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Diffusion may obliterate fluctuation signals of the QCD phase transition in nuclear collisions at SPS and
RHIC energies. We propose a hyperbolic diffusion equation to study the dissipation of net charge fluctuations.
This equation is needed in a relativistic context, because the classic parabolic diffusion equation violates
causality. We find that causality substantially limits the extent to which diffusion can dissipate these
fluctuations.
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I. INTRODUCTION

Net-charge fluctuations are measured in nuclear collisions
by many RHIC and SPS experiments[1]. Conserved quanti-
ties such as net electric charge, baryon number, and strange-
ness can fluctuate when measured in limited rapidity inter-
vals. These fluctuations occur mainly because the number of
produced particles varies with each collision event due to
differences in impact parameter, energy deposition, and
baryon stopping. A variety of interesting dynamic effects can
also contribute to these fluctuations[2]. In particular, fluc-
tuations of meanpt, net charge, and baryon number may
probe the hadronization mechanism of the quark-gluon
plasma[3].

Fluctuations of conserved quantities are perhaps the best
probes of hadronization, because conservation laws limit the
dissipation they suffer after hadronization has occurred[4,5].
This dissipation occurs by diffusion. While the effect of dif-
fusion on charge and baryon fluctuations has been studied in
Refs.[5,6], the classic diffusion equations used are problem-
atic in a relativistic context, because they allow signals to
propagate with infinite speed, violating causality.

In this paper we study the dissipation of net charge fluc-
tuations in RHIC collisions using a causal diffusion equation.
We find that causality inhibits dissipation, so that extraordi-
nary fluctuations, if present, may survive to be detected. In
Sec. II we discuss how the classic approach to diffusion vio-
lates causality, and present a causal equation that resolves
this problem. The derivation we include facilitates our work
in later sections. We generalize this equation for relativistic
fluids in nuclear collisions in Sec. III. Related causal fluid
equations for viscosity and heat conduction have been intro-
duced in[7,8] with different heavy-ion applications in mind.

Our causal formulation can be crucial for the description
of net-charge fluctuations, which involve rapid changes in
the inhomogeneous collision environment[9]. We turn to this
problem in Secs. IV–VI. In Sec. IV we discuss fluctuation
measurements and their relation to two-particle correlation
functions. In Sec. V we introduce techniques from[10] to
compute the effect of causal and classic diffusion on these
correlation functions. We then estimate the impact of causal
diffusion on fluctuation measurements in Sec. VI. These
three sections are close in spirit to work by Shuryak and
Stephanov, where a classic diffusion model is used[6].

II. CAUSAL DIFFUSION

To understand why the propagation speed in classic diffu-
sion is essentially infinite, recall that the diffusion of par-
ticles through a medium is equivalent to a random walk in
the continuum limit. The variance of the particle’s displace-
ment increases byd2;kDx2l~Dt in the time intervalDt be-
tween random steps. The average propagation speedv
,d/Dt diverges in the continuum limit, whereDt→0 with
the diffusion coefficientD=d2/Dt held fixed. Correspond-
ingly, a delta function density spike is instantaneously spread
by diffusion into a Gaussian, with tails that extend to infinity.

A causal alternative to the diffusion equation is the Tele-
graph equation,

td
]2

] t2
n +

]

] t
n = D¹2n, s1d

whereD is the diffusion coefficient andtd is the relaxation
time for diffusion [11–13]. Signals propagate at the finite
speedv=sD /tdd1/2, so that a delta function spike spreads
behind a front traveling atv, as shown in Fig. 1. The classic
diffusion equation omits the term~td. Classic diffusion de-
scribes the matter well behind the front at timest@td. This
contrasting behavior is generic of hyperbolic equations such
as (1), which include a second-order time derivative, com-
pared to parabolic equations, like the classic first-order dif-
fusion equation[14].

Causality concerns are not restricted to relativistic quarks
or pions diffusing through a quark gluon plasma or hadron
gas. They are common—and constantly debated—whenever

FIG. 1. Density vs position for causal(solid) and classic
(dashed) diffusion assuming an initial delta function distribution.
The spikes represent the right and left moving diffusion fronts of
velocity v= ± sD /tdd1/2.
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time varying diffusion and heat conduction phenomena are
discussed[15]. However, for most nonrelativistic systems,
causality violations are minuscule, so that classic diffusion
can be used. This need not be the case for relativistic fluids
produced in nuclear collisions[7–9].

To motivate (1) and understand its limitations, we first
derive the diffusion coefficient using the Boltzmann equation
in the relaxation time approximation; see, e.g.,[16]. Equa-
tion (1) can also be obtained by the moment method[7] or
by sum-rule arguments[17]. For simplicity, we focus on
electric charge transport by a single species. Generalization
to multiple species and other currents such as baryon number
is straightforward, except for the challenging case of color
transport[18]. We describe the evolution of the phase space
distribution f using

] f

] t
+ vp · ¹ f = − nsf − fed, s2d

where n−1 is the relaxation time,vp=p /E, and E=hp2

+m2j1/2. The local equilibrium distribution satisfiesfe

=hexpfsE−md /Tg±1j−1 whereT is the temperatureT, m the
chemical potential, and the + or − sign describes bosons or
fermions.

Suppose thatm differs from a local equilibrium value by a
small sinusoidally varying perturbationdm, with dn
=s]n/]mddm. Then f is driven from local equilibrium by an
amountdfsv ,kdexphik·x− ivtj. Equation(2) implies

dfsv,kd = −
ivp · k

n − isv − k · vpd
] fe

] m
dmsv,kd, s3d

plus corrections of ordern−2. The net charge current is

dj sv,kd ; E dfsv,kdvpdp = − ikDsv,kddnsv,kd, s4d

wheredp=d3p/ s2pd3. The diffusion coefficient is

Dsv,kd =
1

3

] m

] n
E vp

2

n − isv − k · vpd
] fe

] m
dp, s5d

which is a relativistic generalization of a completely standard
kinetic theory result. Fork =v=0, we recover the familiar
static diffusion coefficientD=n−1vth

2 /3, where the thermal
velocity vth=1 for massless particles. To obtain quantitative
results from this relaxation time approximation, we identify
n−1 with the relaxation time for diffusiontd obtained by
more sophisticated methods, see e.g.,[19–23].

To obtain(1), we omit thek dependence in(5), to find

Dsv,0d = D/s1 − ivtdd, s6d

whereD is the static diffusion coefficient andn−1=td. We
then write

s1 − ivtddj sv,kd = − ikDnsv,kd, s7d

to find

td
]

] t
j sx,td + j sx,td = − D ¹ nsx,td, s8d

the Maxwell-Cattaneo relation[11]. Combining(8) with cur-
rent conservation]n/]t+ ¹ · j=0 yields (1). We will extend
this argument in Sec. V to derive Eq.(40).

Classic diffusion follows from(8) when thetd term is
negligible, a result known as Fick’s law. Fick’s law violates
causality because any density change instantaneously causes
current to flow. Including thetd term is the simplest way to
incorporate a causal time lag for this current response[17].
Moreover,(8) is self consistent in that it saturates thef-sum
rule [17]. However, while(1) is a plausible approximation,
the k→0 limit (7) is not strictly justified. Possible generali-
zations can include the nonlocal equations or gradient expan-
sions derived from(3) and (5). If (1) leads to substantial
corrections to classic diffusion, then such generalizations can
be worth considering.

In solving (1) we must impose initial conditions on the
current that respect causality. Suppose that we introduce a
density pulse atx=0 at timet=0. Microscopically, particles
begin to stream freely away from this point. The current
implied by (8) is

j std = j s0de−t/td −E
0

t ds

td
e−st−sd/tdD ¹ nssd. s9d

Scattering with the surrounding medium eventually estab-
lishes a steady state in which Fick’s law holds, as we see
from (8) for ]j /]t=0, but this takes a timet@td. An assump-
tion of no initial flow j s0d=0 is consistent with our physical
picture, since there is no preferred direction for the initial
velocity of each particle. Note that an alternative choice
js0d=−D¹ns0d would imply that the current always follows
Fick’s law; the corresponding solutions of(1) would never
differ appreciably from classic diffusion. However, this
choice is not causal because it requires that particles “know”
about the medium before they have had any opportunity to
interact with it.

III. ION COLLISIONS

We now extend(1) to study the diffusion of charge
through the relativistic fluid produced in a nuclear collision.
The fluid flows with four velocityum determined by solving
the hydrodynamic equations]mTmn=0 together with the ap-
propriate equation of state. We choose the Landau-Lifshitz
definition of um in terms of momentum current[24]. For
sufficiently high energy collisions, the relative concentration
of net charge is small enough that it has no appreciable im-
pact onum. Correspondingly, we takeum to be a fixed func-
tion of x and t.

Following [24], we define the co-moving time derivative
and gradient

Dt ; um]m and ¹m = ]m − umun]n s10d

for the metric gmn=diags1,−1,−1,−1d. In the local rest
frame whereum=s1,0,0,0d, these quantities are the time de-
rivative and three-gradient¹. The total charge current in the
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moving fluid is jm
tot=num+ jm, where the first contribution is

due to flow and the second to diffusion. Continuity then im-
plies

]msnumd = − ]m jm. s11d

We assume that the diffusion current satisfies

tdDt j
m + jm = D¹mn, s12d

which reduces to(8) in the local rest frame.
To illustrate the effect of flow on diffusion, we consider

longitudinal Bjorken flow,um=st /t ,0 ,0 ,z/td, wheret=st2
−z2d1/2,h=s1/2dlogfst+zd / st−zdg, the density is a function
only of t and the current isjm=s j t ,0 ,0 ,jzd [25]. The conti-
nuity equation(11) is then

S ]

] t
+

1

t
Dn =

1

t

]

] t
stnd = − ]m jm. s13d

To evaluate the covariant Maxwell-Cattaneo relation, we dif-
ferentiate(12) to find

td]msun]n jmd + ]m jm = D¹m¹mn, s14d

where¹m¹m=−t−2]2/]h2. We then write

]msun]n jmd = s]munds]n jmd + un]ns]m jmd =
1

t
]m jm +

]

] t
s]m jmd,

s15d

where the second line follows from Eqs.(17) and (20) of
Ref. [25]. Then(14) and (15) imply

td
]

] t
st]m jmd + t]m jm = D¹m¹mnt. s16d

Together,(13) and (16) describe causal diffusion.
To obtain an equation analogous to(1) for the expanding

system, observe that the rapidity densityr;dN/dh=A'nt,
whereA' is the transverse area of the two colliding nuclei. If
one identifies spatial rapidityh with the momentum-space
rapidity of particles, thenr is observable. We combine(13)
and (16) to find that this rapidity density satisfies

td
]2r

] t2 +
] r

] t
=

D

t2

]2r

] h2 , s17d

since¹m¹m=−t−2]2/]h2. Initial conditions forr and ]r /]t
at the formation timeto must be specified. In view of the
causality argument surrounding(9), we assume that the ini-
tial diffusion currentjm;0, so that(13) implies]r /]t;0 at
t=to. Note that the total currentnum+ jm is initially non-zero,
since the underlying medium is not at rest.

In the absence of diffusion, longitudinal expansion leaves
r fixed, as we see from(13) for j ;0. Diffusion tends to
broaden the rapidity distribution. To characterize this broad-
ening, we compute the rapidity width defined byV;ksh
−khld2l=N−1eh2rdh, wherekhl=0 andN=erdh. We mul-
tiply both sides of(17) by h2 and integrate to find

td
]2V

] t2 +
] V

] t
=

2D

t2 . s18d

Observe that classic diffusion follows from(18) for td=0
with D fixed. In that case the width increases by

DV =
2D

to
S1 −

to

t
D, classic s19d

where DV;V−Vstod. The rapidity width indeed increases,
but the competition between longitudinal expansion and dif-
fusion limits this increase to an asymptotic valueV`

=2D /to.
We now solve(18) for causal diffusion to obtain

DV =
2D

to
E

1

t/to

Fsa,lddl, s20d

wherea;to/td and

Fsa,ld = aE
1

l

j−2easj−lddj. s21d

We have takendV/dt=0 at t=to, as required when the ini-
tial ]r /]t vanishes. Figure 2 comparesDV/V` for classic
and causal diffusion. We find that the rapidity broadening is
always slower for causal diffusion compared to the classic
case. These solutions approach one another fort@to; they
are within 20% fort.1.4 to for a=10. The classic result
(19) follows from (20) and (21) for a=to/td→`.

We have so far assumed thattd and D are constant, but
this may not be the case. These coefficients can vary with the
overall density as the system expands and rarefies. As an
alternative extreme, suppose that diffusion occurs as mass-
less charged particles elastically scatter with the expanding
fluid of density ntot. Kinetic theory implies that td

−1

<ksvrellntot and D<td/3. If we take the scattering rate
ksvrell averaged over species and temperature to be constant,
but assumentot~t−1, thentd~D~t. Note thatntot~t−1 over-
estimates the effect of expansion, while our earlier constant-
td approximation underestimates expansion. The former re-
lation holds only for massless particles in the absence of
diffusion and other dissipative effects, since entropy~ntot is
conserved. Realistically, dissipation and mass effects would
reduce the rate of growth oftd andD, as would the tempera-
ture dependence ofksvrell.

FIG. 2. Rapidity spread vs time for causal and classic diffusion
computed using(20) and (19), respectively. Causal curves are for
to/td=0.5, 1, and 1.5. Rapidity spreads are divided by the
asymptotic valueV`=2D /to.
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Including this extreme effect of rarefaction impliestd
=tdstodt /to, so that

td = t/a, s22d

where we now fix the parametera=to/tdstod at the initial
time. TakingD=td/3 gives

D = t/3a, s23d

so that the diffusion equation(18) becomes

t
d2V

dt2 + a
dV

dt
=

2

3t
. s24d

As before, classic diffusion is obtained by omitting the sec-
ond derivative term. We find

DV =
2

3a
ln

t

to
, classic s25d

We see that the width now increases without bound, which is
not surprising since our time varying parameters(22) and
(23) imply that V`=2D /to~t.

Informed by the classic case, we write the causal equation
as

d2V

du2 + sa − 1d
dV

du
=

2

3
, s26d

whereu=ln t /to. When a=1, the first derivative vanishes,
so that

DV = sln t/tod2/3. s27d

For aÞ1, we find

DV =
2

3sa − 1dHln
t

to
−

1

a − 1
F1 −S to

t
Da−1GJ . s28d

For a.1, the increase ofDV is always smaller than classic
diffusion (25). In this regime, we see thatDV/ sDVdclassic

→a / sa−1d ast→`. The difference of the ratio from unity
in the long time limit reflects the fact that the rarefaction rate
t−1 and diffusion ratetd

−1<n are in fixed proportion for all
time, due to(22).

For a,1, i.e., for to,td, Eq. (28) implies thatDV in-
creases faster than in classic diffusion fort@to. This behav-
ior is an unphysical artifact of the assumption(22). In this
regime the rarefaction ratet−1 exceeds the scattering rate
td

−1<n, so that scattering cannot maintain local thermal equi-
librium. Our hydrodynamic diffusion description is therefore
not applicable—one must turn to transport theory, as dis-
cussed in[26]. One can see this explicitly by solving(17) for
rsh ,td. Linear perturbation analysis reveals that the solu-
tions are unstable fora,1. We emphasize that for constant
coefficients the solutions(19) and(20) are physical for alla,
as generally holds fortd~tz for any z,1.

The width computed with varying coefficients increases
without bound, albeit slowly. This behavior distinguishes
(27) and (28) from the constant-coefficient widths obtained
from (19) and (20). Nevertheless, the short time behavior
shown in Fig. 3 resembles the constant-coefficient case in
Fig. 2. In both cases the classic and causal results converge

to one another over longer times. Note that the results in Fig.
3 are normalized to 2D /to=2/3a using the value ofD at to.

To apply these results to collisions, we must specify the
diffusion coefficientD and the relaxation timetd. Transport
coefficients in quark gluon plasma and hadron matter have
been been studied extensively[16,19–23]. Flavor and charge
diffusion estimates in a plasma yieldD,1−3 fm and td
,3D,3−9 fm [21]. The hadron gas case, which is more
relevant to this work, is complicated by the menagerie of
resonances produced in collisions. In Ref.[23], the charge
diffusion coefficient was computed using a hadronic trans-
port model, yieldingD<2 fm andtd<6 fm.

We argue in Sec. VI that the short time behavior in Figs.
2 and 3 describes diffusion following hadronization. Hadrons
form at a rather late time, roughlyto,6−12 fm. If freeze
out occurs shortly thereafter, att f less than 20 fm, then the
ranget /to,3 is important. A hadronic relaxation timetd
,6 fm is relevant, so that 1,a,2. In this case causal dif-
fusion gives a much slower spread in rapidity than classic
diffusion.

IV. FLUCTUATIONS AND CORRELATIONS

Let us now turn to net charge fluctuations and their dissi-
pation. To begin, we review key features of multiplicity and
charge fluctuation observables. Our discussion builds on the
detailed treatment in Ref.[27], which stresses the relation of
fluctuation observables to two-particle correlation functions.
We extend that treatment by identifying the net-charge cor-
relation function(34) that drives dynamic charge fluctua-
tions. In the next section we will show how diffusion affects
the evolution of this correlation function.

Dynamic fluctuations are generally determined from the
measured fluctuations by subtracting the statistical value ex-
pected, e.g., in equilibrium[27]. Dynamic multiplicity fluc-
tuations are characterized by

Raa =
kN2l − kNl2 − kNl

kNl2 , s29d

where k¯l is the event average. This quantity is obtained
from the multiplicity variance by subtracting its Poisson
value kNl. Similarly, the covariance for different species is

FIG. 3. Rapidity spread vs time for causal and classic diffusion
computed using(27), (28), and(25), respectively. Causal curves are
for to/td=1, 1.5, and 2. Rapidity spreads are divided by the value
2Do/to=2a /3.
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Rab =
kNaNbl − kNalkNbl

kNalkNbl
, s30d

which also vanishes for Poisson statistics. These quantities
depend only on the two-body correlation function

rabsh1,h2d = rabsh1,h2d − rash1drbsh2d, s31d

where rabsh1,h2d=dNab/dh1dh2 is the rapidity density of
particle pairs for speciesa andb at the respective pseudora-
pidities h1 andh2, andra is the single particle rapidity den-
sity. We use the same symbol for momentum and configura-
tion space rapidity, because we will take these quantities to
be equal in later sections. In[27] it is shown that

Rab =
1

kNalkNbl E dh1dh2rabsh1,h2d. s32d

These quantities are robust in that they are normalized to
minimize the effect of experimental efficiency and accep-
tance.

The STAR and CERES experiments characterize dynamic
net-charge fluctuations using the robust variance

n ; R++ + R−− − 2R+−, s33d

proposed in[27]; here we usen rather than the more con-
ventional notationndyn for simplicity. To establish the rela-
tion of n to the net charge correlation function

qsh1,h2d = r++ + r−− − r+− − r−+, s34d

we integrate over a rapidity interval to find

N2V ;E E qdh1dh2 = Nsvq − 1d, s35d

where the variance of the net charge isNvq=ksN+−N−d2l
−kN+−N−l2 and the average number of charged particles is
N;kN++N−l. Expanding(35) yields

V = f+
2R++ + f−

2R−− − 2f+f−R+−, s36d

wheref+=kN+l /N=1−f−. If the average numbers of particles
and antiparticles are nearly equal,

n < 4V. s37d

HIJING simulations show that this relation is essentially ex-
act for mesons at SPS and RHIC energy(we find n and 4V
are equal with 2% statistical error at SPS energy). We men-
tion thatV itself was suggested as an observable in Ref.[5]
and that PHENIX measures the related quantityvQ=1
+NV. However,V is not strictly robust. The next section
implies thatq and, consequently,V is of more fundamental
interest thann. However, in view of(37) and the qualitative
aims of fluctuation studies, we will regard these quantities as
interchangeable.

V. CORRELATIONS AND DIFFUSION

To understand how diffusion can dissipate dynamic fluc-
tuations of the net charge and other conserved quantities, we
apply the theoretical framework developed by Van Kampen

and others[10]. A relativistic extension of these techniques
will enable the computation of the correlation function(34)
as well as statistical quantities liken, while introducing no
additional parameters.

We start with a single charged species of conserved den-
sity nsx ,td that evolves by diffusion. Consider an ensemble
of events in whichnsx ,td is produced with different values at
each point with probabilityPhnsx ,tdj. After Ref. [10], one
writes a master equation describing the rate of change ofP in
terms of transition probabilities to states of differingn on a
discrete spatial lattice. Diffusion and flow are described as
transitions in which particles “hop” to and from neighboring
points. The Fokker-Planck formulation in Ref.[6] can be
obtained from this master equation in the appropriate limit.
Alternatively, one can use the master equation to obtain a
partial differential equation for the density correlation func-
tion by taking moments ofP. The derivation is standard and
we do not reproduce it here[10].

If the one body density follows classic diffusion dynam-
ics, then the density correlation function

rdsx1,x2d ; kn1n2l − kn1lkn2l − dsx1 − x2dkn1l, s38d

satisfies the classic diffusion equation

S ]

] t
− Ds¹1

2 + ¹2
2dDrdsx1,x2d = 0 s39d

[10]. This density correlation functionrd is analogous to
rapidity-density correlation functionr in (31). If the event-
averaged single-particle density satisfies(1), then we can ex-
tend this result to causal diffusion by Fourier transforming
(39) and using(6), as in Sec. II. The inverse transform yields

Std
]2

] t2
+

]

] t
− Ds¹1

2 + ¹2
2dDrdsx1,x2d = 0. s40d

We remark that the delta-function term in(38) implies that
the volume integral ofr vanishes when particle number fluc-
tuations obey Poisson statistics. This term is derived along
with (39) in Ref. [10]; it ensures that correlations vanish in
global equilibrium.

In a nuclear collision with several charged species, only
the net charge densityn+−n− satisfies diffusion dynamics,
since chemical reactions can change one species into another.
We define the net-charge density correlation function
qdsx1,x2d as

qd ; ksn1
+ − n1

−dsn2
+ − n2

−dl − kn1
+ − n1

−lkn2
+ − n2

−l

− dsx1 − x2dkn1
+ + n1

−l. s41d

Observe that the integral

E qddx1dx2 = ksN+ − N−d2l − kN+ − N−l2 − kN+ + N−l

s42d

gives the net charge fluctuations minus its value for uncorre-
lated Poisson statistics. This integral vanishes in equilibrium.
We expand(41) to write qd=rd+++rd−−−rd+−−rd−+, where
each rd++ and rd−− has the form(38) and rd+−;kn1

+n2
−l

−kn1
+lkn2

−l.
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To illustrate the effect of diffusion on net charge fluctua-
tions in the next section, we introduce longitudinal Bjorken
flow to (40). As in Sec. III, we focus on the evolution of the
rapidity densityr=A'nt;tensh ,r t ,tdd2rt, for r t and A'

the transverse coordinate and area. The event-averaged quan-
tity krl satisfies(17), which has the form of(1) with n andt
replaced byr and t. We will obtain an analogous generali-
zation of (40) in terms of the rapidity-density correlation
function

qsh1,h2,td ; t2E qdsx1,x2dd2rt1d
2rt2, s43d

whereqd is given by(41). This quantity has the form(34) for

rab ; kr1
ar2

bl − kr1
alkr2

bl − dabdsh1 − h2dkr1
al, s44d

since the delta function in(38) satisfiesdsx1−x2d=t−1dsh1

−h2ddsr t1−r t2d for spatial rapiditiesh1,2. We comment that
(44) omits event-by-event variation ofA', so that
ed2rt1d

2rt2kn1n2l=ked2rt1d
2rt2n1n2l. This variation increases

(44) by an amountkr+−r−l2kDA'
2 l / kA'l2, whereDA'=A'

−kA'l. This correction is small if the system is nearly neutral
andA' is large, as in central RHIC-energy collisions. These
“volume fluctuations” do not affect the observablendyn, as
shown in[27].

The rapidity-density correlation functionqsh1,h2,td
obeys

Std
]2

] t2 +
]

] t
−

D

t2

]2

] h1
2 −

D

t2

]2

] h2
2Dq = 0. s45d

We see thatq is constant int when the system is uniform in
rapidity, as required by the symmetry of Bjorken flow. To
derive(45), it is simplest to first introduce longitudinal flow
to the derivation of the classic diffusion equation(39) in
[10]. To do this, we treatn and the diffusion currentjm as
stochastic variables. The fluctuating total currentjm

tot=num

+ jm satisfies(11) with a deterministic Bjorken velocityum.
To account for fluctuations one adds a vector Langevin force
to Fick’s law jm=D¹mn [10]. Transforming tot−h coordi-
nates as in Sec. III, we obtain(45) without the td]

2q/]t2

term. We can then use the Fourier-transform trick to add the
causal term. Alternatively,(45) can be derived directly by
adding a Langevin force to(12), but this method is more
involved.

We write (45) in terms of the relative rapidityhr ;h1
−h2 and average rapidityha=sh1+h2d /2:

Std
]2

] t2 +
]

] t
−

2D

t2

]2

] hr
2 −

D

t2

]2

] ha
2Dq = 0; s46d

the “2” follows from the transformation to relative rapidity
hr. To compute the widths ofqshr ,ha,td in relative or aver-
age rapidity, one multiplies(46) by hr

2 or ha
2 and integrates

over both variables. We find

Dkshr − khrld2l = 2DVstd s47d

and

Dksha − khald2l = DVstd, s48d

where DVstd is calculated using(20) [or (28) if a time-
dependenttd andD is more appropriate].

VI. SURVIVAL OF SIGNALS

In this section we discuss how diffusion can affect our
ability to interpret hadronization signals. As a concrete illus-
tration, we suppose that collisions form a quark gluon
plasma that hadronizes at a timeto, producing anomalous
dynamic charge fluctuationsn. The hadronization model of
Jeon and Koch[4] implies that plasma produces a value
Nnqgp<−3. In contrast, the value for a hadronic resonance
gas is variously estimated in the range fromNn<−1 [4] to
−1.7 [28]. Hadronic diffusion fromto to a freeze out timet f
can dissipate these fluctuations, reducingunu.

We ask whether hadronic diffusion can plausibly bring
plasma fluctuations near the hadron gas values. While the
estimates of Ref.[4] can be questioned[29], they will serve
here as benchmarks. In this section we emphasize the impact
of causal diffusion on this problem, employing a simplified
approach tailored to that aim. Phenomenological conclusions
require a more realistic model.

Before proceeding, we emphasize that Ref.[4] compares
quark gluon plasma and hadron gas fluctuations as they
might emerge from distinct systems at equivalent chemical
potential and temperature. In contrast, the fluctuations in a
hadron gas that has evolvedfrom a plasma initial state are
fixed by charge conservation. Suppose that hadronization in
single event produces a positive charge in one rapidity sub-
interval with a compensating negative charge in another. The
final hadronic state maintains that situation—freezing in the
plasma fluctuations—unless diffusion can redistribute the
charges between those subintervals.

To compute fluctuation observables following Secs. III
and V, we specify the correlation function by identifying
spatial and momentum-space rapidity at a fixed freeze out
proper timet f. Observe that ISR and FNAL data[30] can be
characterized as Gaussian near midrapidity. Moreover, these
data show that charged particle correlations are functions of
the relative rapidityhr =h1−h2 with only a weak dependence
on the average rapidityha=sh1+h2d /2. Near midrapidity,
these data inspire the form

qshr,had <
qo

2psS
e−hr

2/2s2−ha
2/2S2

s49d

for S@s. Diffusion increases the widthss andS compared
to their initial valuesso andSo at the hadronization timeto
in accord with(47) and(48). For simplicity, we assume that
So is sufficiently large that we can neglect the time depen-
dence ofS in (48). We point out that(49) is an exact solution
of the classic diffusion equation on an infinite rapidity inter-
val for Gaussian initial conditions. Moreover,(49) is a good
approximation for causal diffusion, provided that the rapidity
region of interest does not appreciably exceeds or S; see the
discussion in Sec. II.

Dynamic fluctuationsn are computed by integratingq
over an interval −D /2øh1,h2øD /2 corresponding to the
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experimental acceptance. ForS greater thanD /2 ands, we
use(35) and (37) to estimaten,

Nn <
4

N
E

−D/2

D/2 E
−D/2

D/2

qsh1,h2ddh1dh2

<
8

N
E

0

D/2

dhaE
−D/2+ha

D/2−ha

qshr,haddhr < Nn`erfsD/Î8sd ,

s50d

where the total number of charged particles isN<2rD. We
take the rapidity densityr for each charge species to be
uniform. The quantityNn`=2qos2pr2S2d−1/2 is the value ob-
tained for a large rapidity window.

The dependence of the dynamic fluctuationsNn on the
relative rapidity intervalD implied by(50) is shown in Fig. 4
for several ad hoc values ofs. Also shown as dashed curves
are the ratios of these quantities,

Nn f

Nno
=

erfsD/Î8s fd
erfsD/Î8sod

, s51d

computed forso the smaller initial width ands f the larger
final width. This ratio indicates how much the fluctuations
are reduced as the width increases fromso to s f. In both
figures, the change in widths are chosen so that they nearly
“hide” initial QGP fluctuations at the level expected in Ref.
[4], since Nnhg/Nnqgp<1/3−1/2. Balance function mea-
surements are consistent with a widths<0.5 [1]. ISR and
FNAL experiments suggests<1 in pp collisions.

The question then becomes: are such increases ins plau-
sible in a diffusion model? Equation(47) implies that s f

2

=so
2+2DVst fd. The relevant “formation time” is the time at

which hadronization occurs. This occurs quite late in the
evolution, roughly fromto,6 to 12 fm. Freeze out occurs
later, perhaps as late ast f ,20 fm. The ratiot f /t0 is then in
the range from one to two, where the difference between
causal and classic diffusion is substantial, as shown in Figs. 2
and 3. We takeD<2 fm andtd<6 fm from Ref. [23], as
discussed in Sec. III.

The solid curves in Fig. 5 show the decrease of dynamic
fluctuations computed using(51), (47), and(20). The dashed
curves are computed using(28) instead of(20). We take the
value so<0.25 for the initial width; larger values imply a

smaller net reduction ofNn. A hadronization timeto=9 fm is
assumed, corresponding toa=to/td=1.5 in Figs. 2 and 3.
The gray band indicates the level to whichNn must be re-
duced to hide the effect of plasma fluctuations. We see that
classic diffusion can bringNn to this level if the system lives
as long as 20 fm, while causal diffusion cannot.

VII. SUMMARY

In this paper we introduce a causal diffusion equation to
describe the relativistic evolution of net charge and other
conserved quantities in nuclear collisions. We find that causal
limitations inhibit dissipation. To study the effect of this dis-
sipation on fluctuation signals, we obtain a causal diffusion
equation for the two-body correlation function. Our approach
complements the treatment in[6], but is more easily gener-
alized to include radial flow and other dynamic effects for
comparison to data.

We then use these equations to provide estimates that
show that net charge fluctuations induced by quark gluon
plasma hadronization can plausibly survive diffusion in the
hadronic stage. This result bolsters our optimism for fluctua-
tion and correlation probes of hadronization and other inter-
esting dynamics. Our aim here has been to emphasize the
impact of causal diffusion on charge fluctuations. Corre-
spondingly, we employ an idealized approach tailored to that
aim. Phenomenological conclusions require a more realistic
model, to be developed elsewhere.

Our results on post-hadronization diffusion owe to the
similarity of the lifetime of the hadronic system and the re-
laxation time for diffusiontd. In fact, RHIC data suggest
hadronic lifetimes that are as short or shorter than we as-
sume: HBT[31] and resonance[32] measurements suggest a
lifetime from roughly 5 to 10 fm. On the other hand, our
estimate oftd rests on transport calculations in Ref.[23]. The
importance of this problem invites further study of charge
and other transport coefficients.

In closing, we briefly comment on the experimental situ-
ation. Charge fluctuation measurements give roughly similar

FIG. 4. Rapidity dependence of dynamic charge fluctuations as-
suming diffusion has increased the width froms0=1 to s f =2 (bot-
tom) ands0=0.25 tos f =0.5 (top). FIG. 5. Decrease in dynamic charge fluctuations as a function of

freeze out timet f for the acceptanceD=1 andso=0.25. The gray
band indicates the level needed to obscure plasma signals. Solid and
dashed curves are, respectively, computed for constant and varying
coefficients using(20) and (28) and the corresponding classic Eqs.
(19) and (25).
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values from SPS to RHIC energy[1]. Furthermore, the
STAR experiment findsNn<−1.5 at RHIC[28]. While this
value is close to the benchmark hadron gas estimates[4,28],
we emphasize that those estimates were constructed for an
equilibrium resonance gas assuming no prior plasma stage.
Flow and jet quenching measurements provide strong
indications—if not proof—of plasma formation[33]. As dis-
cussed earlier,Nn can be very different in a resonance gas
formed from a hadronizing partonic system and, indeed,
should be very close to plasma values.

Extraordinary charge fluctuations should be seen, but are
not. It may be that netcharge fluctuations produced by
plasma hadronization are closer to the benchmark hadronic
estimates, as suggested by Bialas[29]. What then? Experi-
mentally, one can turn to the centrality and azimuthal-angle

dependence of fluctuations and, eventually, to correlation-
function measurements as more sensitive probes of net
charge fluctuations. Such studies have already begun to yield
important information[1,34]. In addition, one can study
baryon number and isospin fluctuations, which are more
closely related to the QCD order parameter and, therefore, to
hadronization physics and phase transition dynamics[3,5].
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