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A detailed analysis of the coupled relativistic kinetic equations for two domains separated by a hypersurface
having both space- and time-like parts is presented. Integrating the derived set of transport equations, we obtain
the correct system of the hydro1cascade equations to model the relativistic nuclear collision process. Remark-
ably, the conservation laws on the boundary between domains conserve separately both the incoming and
outgoing components of energy, momentum and baryonic charge. Thus, the relativistic kinetic theory generates
twice the number of conservation laws compared to traditional hydrodynamics. Our analysis shows that these
boundary conditions between domains, thethree flux discontinuity, can be satisfied only by a special superpo-
sition of two cutoff distribution functions for the “out” domain. All these results are applied to the case of the
phase transition between quark gluon plasma and hadronic matter. The possible consequences for an improved
hydro+cascade description of the relativistic nuclear collisions are discussed. The unique properties of the
three flux discontinuityand their effect on the space-time evolution of the transverse expansion are also
analyzed. The possible modifications of both transversal radii from pion correlations generated by a correct
hydro1cascade approach are discussed.
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I. INTRODUCTION

The modern history of relativistic hydrodynamics started
more than 50 years ago when Landau suggested[1] its use to
describe the expansion of the strongly interacting matter that
is formed in high-energy hadronic collisions. Since that time
there arose a fundamental problem of relativistic hydrody-
namics known as the freeze-out problem. In other words, one
has to know how to stop solving the hydrodynamical equa-
tions and convert the matter into free-streaming particles.
There were several ways suggested to handle this, but only
recently a new approach to solve the freeze-out problem in
relativistic hydrodynamics has been discovered by Bass and
Dumitru (BD model) [2] and further developed by Teaney,
Lauret, and Shuryak(TLS model) [3]. These hydro
+cascade models assume that the nucleus-nucleus collisions
proceed in three stages: hydrodynamic expansion(hydro) of
the quark gluon plasma(QGP), phase transition from the
QGP to the hadron gas(HG), and the stage of hadronic res-
cattering and resonance decays(cascade). The switch from
hydro- to cascade modeling takes place at the boundary be-
tween the mixed and hadronic phases. The spectrum of had-
rons leaving this hypersurface of the QGP–HG transition is
taken as input for the cascade.

This approach incorporates the best features of both the
hydrodynamical and cascade descriptions. It allows for, on
one hand, the calculation of the phase transition between the
quark gluon plasma and hadron gas using hydrodynamics
and, on the other hand, the freeze-out of hadron spectra using
the cascade description. This approach allows one to over-
come the usual difficulty of transport models in modeling
phase transition phenomena. For this reason, this approach
has been rather successful in explaining a variety of collec-
tive phenomena that has been observed at the CERN Super

Proton Collider(SPS) and Brookhaven Relativistic Heavy
Ion Collider (RHIC) energies. However, both the BD and
TLS models face some fundamental difficulties which cannot
be ignored(see a detailed discussion in Ref.[4]). Thus,
within the BD approach the initial distribution for the cas-
cade is found using the Cooper-Frye formula[5], which
takes into account particles with all possible velocities,
whereas in the TLS model the initial cascade distribution is
given by thecutoff formula [6,7], which accounts for only
those particles that can leave the phase boundary. As shown
in Ref. [4], the Cooper-Frye formula leads to causal and
mathematical problems in the present version of the BD
model because the QGP-HG phase boundary inevitably has
time-like parts. On the other hand, the TLS model does not
conserve energy, momentum, and number of charges and
this, as will be demonstrated later, is due to the fact that the
equations of motion used in Ref.[3] are incomplete and,
hence, should be modified.

These difficulties are likely in part responsible for the fact
that the existing hydro1cascade models, like the more sim-
plified ones, fail to explain the HBTpuzzle[8], i.e., the fact
that the experimental HBT radii at RHIC are very similar to
those found at SPS, even though the center of mass energy is
larger by an order of magnitude. Therefore, it turns out that
the hydro+cascade approach successfullyparametrizesthe
one-particle momentum spectra and their moments, but does
not describethe space-time picture of the nuclear collision as
probed by two-particle interferometry.

The main difficulty of the hydro+cascade approach looks
similar to the traditional problem of freeze-out in relativistic
hydrodynamics [6,7]. In both cases the domains(sub-
systems) have time-like boundaries through which the ex-
change of particles occurs and this fact should be taken into
account. In relativistic hydrodynamics this problem was
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solved by the constraints which appear on the freeze-out hy-
persurface and provide the global energy-momentum and
charge conservation[6,7,9]. A generalization of the usual
Boltzmann equation, which accounts for the exchange of
particles on the time-like boundary between domains in the
relativistic kinetic theory, was given recently in Ref.[4]. It
was shown that the kinetic equations describing the ex-
change of particles on the time-like boundary between sub-
systems should necessarily contain thed-like source terms.
From these kinetic equations the correct system of hydro
+cascade equations to model the relativistic nuclear collision
process was derived without specifying the properties of the
separating hypersurface. However, both an explicit switch-
off criterion from the hydro description to the cascade one
and the boundary conditions between them were not consid-
ered in Ref.[4]. The present work is devoted to the analysis
of the boundary conditions for the system of hydro
+cascade equations. This is necessary to formulate the nu-
merical algorithm for solving the hydro+cascade equations.

The paper is organized as follows. In Sec. II a brief deri-
vation of the set of kinetic equations is given and source
terms are obtained. In Sec. III the analog of the collision
integrals is discussed and a fully covariant formulation of the
system of coupled kinetic equations is found. The relation
between the system obtained and the relativistic Boltzmann
equation is also considered. The correct equations of motion
for the hydro+cascade approach and their boundary condi-
tions are analyzed in Sec. IV. There it is also shown that the
existence of strong discontinuities across the space-like
boundary, the time-like shocks, is in contradiction with the
basic assumptions of a transport approach. The solutions of
boundary conditions between the hydro and cascade domains
for a single degree of freedom and for many degrees of free-
dom are discussed in Secs. V and VI, respectively. The con-
clusions are given in Sec. VII.

II. DRIFT TERM FOR SEMI-INFINITE DOMAIN

Let us consider two semi-infinite domains, “in” and “out,”
separated by the hypersurfaceS* which, for the purpose of
presenting the idea, we assume to be given ins3+1d dimen-
sions by a single-valued functiont= t*sxd=x0

*sxd. The latter is
assumed to be a unique solution of the equationF*st ,xd=0
(a switch-off criterion) which has a positive time derivative
]0F*st* ,xd.0 on the hypersurfaceS* . Hereafter, all quanti-
ties defined atS* will be marked with an asterisk. The dis-
tribution functionfinsx,pd for tø t*sxd is assumed to belong
to the in domain, whereasfoutsx,pd denotes the distribution
function of the “out” domain fortù t*sxd (see Fig. 1). In this
work it is assumed that the initial conditions forfinsx,pd are
given, whereas onS* the functionfoutsx,pd is allowed to
differ from finsx,pd and this will modify the kinetic equa-
tions for both functions. For simplicity we consider a classi-
cal gas of point-like Boltzmann particles.

Similar to Ref.[10], we derive the kinetic equations for
finsx,pd andfoutsx,pd from the requirement of particle num-
ber conservation. Therefore, the particles leaving one domain
and crossing the hypersurfaceS* should be subtracted from

the corresponding distribution function and added to the
other. Now, consider the closed hypersurface of the in do-
main, Dx3 (shown as the contourABDE in Fig. 1), which
consists of two semiplanesst1 and st2 of constant timet1
and t2, respectively, that are connected fromt1 to t2. t1 by
the arcBD of the boundaryS*st1,t2d in Fig. 1. The original
number of particles on the hypersurfacest1 is given by the
standard expression[10]

N1 = −E
st1

dSm

d3p

p0 pmfinsx,pd, s1d

wheredSm is the external normal vector tost1 and, hence,
the productpmdSmø0 is non-positive. It is clear that these
particles can cross either hypersurfacest2 or S*st1,t2d. The
corresponding numbers of particles are as follows:

N2 =E
st2

dSm

d3p

p0 pmfinsx,pd, s2d

Nloss
* =E

S* st1,t2d
dSm

d3p

p0 pmfinsx,pdQspndSnd. s3d

TheQ function in the loss term(3) is very important because
it accounts for the particles leaving the in domain(see also
the discussion in Refs.[6,9]). For the space-like parts of the
hypersurfaceS*st1,t2d which are defined by negative sign
ds2,0 of the squared line element,ds2=dt*sxd2−dx2, the
productpndSn.0 is always positive and, therefore, particles
with all possible momenta can leave the in domain through
theS*st1,t2d. For the time-like parts ofS*st1,t2d (with sign
ds2.0) the productpndSn can have either sign, and theQ
function cuts off those particles which return to the in do-
main.

Similarly one has to consider the particles coming to the
in domain from outside. This is possible through the time-
like parts of the hypersurfaceS*st1,t2d, if the particle mo-
mentum satisfies the inequality −pndSn.0. In terms of the
external normaldSm with respect to the in domain[this nor-

FIG. 1. Schematic two-dimensional picture of the boundary hy-
persurfaceS* (solid curve). Arrows show the external normal vec-
tors. The light coneNOP is shown by the dash-dotted line. The
point F divides S* into the time-like sOFd and space-likesFPd
parts.

K. A. BUGAEV PHYSICAL REVIEW C 70, 034903(2004)

034903-2



mal vector is shown as an arrow on the arcBD in Fig. 1 and
will be used hereafter for all integrals over the hypersurface
S*st1,t2d], the number of gained particles

Ngain
* = −E

S* st1,t2d
dSm

d3p

p0 pmfoutsx,pdQs− pndSnd, s4d

is, evidently, non-negative. Since the total number of par-
ticles is conserved, i.e.,N2=N1−Nloss

* +Ngain
* , one can use the

Gauss theorem to rewrite the obtained integral over the
closed hypersurfaceDx3 as an integral over the 4-volume
Dx4 (area inside the contourABDE in Fig. 1) surrounded by
Dx3

E
Dx4

d4x
d3p

p0 pm]mfinsx,pd =E
S* st1,t2d

dSm

d3p

p0 pm

3ffinsx,pd − foutsx,pdg

3Qs− pndSnd. s5d

Note that in contrast to the usual case[10], i.e., in the ab-
sence of a boundaryS* , the right-hand side(rhs) of Eq. (5)
does not vanish identically.

The rhs of Eq. (5) can be transformed further to a
4-volume integral in the following sequence of steps. First
we express the integration elementdSm via the normal vector
nm

* as follows(dxj .0, for j =1,2,3):

dSm = nm
* dx1 dx2 dx3; nm

* ; dm0 −
] t*sxd
] xm s1 − dm0d, s6d

where dmn denotes the Kronecker symbol. Then, using the
identity

E
t1

t2

dtdst − t3d = 1

for the Diracd function with t1ø t3ø t2, we rewrite the rhs
integral in (5) as

E
S* st1,t2d

dSm¯ ; E
VS

4
d4xdst − t*sxddnm

* . . ., s7d

where short-hand notations are introduced for the
4-dimensional volume VS

4 =st2−t1deS* st1,t2ddx1 dx2 dx3

which is shown as the rectangleGBCD in Fig. 1 suGBu
= uCDud. Evidently, the Diracd function allows us to extend
integration in(7) to the unified 4-volumeVU

4 =Dx4øVS
4 of

Dx4 and VS
4 (the volumeVU

4 is shown as the areaABCE in
Fig. 1). Finally, with the help of notations

Qout ; Qst − t*sxdd; Qin ; 1 − Qout, s8d

it is possible to extend the left-hand side(lhs) integral in Eq.
(5) from Dx4 to VU

4 . Collecting all the above results, from Eq.
(5) one obtains

E
VU

4
d4x

d3p

p0 Qinpm]mfin =E
VU

4
d4x

d3p

p0 pmnm
* ffin − foutg

3Qs− pnnn
*ddst − t*sxdd. s9d

Since the volumesDx4 andVU
4 are arbitrary, one obtains the

kinetic equation for the distribution function of the in domain

Qinpm]mfinsx,pd = Cinsx,pd + pmnm
* ffinsx,pd − foutsx,pdg

3Qs− pnnn
*ddst − t*sxdd. s10d

Note that the general solution of Eq.(9) contains an arbitrary
function Cinsx,pd [the first term in the rhs of(10)] which
identically vanishes while being integrated over the invariant
momentum measured3p/p0. Such a property is typical for a
collision integral[10], and we shall discuss its derivation in
the subsequent section. To shorten the notation, the domain
of each distribution function will be denoted as a subscripted
italic capital letterA or B sA,BP hin ,outjd) to avoid confu-
sion with Greek 4-indices.

Similarly, one can obtain the equation for the distribution
function of the out domain

Qoutp
m]mfoutsx,pd = Coutsx,pd + pmnm

* ffinsx,pd − foutsx,pdg

3Qspnnn
*ddst − t*sxdd, s11d

where the normal vectornn
* is given by(6). Note the asym-

metry between the rhs of Eqs.(10) and (11): for the space-
like parts of hypersurfaceS* the source term with
Qs−pnnn

*d vanishes identically becausepnnn
* .0. This reflects

the causal properties of the equations above: propagation of
particles faster than light is forbidden, and hence no particle
can (re)enter the in domain.

III. COLLISION TERM FOR SEMI-INFINITE DOMAIN

Since in the general casefinsx,pdÞfoutsx,pd on S* , the
d-like terms in the rhs of Eqs.(10) and (11) cannot vanish
simultaneously on this hypersurface. Therefore, the functions
Qin

* ;QinuS* Þ0 andQout
* ;QoutuS* Þ0 do not vanish simul-

taneously onS* as well. TheQsxd is not uniquely defined at
x=0, and, therefore, there is some freedom to choose a con-
venient value atx=0. Since there is no preference between in
and out domains, it is assumed that

Qin
* = Qout

* = Qs0d = 1
2 , s12d

but the final results are independent of this choice. This re-
sult can be understood by considering the limita→0 of the
following definition: Qsxd; 1

2lima→0ftanhsx/ uaud+1g.
Now, the collision terms for Eqs.(10) and (11) can be

readily obtained. Adopting the usual assumptions for the dis-
tribution functions[10–12], one can repeat the standard deri-
vation of the collision terms[10,12] and get the desired ex-
pressions. We shall not recapitulate this standard part, but
only discuss how to modify the derivation for our purpose.
First, one has to start the derivation in theDx4 volume of the
in domain and then extend it to the unified 4-volumeVU

4

=Dx4øVS
4 similarly to the preceding section. Then, the first

part of the collision term for Eq.(10) reads sA,B
P hin ,outjd

Cin
I sx,pd = Qin

2 sIGffin,fing − ILffin,fingd, s13d

IGffA,fBg ; 1
2 E D9PfAsp8dfBsp18dWpp1up8p18

, s14d

BOUNDARY CONDITIONS OF THE HYDROCASCADE… PHYSICAL REVIEW C 70, 034903(2004)

034903-3



ILffA,fBg ; 1
2 E D9PfAspdfBsp1dWpp1up8p18

, s15d

where the invariant measure of integration is denoted by
D9P;sd3p1/p1

0dsd3p8 /p80dsd3p18 /p18
0d, and Wpp1up8p18

is the
transition rate in the elementary reaction with energy-
momentum conservation given in the formpm+p1

m=p8m

+p18
m. The rhs of(13) contains the standard gain and loss

terms which are defined by Eqs.(14) and (15), respectively,
weighted by the “probability” of collision between particles
from the in domain given by the square of theQin function.
The valueQin

2 ;1 is found inside of the in domain, whereas
Qin

2 =Qin
*2 =1/4 at theboundary S* because, according to

(12), for each value of the distribution functionfin in the rhs
of (13), only half of the boundaryS* belongs to the in do-
main. This can be better understood by considering, first, the
above-mentioned tangent representation for theQ function,
and then taking the limita→0 next.

It is easy to understand that onS* the second part of the
collision term[according to Eq.(12)] is defined by the col-
lisions between particles of in and out domains

Cin
II sx,pd = QinQoutsIGffin,foutg − ILffin,foutgd. s16d

Again, the productQinQout=0 everywhere, except at the hy-
persurfaceS* , where it corresponds to the probability of col-
lision atS* for the particles coming from both domains. This
can be easily seen from the hyperbolic tangent representation
of the Q function.

Combining(10), (13), and(16), one gets the kinetic equa-
tion for the in domain

Qinpm]mfinsx,pd = Cin
I sx,pd + Cin

II sx,pd + pmnm
*

3ffinsx,pd − foutsx,pdgQs− pnnn
*d

3dst − t*sxdd. s17d

The kinetic equation for the out domain can be derived simi-
larly; then, it can be represented in the form

Qoutp
m]mfoutsx,pd = Cout

I sx,pd + Cout
II sx,pd + pmnm

*

3 ffinsx,pd − foutsx,pdgQspnnn
*d

3dst − t*sxdd, s18d

where the evident notations for the collision termsCout
I

;Qout
2 sIGffout,foutg− ILffout,foutgd and Cout

II ;QinQout

3sIGffout,fing− ILffout,fingd are used.
Equations(17) and (18) can be represented also in a co-

variant form with the help of the functionF*st ,xd. Indeed,
applying the definition of the derivative of the implicit func-
tion to ]mt*sxd, one can rewrite the external normal vector(6)
as nm

* ;]mF*st ,xd /]0F*st ,xd. Now using the inequality
]0F*st* ,xd.0 and the following identitiesdsF*st ,xdd=dst
− t*sxdd /]0F*st* ,xd, QA;QsSAF*st ,xdd, one can write Eqs.
(17) and (18) in a fully covariant form

QApm]mfAsx,pd = CA
I sx,pd + CA

IIsx,pd + pm]mF*

3ffinsx,pd − foutsx,pdgQsSApn]nF*d

3dsF*st,xdd, s19d

where the notationsAP in, Sin=−1 sAPout,Sout=1d are in-
troduced for the in(out) domain.

For the continuous distribution functions onS* , i.e.,
foutuS* =finuS* , thed-like source terms on the rhs of Eqs.(17)
and (18) vanish and one recovers the Boltzmann equations.
Moreover, with the help of the evident relations

− ]mQin = ]mQout = dsF*st,xdd]mF*st,xd, s20d

Cin
I + Cin

II + Cout
I + Cout

II = IGfF,Fg − ILfF,Fg, s21d

whereFsx,pd;Qinfinsx,pd+Qoutfoutsx,pd, one can get the
following result summing up Eqs.(17) and (18):

pm]mFsx,pd = IGfF,Fg − ILfF,Fg. s22d

In other words, the usual Boltzmann equation follows from
the system(19) automaticallywithout any assumptionabout
the behavior offin and fout on the boundary hypersurface
S* . Also, Eq.(22) is valid not only under condition(12), but
for any choice0,QA

* ,1 obeying Eq.(8).
In fact, the system(19) generalizes the relativistic kinetic

equation to the case of the strong temporal and spatial inho-
mogeneity, i.e., forfinsx,pdÞfoutsx,pd on S* . Of course,
one has to be extremely careful while discussing the strong
temporal inhomogeneity(or discontinuity on the space-like
parts of S*) such as the so-calledtime-like shocks[13,14]
because, as shown in the subsequent section, their existence
contradicts the usual assumptions[10–12] adopted for distri-
bution functions.

From the system(19) it is possible to derive the macro-
scopic equations of motion for the energy-momentum tensor
by multiplying the corresponding equation withpn and inte-
grating it over the invariant measure. Thus, Eq.(19)
generates the following expression fTA

mn

;esd3p/p0dpmpnfAsx,pdg:

QA]mTA
mn =E d3p

p0 pnCA
IIsx,pd +E d3p

p0 pnpm]mF*

3ffinsx,pd − foutsx,pdgQsSApr]rF*ddsF*st,xdd.

s23d

Similar to the usual Boltzmann equation the momentum in-
tegral of the collision termCin

I vanishes due to its symmetries
[10], but it can be shown that the integral of the second
collision termCin

II does not vanish because it involves two
different distribution functions.

The corresponding system of equations for the conserved
currentNA

m;esd3p/p0dpmfAsx,pd can be obtained by direct
integration of the system(19) with the invariant measure

QA]mNA
m =E d3p

p0 pm]mF*ffinst,xd − foutst,xdg

3 QsSApr]rF*ddsF*st,xdd. s24d

The above equation does not contain the contribution from
antiparticles(just for simplicity), but the latter can be easily
recovered. Note that in contrast to(23) the momentum inte-
gral of both collision terms vanishes in Eq.(24) due to sym-
metries.
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IV. CONSERVATION LAWS AT S*

It is clear that Eqs.(19), (23), and(24) remain valid both
for finite domains and for a multiple valued functiont
= t*sxd as well. To derive the whole system of these equations
in the latter case, one has to divide the functiont*sxd into the
single-valued parts, but this discussion is beyond the scope
of this paper. Using Eqs.(19), (23), and(24) we are ready to
analyze the boundary conditions on the hypersurfaceS* . The
simplest way to get the boundary conditions is to integrate
Eqs. (23) and (24). Indeed, integrating(23) over the
4-volumeV

S̃

4
(shown as the area ABCD in Fig. 2) containing

part S̃ of the hypersurfaceS* , one obtains the energy-
momentum conservation. Before applying the Gauss theorem
to the lhs of(23), we note that the correspondingQA function
reduces the 4-volumeV

S̃

4
to its part which belongs to theA

domain. The latter is shown as areaALMD sBCMLd for A
P in sAPoutd in Fig. 2. Then, in the limit of a vanishing
maximal distanceD→0 between the hypersurfacesAD and
BC in Fig. 2, the volume integral of the lhs of Eq.(23) can
be rewritten as the two integralsedsmTA

mn: the first integral is

performed over the hypersurfaceS̃ shown as an arcLM in
Fig. 2, and the second integral reduces to the same hypersur-
face but taken in the opposite direction, i.e., theML arc in
Fig. 2. Thus, the volume integral of the lhs of Eq.(23) van-
ishes in this limit for tensorsTA

mn being continuous functions
of coordinates, and we obtain

0 =E
V

S̃

4
d4xQA]msTA

mnsx,pdd

; E
V

S̃

4
d4x

d3p

p0 pnCA
IIsx,pd+E

V
S̃

4
d4x

d3p

p0 dsF*st,xddpnpm]mF*

3ffinsx,pd − foutsx,pdgQsSApr]rF*d. s25d

Similarly to Sec. II, in the limitD→0 the second integral on
the rhs of(25) can be reexpressed as an integral over the

closed hypersurface. Since the latter is arbitrary, then Eq.
(25) can be satisfied if and only if the energy-momentum
conservation occurs for every point of the hypersurfaceS*

Tin±
mn ]mF*st* ,xd = Tout±

mn ]mF*st* ,xd,

TA±
mn ;E d3p

p0 pmpnfAsx,pdQs±pr]rF*d. s26d

In deriving(26) from (25) we used the fact that the 4-volume
integral of the second collision termCA

II vanishes for finite
values of distribution functions because of the Kronecker
symbols. The results for the conserved current follow simi-
larly from Eq. (24) after integrating it over the 4-volumeV

S̃

4

and taking the limitD→0

Nin±
m ]mF*st* ,xd = Nout±

m ]mF*st* ,xd,

NA±
m ;E d3p

p0 pmfAsx,pdQs±pr]rF*d. s27d

The fundamental difference between the conservation laws
(26) and(27) and the ones of the usual hydrodynamics is that
the systems(26) and(27) conserve the quantities of the out-
going fromsSA=1d and incoming tosSA=−1d in domain par-
ticles separately, whereas in the usual hydrodynamics only
the sum of these contributions is conserved.

The trivial solution of Eqs.(26) and(27) corresponds to a
continuous transition between in and out domains

ufoutsx,pduS* = ufinsx,pduS* . s28d

This choice corresponds to the BD model[2]. The BD model
gives a correct result for an oversimplified kinetics consid-
ered here. However, in the case of the first-order phase tran-
sition (or a strong crossover), which was a prime target of the
hydro+cascade models[2,3], the situation is different. In the
latter case the speed of sound either vanishes(or becomes
very small) [15,16] and, hence, the rarefaction shock waves
become possible[17–19]. The reason why the rarefaction
shocks may exist lies in the anomalous thermodynamic prop-
erties[19] of the media near the phase transition region. In
other words, on the boundary between the mixed and had-
ronic phases the rarefaction shocks are mechanically stable
[19], whereas the compression shocks are mechanically un-
stable. This is also valid for the vicinity of the generalized
mixed phase of a strong crossover.

One important consequence of the shock mechanical sta-
bility criterion is that the stable shocks necessarily are super-
sonic in the media where they propagate. The latter means
that the continuous rarefaction flow in the region of phase
transition is mechanically unstable as well, since a rarefac-
tion shock, if it appears, propagates inside the fluid faster
than the sound wave and, hence, it should change the fluid’s
state. Due to this reason the unstable hydrodynamic solutions
simply do not appear[20,21].

Applying these arguments to the BD model, one con-
cludes: for the first-order phase transition or strong crossover
the sound wave in the(generalized) mixed phase may be
unstable and the strong discontinuities of the thermodynamic

FIG. 2. Schematic two-dimensional picture of the integration
contour to derive the boundary conditions(25)–(27) between the in
and out domains. In the limit of a vanishing maximal distanceD
→0 between the hypersurfacesAD andBC, both of these hypersur-

faces are reduced to the partS̃ (an arcLM) of the boundaryS*

between domains.
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quantities are possible[17–19]. The latter corresponds to the
nontrivial solution of the conservation laws(26) and (27),
which allows a discontinuity of the distribution function on
two sides of the hypersurfaceS* . Since there are twice the
number of conservation laws compared to the usual hydro-
dynamics, it is impossible, as shown below, to build up the
nontrivial solution of Eqs.(26) and (27) if the distribution
functions on both sides of the hypersurfaceS* , i.e., fin and
fout, are taken to be the equilibrium ones.

Consider first the space-like parts of the hypersurfaceS* .
Then, Eqs.(26) and (27) for SA=−1 vanish identically be-
cause of the inequalitypm]mF*st* ,xd.0, whereas forSA=1
Eqs.(26) and(27) recover the usual hydrodynamical conser-
vation laws at the discontinuity. However, it can be shown
that the existence of strong discontinuities across the space-
like hypersurfaces, thetime-like shocks[13,14], is rather
problematic because it leads to a contradiction of the basic
assumptions adopted for the distribution function, even
though the conservation laws(26) and(27) are formally ful-
filled.

Indeed, according to the Bogolyubov’s classification[11],
a one-particle treatment can be established for a typical time
Dt which, on one hand, should be much larger than the col-
lision time tcoll, and, on the other hand, should be much
smaller than the relaxation timetrelax

tcoll ! Dt ! trelax. s29d

Similar to the usual Boltzmann equation(see also the discus-
sions in Refs.[11,12]), in deriving the collision terms of Eq.
(19) we implicitly adopted the requirement that the distribu-
tion function does not change substantially for timesDt less
than the relaxation timetrelax. However, at the discontinuities
on the space-like parts ofS* , suggested in Refs.[13,14], the
distribution function changes suddenly, i.e.,Dt=0, and the
left inequality(29) cannot be fulfilled at thetime-like shock.
Therefore, according to the Bogolyubov’s classification[11],
such a process, which is shorter than the typical collision
time, belongs to a prekinetic or chaotic stage and, hence,
cannot be studied at the level of a one-particle distribution
function. It would instead require the analysis of a hierarchy
of N-particle distribution functions, whereN is the number of
particles in the system. Thus, the existence of time-like
shocks contradicts the adopted assumptions for a one-particle
distribution. Their existence should be demonstrated first
within the higher order distributions. This statement applies
to several papers published by the Bergen group during the
last few years wheretime-like shockswere attenuated in time
using a phenomenological quasikinetic approach[22]. For
the same reason, the use of equilibrium values for tempera-
ture and chemical potential in an attenuated time shock is
rather problematic for time scales shorter thantcoll. Note,
however, that the discontinuities at the time-like parts ofS*

(usual shocks) have no such restrictions and, hence, in what
follows we shall analyze only these discontinuities.

V. BOUNDARY CONDITIONS AT S* FOR A SINGLE
DEGREE OF FREEDOM

Now, we have to find out whether it is possible to obtain
the nontrivial solution of systems(26) and (27) using the
parts of equilibrium distributions on the time-like segments
of the hypersurfaceS* . To simplify the presentation, first we
consider the same kind of particles in both domains. It is
convenient to transform the coordinate systemst*sxd ;xd into
the special local framestL

* sxLd ;xLd, which is the rest frame of
discontinuity between the distributionsfin and fout. This
coordinate system will be indicated by the subscriptL. The
special local frame is defined as follows: thex axis should
coincide with the local external normal vector to the hyper-
surfaceS* , y- andz axes belong to the tangent hyperplane of
S* . In this case the external normal vector to the time-like
parts ofS* is nm

* =s0;]1FL
* ;0 ;0d, and one can readily check

that the value of the derivative]1FL
* plays an important role

in the conservation laws(26) and(27) only through thecut-
off Q function. Then, as in the theory of usual relativistic
shocks[19–21], it can be shown that equations for they- and
z components of system(26) degenerate into the identities
because of the symmetries of the energy-momentum tensor.
Therefore, the number of independent equations at the dis-
continuity is 7: a switch-off criterion and six independent
equations out of systems(26) and (27) [t- and x equations
(26) and one equation(27) for two choices ofSA=h−1; +1j].

On the other hand the number of unknowns is 6 only:
temperatureTin

* and baryonic chemical potentialmin
* of the in

domain, temperatureTout
* and baryonic chemical potential

mout
* of the out domain, the collective velocityvin

* of the in
domain particles, and the collective velocityvout

* of the par-
ticles of the out domain, which should be collinear to the
normal vectornm

* in the rest frame of the discontinuity. A
formal counting of equations and unknowns shows that it is
impossible to satisfy the conservation laws(26) and (27) if
the distribution functions on both sides are the equilibrium
ones.

The last result means that instead of a traditional discon-
tinuity we have to search for a principally new boundary
condition on the hypersurfaceS* . The analysis shows that
there are two such possibilities with the equilibrium distribu-
tion function in the in domain and a special superposition of
two cutoff equilibrium distributions for the out domain. The
first possibility is to choosefout as follows:

ufoutuS* = finsTin
* ,min

* ,vin
* dQsp1]1FL

* d

+ foutsTout
* ,mout

* ,vout
* dQs− p1]1FL

* d, s30d

i.e., the distribution of outgoing particles from the in domain
[the first term in the rhs of Eq.(30)] is continuous on the
hypersurfaceS* , whereas the distribution of the particles en-
tering the in domain[the second term in the rhs of Eq.(30)]
has a discontinuity onS* which conserves the energy, mo-
mentum and baryonic charge because of the following
boundary conditionssn=h0;1jd:

Tin−
1n sTin

* ,min
* ,vin

* d = Tout−
1n sTout

* ,mout
* ,vout

* d, s31d
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Nin−
1 sTin

* ,min
* ,vin

* d = Nout−
1 sTout

* ,mout
* ,vout

* d. s32d

The above choice of boundary conditions atS* reduces sys-
tems (26) and (27) for SA=1 to the identities, and, hence,
from the systems(26) and(27) there remain only three inde-
pendent equations(31) and (32) for SA=−1. Along with a
switch-off criterion, these four equations can now be solved
for six independent variables with the two variables chosen
to be free for a moment. Thus, both the outgoing and incom-
ing parts of the distribution function(30) can be chosen as
the equilibrium ones, but with different temperatures, chemi-
cal potentials, and nonzero relative velocityvrel

* ;svout
*

−vin
* d / s1−vout

* vin
* d with respect to the distribution function

fin.
Note a principal difference between this discontinuity and

all the ones known in relativistic hydrodynamics: the out
domain state consists, in general, of two different subsystems
(fluxes) that have individual hydrodynamic parameters. It is
clear that it is impossible to reduce three of those hydrody-
namical parameters of one flux to those three of another flux
because there are only two free variables out of six. Thus,
together with the in domain flux there are in total three fluxes
involved in this discontinuity. Therefore, it is appropriate to
name it athree flux discontinuityin order to distinguish it
from the ordinary shocks that are defined by maximum of
two fluxes.

The outgoing component of the distribution(30) coin-
cides with the choice of the boundary conditions suggested
in the TLS model[3], whereas Eqs.(31) and(32) are missing
in this model. For this reason, the TLS model fails to con-
serve energy, momentum, and charge. Note also that the
lower values of the temperatureTout

* øTin
* and baryonic

chemical potentialmout
* ømin

* , which are typical for the rar-
efaction process considered in Ref.[3], should be compen-
sated by an extra flow from the incoming particles to the in
domain, i.e.,vrel

* should be opposite to the external normal
vector nm

* in the rest frame of thethree flux discontinuity.
Therefore, such a discontinuity is analogous to the compres-
sion shock wave in relativistic hydrodynamics, and cannot
appear in the rarefaction process for any of the hadronic
species considered in Ref.[3].

Similarly, one can find another nontrivial solution of the
systems(26) and (27) which corresponds to opposite choice
of Eq. (30)

ufoutuS* = finsTin
* ,min

* ,vin
* dQs− p1]1FL

* d

+ foutsTout
* ,mout

* ,vout
* dQsp1]1FL

* d, s33d

i.e., the incoming to the in domain component of the distri-
bution above[the first term in the rhs of Eq.(33)] is continu-
ous on hypersurfaceS* , but the component leaving the in
domain has a discontinuity onS* which obeys the following
conservation lawssn=h0;1jd:

Tin+
1n sTin

* ,min
* ,vin

* d = Tout+
1n sTout

* ,mout
* ,vout

* d, s34d

Nin+
1 sTin

* ,min
* ,vin

* d = Nout+
1 sTout

* ,mout
* ,vout

* d. s35d

It is clear that both the outgoing and incoming components
of the distribution(33) can be chosen as the equilibrium

distribution functions. A simple analysis of the system(34)
and (35) shows that forTout

* øTin
* andmout

* ømin
* the relative

velocity vrel in the local frame should be collinear to the
external normal vectornm

* . Such a discontinuity is analogous
to the rarefaction shock wave in the relativistic hydrodynam-
ics. Thus, in contrast to the TLS choice, Eq.(33) should be
used as the initial conditions for the out domain while study-
ing the rarefaction process of matter with anomalous thermo-
dynamic properties.

Now, we are ready to discuss how the nontrivial solutions
(30) and (33) will modify the system of the hydro1cascade
equations(19), (23), and(24). In what follows we assign the
hydrodynamic equations to the in domain and the cascade
ones to the out domain(the opposite case can also be con-
sidered). Inserting(30)–(32) into the in Eqs.(23) and (24),
and into the out Eq.(19), one obtains the following system:

Qin]mTin
mn =E d3p

p0 pnCin
II sx,pd, s36d

Qin]mNin
m = 0, s37d

Qoutp
m]mfoutsx,pd = Cout

I sx,pd + Cout
II sx,pd, s38d

i.e., due to the boundary conditions(30)–(32) the d-like
terms have disappeared from the original system of equa-
tions. It is clear also that the source term in the rhs of Eq.
(36) does not play any role because it is finite on the hyper-
surfaceS* and vanishes everywhere outsideS* .

In order to obtain the system of hydro1cascade equations
(36)–(38) for the nontrivial solution defined by Eqs.
(33)–(35), the hydrodynamic description has to be extended
to the outer«-vicinity s«→0d of the hypersurfaceS*

Qout]mTout
mn =E d3p

p0 pnCout
II sx,pd, s39d

Qout]mNout
m = 0, s40d

which in practice means that for Eqs.(33)–(35) one has to
solve the cascade equation(38) a bit inside of the out domain
infinitesimally close toS* in order to remove thed-like term
in (38) and move this term to the discontinuity on the hyper-
surfaceS* .

The remarkable feature of the system of hydro1cascade
equations(36)–(40) is that each equation automatically van-
ishes outside the domain where it is specified. Also, by the
construction, it is free of the principal difficulties of the BD
and TLS models discussed above. The question how to con-
jugate thethree flux discontinuitywith the solution of the
hydro equations(36), (37), (39), and (40) will be discussed
in the next section.

VI. BOUNDARY CONDITIONS AT S* FOR MANY
DEGREES OF FREEDOM

In order to apply the above results to the description of
the QGP-HG phase transition occurring in relativistic nuclear
collisions, it is necessary to take into account the fact that the
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real situation differs from the previous consideration in two
respects. The first one is that in the realistic case inside the in
domain there should exist the QGP, whereas it should not
appear in the out domain. Of course, the discussion of the
QGP kinetic theory is a much more complicated problem and
lies beyond the scope of this work. For our purpose it is
sufficient to generalize the equations of motion(36)–(40)
inside domains and the conservation laws(26) and (27) be-
tween these domains to the realistic case. Such a generaliza-
tion can be made because in the case of the QGP-HG phase
transition there will also be an exchange of particles between
the in and out domains which must be accounted for by the
d-like source terms in the transport equations. The only im-
portant difference from the formalism developed in the pre-
ceding sections is that QGP must hadronize while entering
the out domain, whereas the hadrons should melt while en-
tering the in domain. Note, however, that in relativistic hy-
drodynamics one has to assume that all reactions, i.e., the
QGP hadronization and melting of hadrons in this case, oc-
cur instantaneously. Under this assumption one can justify
the validity of the equations of motion(36)–(40) and the
conservation laws between QGP and HG on the boundary
S* .

The second important fact to be taken into account is that
some hadrons have the large scattering cross sections with
other particles and some hadrons have the small cross sec-
tions, because of this, different hadrons participate in the
collective flow differently. A recent effort[23,24] to classify
the inverse slopes of the hadrons at SPS lab energy
158 GeV·A led to the conclusion that the most abundant
hadrons, e.g., pions, kaons,(anti)nucleons,L hyperons, etc.,
participate in the hadron rescattering and resonance decay till
the very late time of expansion, whereasV hyperons,J/c,
andc8 mesons practically do not interact with the hadronic
media and, hence, the freeze-out of their transverse momen-
tum spectra(kinetic freeze-out) may occur just at hadroniza-
tion temperatureTH. Therefore, the inverse slopes of theV,
J/c, andc8 particles are a combination of the thermal mo-
tion and the transversal expansion of the media from which
these particles are formed.

These results for theV baryons andf mesons were ob-
tained within the BD and TLS models, whereas for theJ/c
and c8 mesons it was suggested for the first time in Refs.
[23,24]. Later these results were further refined in Ref.[25]
by the simultaneous fit with only one free parameter(the
maximal value of transversal velocity) of the measuredV
[26,27], J/c and c8 [28] transverse momentum spectra in
Pb+Pb collisions at 158 GeV·A that are frozen out at had-
ronization temperatureTH. The experimental situation with
the f mesons at SPS is, unfortunately, not clarified yet be-
cause the results of the NA49[29] and NA50[30] Collabo-
rations disagree. The analysis of the transverse momentum
spectra ofV hyperons[31,32] and f mesons[31] reported
by the STAR Collaboration for energiesÎs=130 A·GeV in
Refs. [33,34], respectively, and forÎs=200 A·GeV in Ref.
[32] shows that this picture remains valid for RHIC energies
as well.

It is easy to find that for particles likef, V, J/c, andc8,
which weakly interact with other hadrons, the distribution
function fout should coincide withfin

ufoutuS* = finsTin
* ,min

* ,vin
* dQsp1]1FL

* d, s41d

where, in contrast to(30), there is no incoming component of
the distribution because the noninteracting particles cannot
rescatter and change their velocity. Note also that a small
modification of the incoming part ofJ/c momentum distri-
bution due to decay of heavier charmonia in the out domain
can be safely neglected. Remarkably, the cascade initial con-
dition (41) exactly coincides with the one used in the TLS
model. Therefore, the main TLS conclusions[3] on the f
mesons andV hyperons remain unchanged, whereas for had-
rons with large scattering cross sections the TLS conclusions
may change significantly.

Omitting the contributions of weakly interacting hadrons
from the components of the energy-momentum tensor and
baryonic 4-current, one can generalize the boundary condi-
tions (26) and (27) on the hypersurfaceS* between the do-
mains and formulate the energy-momentum and charge con-
servation laws in terms of the parts of thecutoff distribution
functions. For definiteness we shall consider the first-order
phase transition between QGP and hadronic matter through-
out the rest of this work. The case of the second-order phase
transition can be analyzed similarly. In terms of the local
coordinatesstL

* sxLd ;xLd, introduced in Sec. V, the conserva-
tion laws (26) and (27) can be generalized as followssn
=h0;1jd:

aq o
Q=q,q,. . .

TQ±
1n sTin

* ,ZQ · min
* ,vin

* d

+ s1 − aqd o
H=p,K,. . .

TH±
1n sTin

* ,ZH · min
* ,vin

* d

= o
H=p,K,. . .

TH±
1n sTout

± ,ZH · mout
± ,vout

± d, s42d

aq o
Q=q,q,. . .

NQ±
1 sTin

* ,ZQ · min
* ,vin

* d

+ s1 − aqd o
H=p,K,. . .

NH±
1 sTin

* ,ZH · min
* ,vin

* d

= o
H=p,K,. . .

NH±
1 sTout

± ,ZH · mout
± ,vout

± d, s43d

where aq is the volume fraction of the QGP in a mixed
phase, and theQ sums of the energy-momentum tensor and
baryonic 4-current components, denoted as

TQ±
mn ;E d3p

p0 pmpnfQsx,pdQs±pr]rF*d, s44d

NQ±
m ;E d3p

p0 pmZQfQsx,pdQs±pr]rF*d, s45d

run over all corresponding degrees of freedom of QGP. The
H sums also run over all hadronic degrees of freedom. In
Eqs.(42) and (43) ZQ andZH denote the baryonic charge of
the corresponding particle species.

Now, from Eqs.(44) and (45) it is clearly seen that the
correct hydro+cascade approach requires more detailed in-
formation about the microscopic properties of QGP than is
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usually provided by traditional equations of state. To proceed
further we assume that those components are known. The
general approach to calculate the angular and momentum
integrals in Eqs.(44) and(45) was developed in Ref.[7] and
was applied to the massive Boltzmann gas description in
Refs.[7,35].

The important difference between conservation laws(42),
(43) and(26), (27) is that in the out domain the temperature
Tout

− , chemical potentialmout
− , and relative velocityvout

− of the
incoming toS* hadrons should differ from the corresponding
quantitiesTout

+ , mout
+ , and vout

+ of the outgoing fromS* par-
ticles, and both sets should differ from the quantitiesTin

* , min
* ,

andvin
* of the in domain. In order to prove this statement, it

is necessary to compare the number of equations and number
of unknowns for the two distinct cases. Namely(i) if the
initial state is in the mixed QGP-HG phase, and(ii ) if the
initial state belongs to the QGP.

In case(i) there are ten equations and ten unknowns.
(1) The equations are as follows: six conservation laws

from Eqs.(42) and (43); value of the initial energy density;
value of the initial baryonic density; the relation between
initial temperatureTin

* and the baryonic chemical potential
min

* taken at the phase boundary; and the switch-off criterion.
(2) The unknowns are as follows: three temperaturesTin

* ,
Tout

− , Tout
+ ; three chemical potentialsmin

* , mout
− , mout

+ ; three ve-
locities vin

* , vout
− , vout

+ defined in the rest frame of a disconti-
nuity; and the QGP fraction volumeaq.

Thus, in this case, one can find a desired solution of the
system of ten transcendental equations, which is the most
general form of the three flux discontinuity introduced by
Eqs.(30)–(32).

To complete the solution of hydro equations(36), (37),
(39), and (40), one must find the value of velocityvin

* from
the system of ten transcendental equations discussed above.
This velocity then defines an ordinary differential equation
dxL

1 /dtL
* =−vin

* for the hypersurfaceS* in the rest frame of
matter of the in domain, which must be solved simulta-
neously with the hydro equations.

If initial state belongs to the interior of the QGP phase,
case(ii ), then the usual hydro solution will be valid till the
system reaches the boundary with the mixed phase, from
which the nontrivial discontinuity described by Eqs.(42) and
(43) will begin. The differences from the previously consid-
ered case are now clear: in contrast to case(i), the volume
fraction of QGP is fixed to unitaq=1; the energy and bary-
onic charge densities are no longer independent, but are com-
pletely defined by the temperature and baryonic chemical
potential, which are connected by the entropy conservation
for the continuous hydro solution in QGP.

Therefore, in case(ii ) there are nine equations and nine
unknowns, which are as follows.

(1) The equations are: six conservation laws from Eqs.
(42) and (43); temperature dependence of the baryonic
chemical potentialmin

* =min
* sTin

* d due to the entropy conserva-
tion; the relation connecting temperatureTin

* and baryonic
chemical potentialmin

* , since they belong to the phase bound-
ary; and the switch-off criterion.

(2) The unknowns, except for the fixed volume fraction
aq=1, are the same as in case(i).

Again, the number of unknowns matches the number of
equations, and the procedure to solve the system of hydro
equations(36), (37), (39), and (40) simultaneously with the
boundary conditions(42) and(43) is the same as in case(i).

Now, it is appropriate to discuss the switch-off criterion
F*st ,xd=0 in more detail. By the construction of the hydro
+cascade approach, the cascade treatment should be applied
when hydrodynamics starts to lose its applicability: accord-
ing to the original assumption the hydro equations(36), (37),
(39), and(40) work well inside of the 4-volume surrounded
by the hypersurfaceS* and in the outer« vicinity s«→0d of
S* [see also a discussion after Eq.(38)], whereas just outside
of this domain the thermal equilibrium dismantles and one
cannot use thecutoffequilibrium distributions interior of the
out domain. Consequently, a switch-off criterion should be
formulated solely for some quantity defined in the outer«
vicinity of hypersurfaceS* , and it has to define the bounds of
applicability of thermal equilibration and/or hydrodynamic
description. Note that in the BD and TLS models this did not
matter because both groups kept the cascade initial condi-
tions as close as possible to the output of hydro. However, in
the case of thethree flux discontinuityon the time-like parts
of hypersurfaceS* the proper use of the switch-off criterion
plays a decisive role in the construction of the mathemati-
cally correct hydro+cascade solution(see also a discussion
of the freeze-out criterion in Refs.[6,7]). It is clear that, in
contrast to the BD and TLS formulations, the switch-off cri-
terion may generate a sizable effect while applied to interior
of hadronic phase. This is so, because even a small differ-
ence(just a few MeV) between the temperatureTin

* , which
belongs to the phase transition region, and temperaturesTout

−

andTout
+ of the out domain may lead to a tremendous flow of

outgoing hadrons because of the enormous latent heat of the
QGP.

VII. CONCLUDING REMARKS

In the preceding sections we have derived a system of
relativistic kinetic equations which describes the particle ex-
change between two domains separated by the hypersurface
of arbitrary properties. We showed that the usual Boltzmann
equation for the following sum of two distributionsFsx,pd
;Qinfinsx,pd+Qoutfoutsx,pd automatically follows from
the derived system, but not vice versa. Integrating the kinetic
equations, we derived the system of the hydro1cascade
equations for a single degree of freedom. Remarkably, the
conservation laws on the boundary between two domains
conserve the incoming and outgoing components of the en-
ergy, momentum, and baryonic charge separately, leading to
twice the number of conservation laws on the separating hy-
persurface compared to the usual relativistic hydrodynamics.
Then, we showed that for a single degree of freedom these
boundary conditions between domains can be satisfied only
by a special superposition of twocutoffequilibrium distribu-
tions for the out domain. Since the obtained discontinuity has
three irreducible fluxes, it is named athree flux discontinuity,
in contrast to usual shocks defined by two fluxes. It was also
shown that the TLS-like choice of the boundary conditions,
in contrast to the expectation of Ref.[3], corresponds to an
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analog of the compression shock in traditional hydrodynam-
ics, and, therefore, cannot be used to model the rarefaction
process.

Then, we showed that existence of thetime-like shocks
[13,14], formally rederived by this formalism, contradicts the
usual assumptions adopted for the one-particle distributions
and, hence, the solution of this problem requires the analysis
of higher order distribution functions. Therefore, in the rest
of the paper we concentrated on a detailed analysis of the
discontinuities at the time-like hypersurfaces, i.e. the space-
like shocks in terms of Refs.[13,14]. These results were then
generalized to a more realistic case: when the mixed
QGP-HG phase exists in the in domain and hadrons exist in
the out domain. Such a generalization also required the ex-
clusion of the hadrons with the small scattering cross section
(like V, J/c, andc8 particles) from the boundary conditions
between domains. As we showed in the preceding section,
the presence of the first-order phase transition makes the re-
sulting system of transcendental equations more complicated
than in the case of a single degree of freedom.

It turns out that a minimal number of variables in this
discontinuity is either nine or ten, depending on the location
of the initial state on the phase diagram. Therefore, on the
hadronic side thethree flux discontinuityshould have two
different flows with their own temperatures, chemical poten-
tials, and collective velocities. This solution has a number of
unique features in comparison with usual shocks.

(1) This discontinuity may generate a very strong,
explosive-like flow of outgoing particles from the in domain,
first because a huge latent heat of QGP is involved, and,
second due to an extra momentum associated with thecutoff
distribution. Indeed, considering the outgoing component of
the distribution foutQsp1]1FL

* d for massless pions in the
frame where this function maximally resembles the noncut
Boltzmann distribution, i.e., in the rest frame of the latter,
one finds a nonvanishing collective velocityvp=s1+vsd /2.
Here,vs;dR' /dt (uvsuø1 for time-like parts ofS*) denotes
the transversal radius velocity in this frame.

(2) The strong explosive flow of outgoing particles is lo-
calized at the time-like parts of the hypersurfaceS* , whereas
at the space-like parts ofS* there will be a continuous flow.
It is even possible that for some choice of parameters the
space-like boundary may be absent.

(3) The particle density of outgoing pions will strongly
depend on the speed of the transversal radius expansion.
Thus, for massless pions the particle density found according
to the Eckart definition [10] is rp

=frpsTout
+ dg /4Îs1−vsd3s3+vsd, i.e., it is smaller for all

vs.−1 than the thermal particle densityrpsTout
+ d. Therefore,

the two particle correlations off the low particle density re-
gions should be reduced. Since the situationvs@−1 is typi-
cal for the beginning of the transversal expansion[3], the
main contribution to the transversal pion correlations will
come from the later times of expansion. Thus, it is possible
that the space-time region which defines the side and out
pion correlation radii will be essentially more localized both
in space and time than in traditional hydrodynamic solutions.

(4) Because there are two fluxes in the out domain, they
will interact with each other. The resulting distribution

should, of course, be found by the cascade simulations, but it
is clear that the fastest of them will decelerate and the cold
one will reheat. Beside the possibility to accelerate or decel-
erate the outgoing transversal flow more rapidly than in the
BD and TLS models, thethree flux discontinuitymay natu-
rally generate some turbulence patterns in the out domain.

Taking into account all these features, along with the fact
that neither the BD nor TLS boundary conditions have such
a strong discontinuity, we conclude that thethree flux discon-
tinuity opens a principally new possibility not only to resolve
the HBT puzzle[8], but also to study some new phenomena,
like a turbulence pattern, associated with a new kind of
shock, a three flux discontinuity, in relativistic hydro
+cascade approach.

Despite the reasonably good description of the one-
particle spectra of the most abundant hadrons, even such a
sophisticated model as the TLS one badly overestimates both
of the transverse radii measured by pion interferometry like
other hydrodynamic models. This is a strong indication that
the hydro part of all existing hydro1cascade and hydrody-
namic models requires an essential revision. How this revi-
sion will affect the present BD and TLS results is unclear at
the moment, but the solution of the HBT puzzle[8] should
serve as a good test for the correct picture of the space-time
evolution during the posthadronization stage. The additional
tests for the correct hydro1cascade equations should be the
reproduction of three recently established signals of the de-
confinement phase transition, i.e., the pion kink[36,37] seen
at lab energy of,30 GeV·A, theK+/p+ peak at the same
lab energy[36] (the strangeness horn), and the plateau[38]
in the inverse slope of theK± transverse momentum spectra
at the whole range of the SPS energies(the step in caloric
curves) measured by the NA49 Collaboration[39,40]. It is
also necessary to check other predictions of the statistical
model of the early stage[36], namely the anomalies in the
entropy to energy fluctuations[41] (the “shark fin”) and in
strangeness to energy fluctuations[42] (the “tooth”), because
both the shark fin and tooth may be sensitive to the turbu-
lence behavior due to energy dissipation.

Note, however, that the completion of this task requires an
additional research of the hydro+cascade approach. First, it
is necessary to develop further the microscopic models of the
QGP equation of state in order to find out the components of
the cutoff energy-momentum tensor and baryonic 4-current
required by Eqs.(42)–(45). This can be done, for example,
within the phenomenological extensions[43–45] of the
Hagedorn model. Second, a similar problem for hadrons
should be solved as well, otherwise, as we discussed in the
preceding section, theswitch-offcriterion from the hydro to
cascade cannot be formulated correctly within the hydro
+cascade approach. And, finally, for practical modeling it is
necessary to formulate a mathematical algorithm to solve
simultaneously the system of hydro+cascade equations
(36)–(40) with the boundary conditions(42) and (43) be-
tween the hydro and cascade domains. These problems, how-
ever, should be considered elsewhere.
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