violates
tion (1) can also be obtained by the moment mettigdor  causality because any density change instantaneously causes
by sum-rule argument§l7]. For simplicity, we focus on current to flow. Including they term is the simplest way to
electric charge transport by a single species. Generalizatidncorporate a causal time lag for this current respdisg
to multiple species and other currents such as baryon numb&toreover,(8) is self consistent in that it saturates theum
is straightforward, except for the challenging case of colorrule [17]. However, while(1) is a plausible approximation,
transport[18]. We describe the evolution of the phase spacdghe k— 0 limit (7) is not strictly justified. Possible generali-
distributionf using zations can include the nonlocal equations or gradient expan-
sions derived from(3) and (5). If (1) leads to substantial
corrections to classic diffusion, then such generalizations can
be worth considering.

In solving (1) we must impose initial conditions on the
where v7! is the relaxation timeyv,=p/E, and E={p?  current that respect causality. Suppose that we introduce a
+m?}2. The local equilibrium distribution satisfie§,  density pulse ak=0 at timet=0. Microscopically, particles
={exf (E—w)/T]x1} 1 whereT is the temperatur@, u the begin to stream freely away from this point. The current
chemical potential, and the + or - sign describes bosons dmplied by (8) is

i
SV V=i, 2)

fermions. tds
Suppose that differs from a local equilibrium value by a j()=j0)ea- | —e 9D Vn(s). (9)
small sinusoidally varying perturbationsu, with én 0 Td

=(anldu)Sw. Thenf is driven from local equilibrium by an

amountst (e, K)exglik -x—iwt}. Equation(2) implies Scattering with the surrounding medium eventually estab-

lishes a steady state in which Fick’'s law holds, as we see
from (8) for dj /6t=0, but this takes a time> 4. An assump-

Sf(w,k) =— JL%gﬂ(w,k), (3) tion of no initial flow j(0)=0 is consistent with our physical
v=i(w-K-vp) du picture, since there is no preferred direction for the initial

velocity of each particle. Note that an alternative choice
j(0)=-DVn(0) would imply that the current always follows
Fick's law; the corresponding solutions ¢f) would never
6]'(w,k)zf6f(w,k)vpdp=—ikD(w,k)ah(w,k), (4)  differ appreciably from classic diffusion. However, this
choice is not causal because it requires that particles “know”
about the medium before they have had any opportunity to

plus corrections of order 2. The net charge current is

wheredp=d®p/(2m)3. The diffusion coefficient is interact with it.
1du v2 af
Dwk)=Z—— | ——"———"dp, (5 lll. ION COLLISIONS

3dnJ v-i(w=K-Vvp)du

S L o We now extend(1l) to study the diffusion of charge
which is a relativistic generalization of a completely standardproygh the relativistic fluid produced in a nuclear collision.
kinetic theory result. Fok=w=0, we recover the familiar e fiyid flows with four velocityu* determined by solving
static diffusion coeff|C|enD:y—lvt2h/3, where the thermal ¢ hydrodynamic equation,T#*=0 together with the ap-
velocity vy,=1 for massless particles. To obtain quantitativepropriate equation of state. We choose the Landau-Lifshitz
results from this relaxation time approximation, we identify gefinition of u* in terms of momentum currerie4]. For
v with the relaxation time for diffusionry obtained by  gyfficiently high energy collisions, the relative concentration
more sophisticated methods, see e.§9-23. _ of net charge is small enough that it has no appreciable im-

To obtain(1), we omit thek dependence i), to find pact onu“. Correspondingly, we take* to be a fixed func-
tion of x andt.

Following [24], we define the co-moving time derivative
and gradient

D(w,0)=D/(1 -iwy), (6)

whereD is the static diffusion coefficient and*=r, We

then write D,=u*9, and V,=d,-u,u"d, (10
(1 -iwrgj(w,k) = —ikDn(w,k), (7)  for the metric g“’=diagl,-1,-1,-2. In the local rest
frame whereu,=(1,0,0,0, these quantities are the time de-
to find rivative and three-gradie. The total charge current in the
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moving fluid is j;*=nu,+],, where the first contribution is 0.8 ' ' '

due to flow and the second to diffusion. Continuity then im- 06 | classic g

plies ! 1.5

_ =04 b ,

3, (NU) == 4,,j*. (11) < | ~ 10 |

e -, 02 | -~ —"05

We assume that the diffusion current satisfies | / i
0 1 I I

D j* +j*=DV*#n, (12 1 2 /T, 3

which reduces t@8) in the local rest frame. FIG. 2. Rapidity spread vs time for causal and classic diffusion

To illustrate the effect of flow on diffusion, we consider computed using20) and (19), respectively. Causal curves are for
longitudinal Bjorken flow,u#=(t/7,0,0,z/7), WhereT:(tz 7,/ 79=0.5, 1, and 1.5. Rapidity spreads are divided by the
-22)Y2 »p=(1/2)log[(t+2)/(t-2)], the density is a function asymptotic value/..=2D/,.
only of 7 and the current ig#=(j*,0,0,j9 [25]. The conti-

nuity equation(11) is then #V oV 2D
T3t = (18)
9 1 14 ar dr 7
(E.J' ;) =M ==a,0% (13 Opserve that classic diffusion follows frof18) for 7,=0
with D fixed. In that case the width increases by
To evaluate the covariant Maxwell-Cattaneo relation, we dif-
ferentiate(12) to find AV = @(1 - E)y classic (19)
To T
Vi) g M= 2
a0, (U ") + 9,1 =DV, I, (14 where AV=V-V(7,). The rapidity width indeed increases,
whereV , V#=~7"25/ 9n%. We then write but the competition between longitudinal expansion and dif-
fusion limits this increase to an asymptotic valié,
oy — N i Y _’u_} o 2 » =2D/ 7,
U3, = (0,0, +U"9,(5,)) = ~ 90" + == (3,]"), We now solve(18) for causal diffusion to obtain
15 2D (7
19 AV=— F(a,\)d\, (20
where the second line follows from Eqgl7) and (20) of ToJ1
Ref. [25]. Then(14) and(15) imply wherea= 7,/ 74 and
J A
7, (70,]") + 79,j* =DV ,V¥nr. (16) FlaN)=a i 1 £ 2% NdE, (21)
Together,(13) and(16) describe causal diffusion. We have takerV/dr=0 at =7, as required when the ini-

To obtain an equation analogous(f for the expanding tial dp/dr vanishes. Figure 2 compares//V.,, for classic
system, observe that the rapidity dengitse dN/dn=A  nr, and causal diffusion. We find that the rapidity broadening is
whereA | is the transverse area of the two colliding nuclei. If always slower for causal diffusion compared to the classic
one identifies spatial rapidityy with the momentum-space case. These solutions approach one anothetr$or,; they
rapidity of particles, them is observable. We combind3)  are within 20% forr>1.4 r, for a=10. The classic result
and(16) to find that this rapidity density satisfies (19) follows from (20) and(21) for a= 7,/ 14— .

We have so far assumed thatand D are constant, but
Pp _dp_DFp this may not be the case. These coefficients can vary with the

a2 * ar it overall density as the system expands and rarefies. As an
alternative extreme, suppose that diffusion occurs as mass-
sinceV ,V#=-7"2#/477. Initial conditions forp anddp/dr  less charged particles elastically scatter with the expanding
at the formation timer, must be specified. In view of the fluid of density n.. Kinetic theory implies that 7-51
causality argument surroundirt§), we assume that the ini- ={ov,e)N; and D= 74/3. If we take the scattering rate
tial diffusion currentj#=0, so tha13) impliesdp/dr=0at  (ov,) averaged over species and temperature to be constant,
7=1,. Note that the total curremiu +j* is initially non-zero,  put assume,, 7%, thenry= D = 7. Note thatn,,, 7 over-
since the underlying medium is not at rest. estimates the effect of expansion, while our earlier constant-

In the absence of diffusion, longitudinal expansion leavesr, approximation underestimates expansion. The former re-
p fixed, as we see fronil3) for j=0. Diffusion tends to |ation holds only for massless particles in the absence of
broaden the rapidity distribution. To characterize this broaddiffusion and other dissipative effects, since entr@epyot is
ening, we compute the rapidity width defined M=((#  conserved. Realistically, dissipation and mass effects would
—(m)?=N"1[ 7’pd7, where(n)=0 andN=[pdn. We mul-  reduce the rate of growth of, andD, as would the tempera-
tiply both sides of(17) by #? and integrate to find ture dependence dbv,g).

(17)
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Including this extreme effect of rarefaction implieg 1.2 - - -
=74(75) 7l 7, SO that 1L
74=la, (22) :§ 0.8} classic
0.
where we now fix the parameter=7,/74(7,) at the initial < 0.
time. TakingD=174/3 gives 0
D = 7/3a, (23
. . . 1 2 T, 3
so that the diffusion equatiofi8) becomes
v dv 2 FIG. 3. Rapidity spread vs time for causal and classic diffusion
—ta—=—. (24) computed using27), (28), and(25), respectively. Causal curves are
dr dr 37 for 7,/ 79=1, 1.5, and 2. Rapidity spreads are divided by the value

As before, classic diffusion is obtained by omitting the sec-2Do/ To=21/3.

ond derivative term. We find
to one another over longer times. Note that the results in Fig.
AV = ilnl, classic (25) 3 are normalized toR/7,=2/3« u_si_ng the value oD at To-
3a 7 To apply these results to collisions, we must specify the
. . . ., .diffusion coefficientD and the relaxation timey. Transport
We see thgt the W'dth NOW INCreéases without bound, which 'Roefficients in quark gluon plasma and hadron matter have
not surprising since our time varying paramet¢2) and been been studied extensivéh6,19-23. Flavor and charge
(23) imply thatV,,=2D/ roox 7. diffusion estimates in a plasma yield~1-3 fm and 74

Informed by the classic case, we write the causal equation ;53 _g [21]. The hadron gas case, which is more

as relevant to this work, is complicated by the menagerie of
d2v dav 2 resonances produced in collisions. In REX3], the charge
a2t (a- 1)d_0 =3 (26)  diffusion coefficient was computed using a hadronic trans-

port model, yieldingD =2 fm and7q=6 fm.
where 6=In 7/ 7,. When =1, the first derivative vanishes, We argue in Sec. VI that the short time behavior in Figs.
so that 2 and 3 describes diffusion following hadronization. Hadrons
form at a rather late time, roughly,~6-12 fm. If freeze

— 2

AV=(In /7)3. @7 out occurs shortly thereafter, at less than 20 fm, then the

For a# 1, we find range 7/ 7,<3 is important. A hadronic relaxation time,
-l ~6 fm is relevant, so that4 «<2. In this case causal dif-
AV = {Inl _ _[1 _(To> H (28)  fusion gives a much slower spread in rapidity than classic
a=-| 7 a-1 diffusion.

For «>1, the increase oAV is always smaller than classic
diffusion (25). In this regime, we see thakV/(AV)gpassic IV. FLUCTUATIONS AND CORRELATIONS

— al(a—1) asT— . The difference of the ratio from unity
in the long time limit reflects the fact that the rarefaction rate  Let us now turn to net charge fluctuations and their dissi-
71 and diffusion raterglz v are in fixed proportion for all pation. To begin, we review key features of multiplicity and
time, due to(22). charge fluctuation observables. Our discussion builds on the
For a<1, i.e., for r,<74 Eq.(28) implies thatAV in-  detailed treatment in Ref27], which stresses the relation of
creases faster than in classic diffusion for 7,. This behav- fluctuation observables to two-particle correlation functions.
ior is an unphysical artifact of the assumpti(@®). In this ~ We extend that treatment by identifying the net-charge cor-
regime the rarefaction rate™! exceeds the scattering rate relation function(34) that drives dynamic charge fluctua-
73 ~ v, so that scattering cannot maintain local thermal equitions. In the next section we will show how diffusion affects
librium. Our hydrodynamic diffusion description is therefore the evolution of this correlation function.
not applicable—one must turn to transport theory, as dis- Dynamic fluctuations are generally determined from the
cussed irf26]. One can see this explicitly by solviri@7) for =~ measured fluctuations by subtracting the statistical value ex-
p(n,7). Linear perturbation analysis reveals that the solufected, e.g., in equilibriunfi27]. Dynamic multiplicity fluc-
tions are unstable forr< 1. We emphasize that for constant tuations are characterized by
coefficients the solutiong9) and(20) are physical for alk,
as generally holds forgec 7 for anyz<1. (N?) = (N)2 - (N)
The width computed with varying coefficients increases Raa= N2
without bound, albeit slowly. This behavior distinguishes (N)
(27) and (28) from the constant-coefficient widths obtained
from (19) and (20). Nevertheless, the short time behavior where(:--) is the event average. This quantity is obtained
shown in Fig. 3 resembles the constant-coefficient case ifrom the multiplicity variance by subtracting its Poisson
Fig. 2. In both cases the classic and causal results convergalue(N). Similarly, the covariance for different species is

(29)
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(NaNp) = (Na)(Ny) and otherq10]. A relativistic extension of these techniques
Rap = (NN (30)  will enable the computation of the correlation functi¢s%)
AT as well as statistical quantities like while introducing no
which also vanishes for Poisson statistics. These quantitiesdditional parameters.
depend only on the two-body correlation function We start with a single charged species of conserved den-
_ sity n(x,t) that evolves by diffusion. Consider an ensemble
Fanl 72, 72) = Pan 71, 72) = pal 1) Pl 72) B 4t events in which(x, t) is produced with different values at

where pu( 71, 7,) =dNy,/d7d7, is the rapidity density of each point with probabilityP{n(x,t)}. After Ref. [10], one
particle pairs for species andb at the respective pseudora- writes a master equation describing the rate of changiof
pidities %, and 7,, andp, is the single particle rapidity den- terms of transition probabilities to states of differingpn a
sity. We use the same symbol for momentum and configuradiscrete spatial lattice. Diffusion and flow are described as
tion space rapidity, because we will take these quantities ttransitions in which particles “hop” to and from neighboring
be equal in later sections. [27] it is shown that points. The Fokker-Planck formulation in RgB] can be
obtained from this master equation in the appropriate limit.
(32) Alternatively, one can use the master equation to obtain a
partial differential equation for the density correlation func-

These quantities are robust in that they are normalized ta%nd%y;ilflregpgg?;nf r?fr'[aTo?e derivation s standard and

minimize the effect of experimental efficiency and accep- If the one body density follows classic diffusion dynam-

1
Rp=7"—""—= f A7 d 7o o771, 770) -

tance. . . : )
The STAR and CERES experiments characterize dynamigs' then the density correlation function
net-charge fluctuations using the robust variance r4(Xg,X2) = (N1Ny) = (Npny) — Xy = Xo)(Ny),  (39)
r=R,+R_-2R,_, (33) satisfies the classic diffusion equation
proposed in[27]; here we usev rather than the more con- (i —D(V2+ V2 )r -0 39
ventional notationwgy, for simplicity. To establish the rela- ot~ DVL+ VD) Jrelxaxo) (39

tion of v to the net charge correlation function . . . . :
v 9 [10]. This density correlation functiomy is analogous to

(7, 7)) SCpp+r__ =T —T_,, (34) rapidity-density correlation function in (31). If the event-
averaged single-particle density satisfigs then we can ex-

we integrate over a rapidity interval to find tend this result to causal diffusion by Fourier transforming

(39) and using6), as in Sec. Il. The inverse transform yields
N°Q = f f qdy;d, = N(wg = 1), (35) 2
2 2
<Tdﬁ + T D(Vi+ VZ))rd(xl,xz) =0. (40

where the variance of the net chargeNﬁ)q:<(N+—N_)2>
-(N,=N_)? and the average number of charged particles isNe remark that the delta-function term (88) implies that

N=(N,+N_). Expanding(35) yields the volume integral of vanishes when particle number fluc-
) 5 tuations obey Poisson statistics. This term is derived along
O=fR,,+f°R_-2f,f R, (36)  with (39) in Ref. [10]; it ensures that correlations vanish in

wheref,=(N,)/N=1-f_. If the average numbers of particles 9/0Pal equilibrium. .
and antiparticles are nearly equal In a nuclear collision with several charged species, only

the net charge density"—n~ satisfies diffusion dynamics,
v=4Q). (37) since chemical reactions can change one species into another.

. . . . ) We define the net-charge density correlation function
HIJING simulations show that this relation is essentially ex-q (X, X,) as
act for mesons at SPS and RHIC ene(gpe find v and 42 a2
are equal with 2% statistical error at SPS engrijye men- gg = {(n] = n))(ny — ny))y —{nj — n XNy — n)
tion that(} itself was suggested as an observable in Rsf. _ _ + -
and that PHENIX measures the related quantiiy=1 3y = X2)(Ng +Np). (41)
+NQ. However, ) is not strictly robust. The next section Observe that the integral
implies thatq and, consequently) is of more fundamental

interest tharw. However, in view 0of(37) and the qualitative J Qgdx,0x5 = (N, = N2)Z) = (N, = N_)Y2 = (N, + N_)
aims of fluctuation studies, we will regard these quantities as
interchangeable. (42)

gives the net charge fluctuations minus its value for uncorre-
lated Poisson statistics. This integral vanishes in equilibrium.

To understand how diffusion can dissipate dynamic fluc-We expand(41) to write 0gq=rgs++rg-——Tgs——Fg-+, Where
tuations of the net charge and other conserved quantities, weach rq,, and ry_ has the form(38) and rq,_=(nin,)
apply the theoretical framework developed by Van Kampen-(nj)n;).

V. CORRELATIONS AND DIFFUSION
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To illustrate the effect of diffusion on net charge fluctua- A= (0P = AV(7), (49
tions in the next section, we introduce longitudinal Bjorken _ ) _ _
flow to (40). As in Sec. IlI, we focus on the evolution of the Where AV(r) is calculated using20) [or (28) if a time-
rapidity densityp=A nr=r7[n(zy,r,,nd’, for r, and A, dependentry andD is more appropriafe
the transverse coordinate and area. The event-averaged quan-
tity (p) satisfie(17), which has the form ofl) with n andt VI. SURVIVAL OF SIGNALS
replaced byp and 7. We will obtain an analogous generali-
zation of (40) in terms of the rapidity-density correlation
function

In this section we discuss how diffusion can affect our
ability to interpret hadronization signals. As a concrete illus-
tration, we suppose that collisions form a quark gluon

plasma that hadronizes at a timg producing anomalous
A(my, 72, 7) = TZJ 0a(Xq,X2) ATy, (43)  dynamic charge fluctuations The hadronization model of
Jeon and Koch4] implies that plasma produces a value
whereqy is given by(41). This quantity has the forg84) for ~ Nvgg==3. In contrast, the value for a hadronic resonance
gas is variously estimated in the range frblm= -1 [4] to
Fan= (P23 = (PP = a0 — 7P, (44)  —1.7[28]. Hadronic diffusion fromr, to a freeze out time
) o o ., can dissipate these fluctuations, reduding
since the delta function iN38) satisfiesdx; ~xp)=7"o(m We ask whether hadronic diffusion can plausibly bring
~72)8(ry—ry) for spatial rapiditiesn; . We comment that  pjasma fluctuations near the hadron gas values. While the
(44) omits event-by-event variation ofA;, so that estimates of Refl4] can be questionef9], they will serve
JdPryyd?ri{ning) =(fdPryyd?rpniny). This variation increases here as benchmarks. In this section we emphasize the impact
(44) by an amountp,—p_)XAA%)/(A )?, whereAA , =A,  of causal diffusion on this problem, employing a simplified
—-(A ). This correction is small if the system is nearly neutralapproach tailored to that aim. Phenomenological conclusions
andA, is large, as in central RHIC-energy collisions. Theserequire a more realistic model.

“volume fluctuations” do not affect the observablg,, as Before proceeding, we emphasize that Réf.compares

shown in[27]. quark gluon plasma and hadron gas fluctuations as they
The rapidity-density correlation functiorg(#,,7,,7)  might emerge from distinct systems at equivalent chemical

obeys potential and temperature. In contrast, the fluctuations in a

hadron gas that has evolvéi®m a plasma initial state are
K fixed by charge conservation. Suppose that hadronization in
o2t T ?5_7,% - ?ﬂ_ng single event produces a positive charge in one rapidity sub-
interval with a compensating negative charge in another. The
We see that is constant inr when the system is uniform in final hadronic state maintains that situation—freezing in the
rapidity, as required by the symmetry of Bjorken flow. To plasma fluctuations—unless diffusion can redistribute the
derive (45), it is simplest to first introduce longitudinal flow charges between those subintervals.
to the derivation of the classic diffusion equati¢89) in To compute fluctuation observables following Secs. llI
[10]. To do this, we treah and the diffusion currenf, as  and V, we specify the correlation function by identifying
stochastic variables. The fluctuating total currg i:nuﬂ spatial and momentum-space rapidity at a fixed freeze out
+j, satisfies(11) with a deterministic Bjorken velocity. proper timer;. Observe that ISR and FNAL dafa0] can be
To account for fluctuations one adds a vector Langevin forceharacterized as Gaussian near midrapidity. Moreover, these
to Fick’'s law j*=DV#n [10]. Transforming tor—» coordi-  data show that charged particle correlations are functions of
nates as in Sec. lll, we obtai@5) without the 74°q/d7>  the relative rapidityy, = 7, — 7, with only a weak dependence
term. We can then use the Fourier-transform trick to add then the average rapidity,=(7,+7,)/2. Near midrapidity,
causal term. Alternatively(45) can be derived directly by these data inspire the form
adding a Langevin force t¢12), but this method is more q
involved. ~ o pZ2e2-p22s?
We write (45) in terms of the relative rapidityy, = »; A ma) ZmrEe “9)
-7, and average rapidity,=(7,+ 7,)/2:

(az 9 D & Da2>
q=0 (45)

for 3> o. Diffusion increases the widths and> compared
2 9 DPF DA to their initial valueso, and2,, at the hadronization time,
(rdﬁ +—- 252 ?—2>q =0; (46) in accord with(47) and(48). For simplicity, we assume that
Jr s 97 3, is sufficiently large that we can neglect the time depen-
dence of} in (48). We point out that49) is an exact solution
of the classic diffusion equation on an infinite rapidity inter-
val for Gaussian initial conditions. Moreovéd9) is a good
approximation for causal diffusion, provided that the rapidity
region of interest does not appreciably excesat 3,; see the
(= )% = 24V(7) (47)  discussion in Sec. Il N
Dynamic fluctuationsy are computed by integrating
and over an interval A/2< 5;,7,<A/2 corresponding to the

the “2” follows from the transformation to relative rapidity
7. To compute the widths af(7,, 7,1, 7) in relative or aver-
age rapidity, one multiplieg46) by 7;,2 or 7751 and integrates
over both variables. We find
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08] %= 0.235
06] _ L ->%,=05 <
04T 0.8¢ S -‘__Saﬂsal
x—:,/m Nv/Ny, — — 20 06l classic” ~ ~ -~ < __ N
>
o - [
04 o=1
062 S Gi=2 0.2}
0 1 2 3
rapidity window A 0 . . . . .
10 12 14 16 18 20
FIG. 4. Rapidity dependence of dynamic charge fluctuations as- freeze out 1, (fm)
suming diffusion has increased the width frexg=1 to o¢=2 (bot-
tom) and 0=0.25 tog;=0.5 (top). FIG. 5. Decrease in dynamic charge fluctuations as a function of

freeze out timer; for the acceptancA=1 ando,=0.25. The gray
experimental acceptance. Forgreater tham\/2 ando, we band indicates the level needed to obscure plasma signals. Solid and

use(35) and(37) to estimatey, dashed curves are, respectively, computed for constant and varying
4 (M2 (A2 coefficients using20) and(28) and the corresponding classic Egs.
19 and(25).
Nv ~ Nf A(71, 72)d A7, (19 and(@9
-Al2 J -Al2
g A2 Al2-, smaller net reduction dflv. A hadronization timer,=9 fmis
~ _f dﬁaf A7, 7)d7, ~ Nu.erf(A/\8a), assumed, corresponding te=17,/73=1.5 in Figs. 2 and 3.
NJo ~AI2+7, The gray band indicates the level to whibhy must be re-

(50) duced to hide the effect of plasma fluctuations. We see that
classic diffusion can brindlv to this level if the system lives
where the total number of charged particledNis-2pA. We  as long as 20 fm, while causal diffusion cannot.
take the rapidity density for each charge species to be
uniform. The quantitNv.,=2q,(2mp?22)"2is the value ob- VIl. SUMMARY
tained for a large rapidity window.

The dependence of the dynamic fluctuatidws on the
relative rapidity intervald implied by (50) is shown in Fig. 4
for several ad hoc values of. Also shown as dashed curves
are the ratios of these quantities,

In this paper we introduce a causal diffusion equation to
describe the relativistic evolution of net charge and other
conserved quantities in nuclear collisions. We find that causal
limitations inhibit dissipation. To study the effect of this dis-
_ sipation on fluctuation signals, we obtain a causal diffusion
Nv erf(A/v"So-f) equation for the two-body correlation function. Our approach

N_vo - erf(A/v’gao)' complements the treatment 6], but is more easily gener-
alized to include radial flow and other dynamic effects for
computed foro, the smaller initial width andrs the larger  comparison to data.
final width. This ratio indicates how much the fluctuations We then use these equations to provide estimates that
are reduced as the width increases frogito o;. In both  show that net charge fluctuations induced by quark gluon
figures, the change in widths are chosen so that they nearllasma hadronization can plausibly survive diffusion in the
“hide” initial QGP fluctuations at the level expected in Ref. hadronic stage. This result bolsters our optimism for fluctua-
[4], since Nv,g/Nvyg,~1/3-1/2. Balance function mea- tion and correlation probes of hadronization and other inter-
surements are consistent with a widit=0.5 [1]. ISR and  esting dynamics. Our aim here has been to emphasize the
FNAL experiments suggest=1 in pp collisions. impact of causal diffusion on charge fluctuations. Corre-

The question then becomes: are such increasespiau-  spondingly, we employ an idealized approach tailored to that
sible in a diffusion model? Equatio7) implies thato?  aim. Phenomenological conclusions require a more realistic
:a§+ 2AV(7). The relevant “formation time” is the time at model, to be developed elsewhere.
which hadronization occurs. This occurs quite late in the Our results on post-hadronization diffusion owe to the
evolution, roughly fromr,~6 to 12 fm. Freeze out occurs similarity of the lifetime of the hadronic system and the re-
later, perhaps as late as~ 20 fm. The ratior;/ 5 is then in  laxation time for diffusionry. In fact, RHIC data suggest
the range from one to two, where the difference betweetadronic lifetimes that are as short or shorter than we as-
causal and classic diffusion is substantial, as shown in Figs. ume: HBT[31] and resonanci82] measurements suggest a
and 3. We takedD=2 fm and 74=6 fm from Ref.[23], as lifetime from roughly 5 to 10 fm. On the other hand, our
discussed in Sec. lll. estimate ofry rests on transport calculations in Rgz3]. The

The solid curves in Fig. 5 show the decrease of dynamiémportance of this problem invites further study of charge
fluctuations computed usinl), (47), and(20). The dashed and other transport coefficients.
curves are computed usirig8) instead of(20). We take the In closing, we briefly comment on the experimental situ-
value o,~0.25 for the initial width; larger values imply a ation. Charge fluctuation measurements give roughly similar

(51)
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values from SPS to RHIC energjl]. Furthermore, the dependence of fluctuations and, eventually, to correlation-
STAR experiment finddNv=-1.5 at RHIC[28]. While this  function measurements as more sensitive probes of net
value is close to the benchmark hadron gas estinfdt@8],  charge fluctuations. Such studies have already begun to yield
we emphasize that those estimates were constructed for @mportant information[1,34). In addition, one can study

equilibrium resonance gas assuming no prior plasma stagBaryon number and isospin fluctuations, which are more
Flow and jet quenching measurements provide strongjosely related to the QCD order parameter and, therefore, to

cussed earliefNv can be very different in a resonance gas

formed from a hadronizing partonic system and, indeed,
should be very close to plasma values. ACKNOWLEDGMENTS
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