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A detailed analysis of the coupled relativistic kinetic equations for two domains separated by a hypersurface
having both space- and time-like parts is presented. Integrating the derived set of transport equations, we obtain
the correct system of the hydt@ascade equations to model the relativistic nuclear collision process. Remark-
ably, the conservation laws on the boundary between domains conserve separately both the incoming and
outgoing components of energy, momentum and baryonic charge. Thus, the relativistic kinetic theory generates
twice the number of conservation laws compared to traditional hydrodynamics. Our analysis shows that these
boundary conditions between domains, theee flux discontinuitycan be satisfied only by a special superpo-
sition of two cutoff distribution functions for the “out” domain. All these results are applied to the case of the
phase transition between quark gluon plasma and hadronic matter. The possible consequences for an improved
hydro+cascade description of the relativistic nuclear collisions are discussed. The unique properties of the
three flux discontinuityand their effect on the space-time evolution of the transverse expansion are also
analyzed. The possible modifications of both transversal radii from pion correlations generated by a correct
hydro+cascade approach are discussed.
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[. INTRODUCTION Proton Collider(SPS and Brookhaven Relativistic Heavy
lon Collider (RHIC) energies. However, both the BD and
The modern history of relativistic hydrodynamics startedTLS models face some fundamental difficulties which cannot
more than 50 years ago when Landau suggddfgits use to  be ignored(see a detailed discussion in Ré#l]). Thus,
describe the expansion of the strongly interacting matter thawithin the BD approach the initial distribution for the cas-
is formed in high-energy hadronic collisions. Since that timecade is found using the Cooper-Frye formuk|, which
there arose a fundamental problem of relativistic hydrodytakes into account particles with all possible velocities,
namics known as the freeze-out problem. In other words, oneshereas in the TLS model the initial cascade distribution is
has to know how to stop solving the hydrodynamical equagiven by thecutoff formula [6,7], which accounts for only
tions and convert the matter into free-streaming particlesthose particles that can leave the phase boundary. As shown
There were several ways suggested to handle this, but onip Ref. [4], the Cooper-Frye formula leads to causal and
recently a new approach to solve the freeze-out problem imathematical problems in the present version of the BD
relativistic hydrodynamics has been discovered by Bass anchodel because the QGP-HG phase boundary inevitably has
Dumitru (BD mode) [2] and further developed by Teaney, time-like parts. On the other hand, the TLS model does not
Lauret, and Shuryak(TLS mode) [3]. These hydro conserve energy, momentum, and number of charges and
+cascade models assume that the nucleus-nucleus collisiotigs, as will be demonstrated later, is due to the fact that the
proceed in three stages: hydrodynamic expanéigdro) of  equations of motion used in Ref3] are incomplete and,
the quark gluon plasmé&QGP), phase transition from the hence, should be modified.
QGP to the hadron ga#iG), and the stage of hadronic res-  These difficulties are likely in part responsible for the fact
cattering and resonance decggascadg The switch from that the existing hydré cascade models, like the more sim-
hydro- to cascade modeling takes place at the boundary belified ones, fail to explain the HBPpuzzle[8], i.e., the fact
tween the mixed and hadronic phases. The spectrum of hathat the experimental HBT radii at RHIC are very similar to
rons leaving this hypersurface of the QGP-HG transition ighose found at SPS, even though the center of mass energy is
taken as input for the cascade. larger by an order of magnitude. Therefore, it turns out that
This approach incorporates the best features of both théhe hydro+cascade approach successfpdyametrizesthe
hydrodynamical and cascade descriptions. It allows for, orone-particle momentum spectra and their moments, but does
one hand, the calculation of the phase transition between theot describethe space-time picture of the nuclear collision as
quark gluon plasma and hadron gas using hydrodynamiggrobed by two-particle interferometry.
and, on the other hand, the freeze-out of hadron spectra using The main difficulty of the hydro+cascade approach looks
the cascade description. This approach allows one to ovesimilar to the traditional problem of freeze-out in relativistic
come the usual difficulty of transport models in modelinghydrodynamics[6,7]. In both cases the domain&ub-
phase transition phenomena. For this reason, this approasliystems have time-like boundaries through which the ex-
has been rather successful in explaining a variety of collecehange of particles occurs and this fact should be taken into
tive phenomena that has been observed at the CERN Supaccount. In relativistic hydrodynamics this problem was
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solved by the constraints which appear on the freeze-out hy- t
persurface and provide the global energy-momentum and
charge conservatiof6,7,9. A generalization of the usual
Boltzmann equation, which accounts for the exchange of
particles on the time-like boundary between domains in the
relativistic kinetic theory, was given recently in R¢4]. It

was shown that the kinetic equations describing the ex-
change of particles on the time-like boundary between sub-
systems should necessarily contain thiéke source terms.
From these kinetic equations the correct system of hydro
+cascade equations to model the relativistic nuclear collision
process was derived without specifying the properties of the
separating hypersurface. However, both an explicit switch-
off criterion from the hydro description to the cascade one } ) ) _
and the boundary conditions between them were not consid- " 'C: 1. Schematic two-dimensional picture of the boundary hy-
ered in Ref[4]. The present work is devoted to the analysispersurfacez_ (solid curvg. Arrows show the external norr_nal vec
of the boundary conditions for the system of hydro tors. The.“.ght CO*nG.NOP 'S S_hOW'_‘ by the daSh'dOtted. line. The
+cascade equations. This is necessary to formulate the nggmt F divides 3" into the time-like (OF) and space-like(FP)
merical algorithm for solving the hydro+cascade equations. arts.

The paper is organized as follows. In Sec. Il a brief deri- ) o ,
vation of the set of kinetic equations is given and sourcdN® corresponding distribution function and added to the

terms are obtained. In Sec. Il the analog of the collision®ther- Now, consider the closed hypersurface of the in do-
integrals is discussed and a fully covariant formulation of theM&in, Ax* (shown as the contouABDE in Fig. 1), which
system of coupled kinetic equations is found. The relatiorFONSiSts of two semiplanes;, and oy, of constant timet1
between the system obtained and the relativistic Boltzmangndt2, respectively, that are connected froito t2>11 by
equation is also considered. The correct equations of motiof'é arcBD of the boundary’(1,t2) in Fig. 1. The original

for the hydro+cascade approach and their boundary condumber of particles on the hypersurfaeg is given by the
tions are analyzed in Sec. IV. There it is also shown that thétandard expressidriQ]

existence of strong discontinuities across the space-like Pp
boundary, the time-like shocks, is in contradiction with the N, = _f dS,—5 P din(X,P), (1)
basic assumptions of a transport approach. The solutions of on p

boundary conditions between the hydro and cascade doma”\}v%erediﬂ is the external normal vector to, and, hence,

for a single degree of freedom and for many degrees of freet'he productp“d, <0 is non-positive. It is clear that these

dom are discussed in Secs. V and VI, respectively. The Conﬁarticles can cross either hypersurfagg or 3 (t1,t2). The

clusions are given in Sec. VII. . . ]
corresponding numbers of particles are as follows:

d®p
Il. DRIFT TERM FOR SEMI-INFINITE DOMAIN fo dEqu’Ldnn(X, p), (2
T2
Let us consider two semi-infinite domains, “in” and “out,”

separated by the hypersurfaké which, for the purpose of . d®p
presenting the idea, we assume to be give(8inl) dimen- Nipss™= J ) dX,—5 p“din(x,p)B(p"dY,). (3)
sions by a single-valued functidgrt™(x) =x,(x). The latter is (e P
assumed to be a unique solution of the equafo(t,x)=0  The® function in the loss tern@) is very important because
(a swiEch—off criterion which has a*positive time derivative it accounts for the particles leaving the in doméee also
doF (t',x)>0 on the hypersurfack”. Hereafter, all quanti- the discussion in Ref§6,9]). For the space-like parts of the
ties defined ak" will be marked with an asterisk. The dis- hypersurfaces” (t1,t2) which are defined by negative sign
tribution function¢;,(x,p) for t<t"(x) is assumed to belong JLL<0 of the squared line elemends2=dt"(x)2-dx?, the
to the in domain, whereag, (X, p) denotes the distribution productp*d;,> 0 is always positive and, therefore, particles
function of the “out” domain fot=t"(x) (see Fig. 1 Inthis  with all possible momenta can leave the in domain through
work it is assumed that the initial conditions fof,(x,p) are  the 3" (t1,t2). For the time-like parts oF"(t1,t2) (with sign
given, whereas oX” the function ¢o,(x,p) is allowed to  ds?>0) the productp’ds,, can have either sign, and ti
differ from ¢;,(x,p) and this will modify the kinetic equa- function cuts offthose particles which return to the in do-
tions for both functions. For simplicity we consider a classi-main.
cal gas of point-like Boltzmann particles. Similarly one has to consider the particles coming to the
Similar to Ref.[10], we derive the kinetic equations for in domain from outside. This is possible through the time-
&in(X, p) and ¢y (X, p) from the requirement of particle num- like parts of the hypersurfacg”(t1,t2), if the particle mo-
ber conservation. Therefore, the particles leaving one domaimentum satisfies the inequalitypd>,> 0. In terms of the
and crossing the hypersurfagé should be subtracted from external normatl%,, with respect to the in domaifthis nor-
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mal vector is shown as an arrow on the B2 in Fig. 1 and  kinetic equation for the distribution function of the in domain
will be used hereafter for all integrals over the hypersurface «
3(t1,t2)], the number of gained particles OinP*d,Bin(X,P) = Cin(X, ) + PN, Lbin(X,P) ~ boutX,P)]

3 XO(-p'n,) 8t -t (x)). (10

. d°p
L= - ——pM — nY
Nyain j S (L) dz, p° PPou(x.p)O(-p'dX,), (4) Note that the general solution of E®) contains an arbitrary

_ _ _ _ function Ci,(x,p) [the first term in the rhs of10)] which

is, evidently, non-negative. Since the total number of parigentically vanishes while being integrated over the invariant
ticles is conserved, i.eN,=N; ~Njos+ Nyyip ONE can use the  momentum measure®p/p,. Such a property is typical for a
Gauss theorem to rewrite the obtained integral over theojlision integral[10], and we shall discuss its derivation in
closed hypersurfacax® as an integral over the 4-volume the subsequent section. To shorten the notation, the domain
Ax* (area inside the contoBDE in Fig. 1) surrounded by  of each distribution function will be denoted as a subscripted

AX italic capital letterA or B (A,B e {in,out})) to avoid confu-
d°p £ sion with Greek 4-indices.
f d4x—op”“aﬂ¢m(x, p) =J d=,—p* Similarly, one can obtain the equation for the distribution
ad P 3 (tL12) function of the out domain
XL P) = doulp)] Oou 0 oulP) = CouX,P) + P11 d10(X,P) ~ X))
1OEpI). © XO(p)a(t -t (), (a

Note that in contrast to the usual cgd4)], i.e., in the ab-

sence of a boundary’, the right-hand siderhs) of Eq. (5) where the normal vectar, is given by(6). Note the asym-

S . metry between the rhs of EgEL0) and (11): for the space-
does not vanish identically. like parts of hypersurfaceX” the source term with

The rhs of Eq.(5) can be transformed further to a =~ . X . * .
4-volume integral in the following sequence of steps. First®( p*n,) vanishes identically becaugen, > 0. This refiects

we express the integration elemeiit, via the normal vector e causal properties of the equations above: propagation of
* P . particles faster than light is forbidden, and hence no particle
n, as follows(dx >0, forj=1,2,3:

can(re)enter the in domain.

. . at'(x
d¥,=n,dx" dX dx®; n,=8,0- (M)(l ~38,0), (6)
Ix [ll. COLLISION TERM FOR SEMI-INFINITE DOMAIN
where g, denotes the Kronecker symbol. Then, using the  since in the general cass,(x, p) # dou(X,p) ONS", the
identity &-like terms in the rhs of Eqg10) and (11) cannot vanish
12 simultaneously on this hypersurface. Therefore, the functions
f dts(t-t3)=1 0,,=0;,[s*#0 and O, =0, {s* #0 do not vanish simul-

t taneously or®" as well. The®(x) is not uniquely defined at
for the Diracé function witht1<t3<t2, we rewrite the rhs X=0, and, therefore, there is some freedom to choose a con-
integral in(5) as venient value ax:O _Slnce there is no preference between in

and out domains, it is assumed that
dz, Ef d*st -t ()n.,..., (7) 2 =@ =@ =1
JE*(tl,tz) © A w 0,,=0,,=0(0) =3, (12

)

where short-hand notations are introduced for thebut the final results are independent of this choice. This re-

4-dimensional  volume V4E:(t2—t1) I3t rdXt dx dx fscl)Jl:I)\fv?r? b; e:‘jizgi?)rr?'t %O(i)tZ;C”?: Sld?tg?]%(g;?a;;ﬁo of the
which is shown as the rectang®BCD in Fig. 1 (|GB| g ' 27 a0 '

_ : . : Now, the collision terms for Eq910) and (11) can be
.—|CD|)._EV|<.jentIy, the D|rap§ function allows us to extend readily obtained. Adopting the usual assumptions for the dis-
integration in(7) to the unified 4-volume/,=Ax*U Vs of

W 4 R . tribution functions10-123, one can repeat the standard deri-
Ax* andVy (the volumeVy, is shown as the aredBCEIN a4i0n of the collision term$10,12 and get the desired ex-
Fig. 1). Finally, with the help of notations

pressions. We shall not recapitulate this standard part, but
Ou=0(t-t'(x); 0, =1-0,, (8) only discuss how to modify the derivation for our purpose.

. ) . i . First, one has to start the derivation in the* volume of the

it is possible to extend the left-hand sidbs) integral in EQ. i qomain and then extend it to the unified 4-voluivty

(5) from Ax* to V. Collecting all the above results, from Eq. =Ax*U Vs similarly to the preceding section. Then, the first

(5) one obtains part of the collision term for Eq.(10) reads (A,B
d°p dp . e{in,out)
f d4XT®ianau¢in :J dAX_opMn,u[(ﬁin - ¢out] | 2.1G L
Vﬁl P Vﬁ p Cin(X1 p) = in(I [d)inv ¢in] ll [¢in1¢in])! (13)
XO(-pn)at-t'(x). (9
Since the volumedx* andV, are arbitrary, one obtains the 1% o, 6] = 3 J D P@a(P") da(P)Wop,jprp;,  (14)
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. N o where the notationé e in, §,=-1 (Ae out,§,,;=1) are in-
" a de] = 3 f D Péa(P) (P Woppp;: (15 troduced for the inout)y domain.
For the continuous distribution functions oy’ i.e.,

where the invariant measure of integration is denoted byp, s+ =iy, the &-like source terms on the rhs of Eq47)
DP = (d®p,/p9)(d®p’ /p'O)(cp;/p9), and Wop,prp; is the  and(18) vanish and one recovers the Boltzmann equations.
transition rate in the elementary reaction with energy-Moreover, with the help of the evident relations
momentum conservation given in the forpt‘+p;=p’# @ -9 @ —
+pj~. The rhs of(13) contains the standard gain and loss 3,0in = 3,005 = 8(F (£,X))d,F (t,X), (20
terms which are defined by Eqd.4) and(15), respectively, | 0 | NG L
weighted by the “probability” of collision between particles Cin + Cin + Cou+ Coue = I°[@, @] - 1H{®, @], (21)
from the in domain given by the square of g, function.  \yhered(x, p) =0, (X, P) + Oouibou(X, P), ONE can get the
The value®?2 =1 is found inside of the in domain, whereas following result summing up Eqg17) and (18):
02=0;2=1/4 at theboundary3" because, according to
(12), for each value of the distribution functiaf, in the rhs p*d,D(x,p) = 19D, 0] - I'[®, P]. (22)
of (13), only half of the boundar®” belongs to the in do-

main. This can be better understood by considering, .first, thﬁhe system(19) automaticallywithout any assumptioabout
above-mentioned tangent representation for@éunction, the behavior ofcy,, and ¢, on the boundary hypersurface

and then taking the limia— O next. * : : e
It is easy to understand that &1 the second part of the E)r' Qr!?oéfgé(gozl%yihg ggte;)innlg légd(g; condition12), but
A .

|C.°.|”Si°rt]) t(tarm[accortqiTg toqu(lZ()j] istdéafineq by the col- In fact, the systeng19) generalizes the relativistic kinetic
ISions between particles of in and out domains equation to the case of the strong temporal and spatial inho-
C! (%,p) = Oin@ou1 S b, bout] = [ b bout)) . (16) mogeneity, i.e., forg,(x,p) # ¢0ut(x,p) on 3. Qf course,

) one has to be extremely careful while discussing the strong
Again, the produc®;,0,,=0 everywhere, except at the hy- temporal inhomogeneityor discontinuity on the space-like
persurface.”, where it corresponds to the probability of col- parts of3") such as the so-calletime-like shockg13,14
lision atX" for the particles coming from both domains. This pecause, as shown in the subsequent section, their existence
can be easily seen from the hyperbolic tangent representatiQintradicts the usual assumptiqd€—13 adopted for distri-

In other words, the usual Boltzmann equation follows from

of the ® function. o bution functions.
~ Combining(10), (13), and(16), one gets the kinetic equa-  From the systeng19) it is possible to derive the macro-
tion for the in domain scopic equations of motion for the energy-momentum tensor

by multiplying the corresponding equation wigti and inte-

DR b =C Il “n
Oinp*d,,din(X,p) = Cin(X,p) + Cin(x,p) + p*n,, grating it over the invariant measure. Thus, EQJ.9)

X[ (X, P) = douiX,P)]1O(- p'n) generates the following expression [TX”
X 5(t — t* (X)) (17) = f(dsp/ pO) pMpvd’A(Xy p)]
3 3
The kinetic equation for the out domain can be derived simi- ®A9MTKVZJ d—g)pVC',l(X, o) +J d fp“p"ﬁﬂf
larly; then, it can be represented in the form p p
®outp'ua;¢¢out(xv p) = Clout(xl p) + Clolut(x! p) + p/‘n; X[bin(X,p) = PoutX, p)](SAp"ap}J)é(]-J (t,x)).
X [#n(X,P) = boulx,P)1O(p'N) 23
X 8t -1 (x)) (18) Similar to the usual Boltzmann equation the momentum in-

tegral of the collision tern€},, vanishes due to its symmetries
where the evident notations for the collision ter@§,  [10], but it can be shown that the integral of the second
= 02,(1% dout, Pout =1L dbouts bou)  and  CL, =000,  collision termC!! does not vanish because it involves two
X (1] douts Din] =1L Pour #in]) are used. different distribution functions.

Equations(17) and (18) can be represented also in a co- The corresponding system of equations for the conserved
variant form with the help of the functiorf (t,x). Indeed, currentNA= [(dp/p®)p*#a(x,p) can be obtained by direct
applying the definition of the derivative of the implicit func- integration of the syster(L9) with the invariant measure
tion to aMt*(x), one can rewrite the external normal veai®y

3
as n,=d,7 (t,x)/3F (t,x). Now using the inequality A%NKZJd_g)p”ﬁMf[¢in(t,X)‘¢out(tyx)]
JoF (t',x)>0 and the following identitiess(F (t,x))=d(t p
—t" (X)) 9o F (t",X), Or=O(SyF (t,x)), one can write Eqgs. X O(S\pPd,F ) O(F (t,%)). (24)

(17) and(18) in a fully covariant form ] ) o
The above equation does not contain the contribution from

OAP"d,Pa(X,P) = Cp(X,P) + CA(X,p) + P, F antiparticles(just for simplicity), but the latter can be easily
_ _ » recovered. Note that in contrast ®3) the momentum inte-
X[dn(x.P) = boul%P)O(SP"3,F) gral of both collision terms vanishes in E@4) due to sym-
X 8(F (t,%)), (19)  metries.
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t closed hypersurface. Since the latter is arbitrary, then Eq.
out (25) can be satisfied if and only if the energy-momentum
C conservation occurs for every point of the hypersurface

T{;g&ﬂf(t*,x) =Tg5&&ﬂf(t*,x),

d3
The = J p—fp“p”cﬁA(x,p)(tpp&pf* ). (26)

In deriving (26) from (25) we used the fact that the 4-volume
integral of the second collision ter@} vanishes for finite
values of distribution functions because of the Kronecker
X symbols. The results for the conserved current follow simi-

FIG. 2. Schematic two-dimensional picture of the integrationIarly from Eq.(24) after integrating it over the 4_V0|umé§

contour to derive the boundary conditiof25)(27) between the in ~ and taking the limitA — 0
and out domains. In the limit of a vanishing maximal distadce N9 F (' x)=N- g Frt x
— 0 between the hypersurfaca® andBC, both of these hypersur- In£ ”ﬁ( %) = Noues "“ﬁ( X),

faces are reduced to the p&t(an arcLM) of the boundary>”

. d®p
between domains. N&, = f FDM)A(X’ p)@(ip”ﬁpﬁ). (27)
IV. CONSERVATION LAWS AT 3 The fundamental difference between the conservation laws

It is clear that Eqs(19), (23), and(24) remain valid both ~ (26) and(27) and the ones of the usual hydrodynamics is that
for finite domains and for a multiple valued functian the system$26) and(27) conserve the quantities of the out-
=t"(x) as well. To derive the whole system of these equation§0ing from(S,=1) and incoming tdS,=-1) in domain par-
in the latter case, one has to divide the functitm) into the  ticles separately whereas in the usual hydrodynamics only
single-valued parts, but this discussion is beyond the scop@e sum of these contributions is conserved.
of this paper. Using Eq$19), (23), and(24) we are ready to ~ The trivial solution of Eqs(26) and(27) corresponds to a
analyze the boundary conditions on the hypersurBicdhe ~ continuous transition between in and out domains
simplest way to get the boundary conditions is to integrate = 4 .

Eqsr.) (23) a>r/1d (84). Indeed, intyegrating(23) over thg FoulX,P)lx+ = dinx, Pl 28)
4-vo|umeV§ (shown as the area ABCD in Fig) 2ontaining  This choice corresponds to the BD mo{i2]. The BD model
gives a correct result for an oversimplified kinetics consid-

! . ered here. However, in the case of the first-order phase tran-
momentum conservation. Before applying the Gauss theorelation (or a strong crossovemwhich was a prime target of the

to the Ihs 0f(23), we note th‘?"t the corrgspondlmg\functlon hydro+cascade mode]g,3], the situation is different. In the
reduces the 4'V°|Umvizl to its part which belongs to th&  |5iter case the speed of sound either vanisioesbecomes
domain. The latter is shown as ardaMD (BCML) for A very smal) [15,16 and, hence, the rarefaction shock waves
ein (Aeout) in Fig. 2. Then, in the limit of a vanishing become possibl§17-19. The reason why the rarefaction
maximal distancel — 0 between the hypersurfacé® and  shocks may exist lies in the anomalous thermodynamic prop-
BC in Fig. 2, the volume integral of the lhs of ER3) can  erties[19] of the media near the phase transition region. In
be rewritten as the two integrafslo, T4": the first integral is  other words, on the boundary between the mixed and had-
performed over the hypersurfadeshown as an artM in  ronic phases the rarefaction shocks are mechanically stable
Fig. 2, and the second integral reduces to the same hypersuf-9], whereas the compression shocks are mechanically un-
face but taken in the opposite direction, i.e., & arc in  Stable. This is also valid for the vicinity of the generalized

Fig. 2. Thus, the volume integral of the |hs of E§3) van-  Mixed phase of a strong crossover. _
ishes in this limit for tensorg%” being continuous functions ~_One important consequence of the shock mechanical sta-

part S of the hypersurface®”, one obtains the energy-

of coordinates, and we obtain bility criterion is that the stable shocks necessarily are super-
sonic in the media where they propagate. The latter means
v that the continuous rarefaction flow in the region of phase

0=|  d*®d,(TH"(x, R ) :
ff! A0uTA"O6P)) transition is mechanically unstable as well, since a rarefac-
* tion shock, if it appears, propagates inside the fluid faster

. d°p ol . d3p , than the sound wave and, hence, it should change the fluid's
= f4 d XFP Calx, p)+f ,d xﬁé(ﬁ(t,x))p o, F state. Due to this reason the unstable hydrodynamic solutions
s V3 simply do not appea20,21].
! _ . o Applying these arguments to the BD model, one con-
XLon(x.P) = foulx PIO(SP0,F). @9 cludes: for the first-order phase transition or strong crossover
Similarly to Sec. Il, in the limitA — 0 the second integral on the sound wave in thégeneralizegl mixed phase may be
the rhs of(25) can be reexpressed as an integral over thainstable and the strong discontinuities of the thermodynamic
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quantities are possibld7—19. The latter corresponds to the V. BOUNDARY CONDITIONS AT X" FOR A SINGLE
nontrivial solution of the conservation law&6) and (27), DEGREE OF FREEDOM

which allows a discontinuity of the distribution function on . - . .
two sides of the hypersurfac®’. Since there are twice the Now, we have to find out whether it is possmle_ to obtain
number of conservation laws compared to the usual hydrot—he nontr|V|a.I'sc_>Iut|on. Of. sy_stemGZG) anq (27).usmg the
d ics it is i ibl h bel to build th arts of equilibrium distributions on the time-like segments
ynamics, 1t IS Impossible, as shown HEIoW, 10 bulld up theyg e hypersurfac&”. To simplify the presentation, first we
nontr.|V|aI solution O_f Eqs(26) and (27) if trle.dlstr|but|on consider the same kind of particles in both domains. It is
functions on both sides of the hypersurfacs i.e., ¢in and  conyenient to transform the coordinate systéitx);x) into
bour are taken to be the equilibrium ones. ., the special local framé; (x,);x,), which is the rest frame of
Consider first the space-like parts of_the_hype_rsurﬁce discontinuity between the distributiong;, and ¢, This
Then, Eqs(26) and (27) for S,=-1 vanish identically be- 4o rdinate system will be indicated by the subsctipfhe
cause of the inequalitp”d, 7 (t',x) >0, whereas foS,=1  gpecial local frame is defined as follows: theaxis should
Egs.(26) and(27) recover the usual hydrodynamical conser-coincide with the local external normal vector to the hyper-
vation laws at the discontinuity. However, it can be shownsyrfaces”, y- andz axes belong to the tangent hyperplane of
that the existence of strong discontinuities across the spacg”. In this case the external normal vector to the time-like
like hypersurfaces, théime-like shocks13,14, is rather parts ofY" is n;:(O;alf :0;0), and one can readily check
problematic because it leads to a contradiction of the basithat the value of the derivativ | plays an important role
assumptions adopted for the distribution function, everin the conservation law&6) and(27) only through thecut-
though the conservation law&6) and(27) are formally ful-  off ® function. Then, as in the theory of usual relativistic
filled. shockg[19-21, it can be shown that equations for teand
Indeed, according to the Bogolyubov’s classificatjaf], =z components of systerf26) degenerate into the identities
a one-particle treatment can be established for a typical timbecause of the symmetries of the energy-momentum tensor.
At which, on one hand, should be much larger than the colTherefore, the number of independent equations at the dis-
lision time 7., and, on the other hand, should be muchcontinuity is 7: a switch-off criterion and six independent

smaller than the relaxation timgg.y equations out of system6) and (27) [t- and x equations
(26) and one equatio(®7) for two choices ofS,={-1; +1}].

On the other hand the number of unknowns is 6 only:
temperaturd’;, and baryonic chemical potential, of the in
domain, temperaturd, , and baryonic chemical potential
o, OF the out domain, the collective velocity,, of the in

- . . domain particles, and the collective velocity,, of the par-
Similar to the usual Bolzmann equatiggee also the discus- oo of the out domain, which should be collinear to the

sions in Refs[11,12), in deriving the collision terms of Eq. normal vectorn’, in the rest frame of the discontinuity. A
(19) we implicitly adopted the requirement that the distribu- t5:ma counting of equations and unknowns shows that it is
tion function do_es n_ot change substantially fqr tinthde_sg impossible to satisfy the conservation lay@$) and (27) if
than the relaxation timeyia,. However, at the discontinuities the distribution functions on both sides are the equilibrium
on the space-like parts &, suggested in Ref$13,14, the  gnes.

distribution function changes suddenly, i.&t=0, and the The last result means that instead of a traditional discon-
left inequality (29) cannot be fulfilled at théime-like shock  tinuity we have to search for a principally new boundary
Therefore, according to the Bogolyubov’s classificafib], condition on the hypersurface”. The analysis shows that
such a process, which is shorter than the typical collisiorthere are two such possibilities with the equilibrium distribu-
time, belongs to a prekinetic or chaotic stage and, hencejon function in the in domain and a special superposition of
cannot be studied at the level of a one-particle distributiortwo cutoff equilibrium distributions for the out domain. The
function. It would instead require the analysis of a hierarchyfirst possibility is to choos@,, as follows:

of N-particle distribution functions, wheig is the number of

particles in the system. Thus, the existence of time-like bouls* = Gin(Tis i Vi) O(P*31.F))

shocks contradicts the adopted assumptions for a one-particle « s s .

distribution. Their existence should be demonstrated first + GoulTous Hour Vo) O (- P01 7)), (30)

within the higher order distributions. This statement appllesI e., the distribution of outgoing particles from the in domain

to several papers published by the Bergen group during th . ! ; X
last few years whergme-like shocksvere attenuated in time ﬁhe first term in the rhs of Eq30)] is continuous on the
hypersurface.”, whereas the distribution of the particles en-

using a phenomenological quasikinetic appro§2B]. For ) . . :
the same reason, the use of equilibrium values for temper%‘-arlng the in domairithe second term in the rhs of EG0)]

ture and chemical potential in an attenuated time shock i asa dISCOI’(lthI’IbUI'[y or}i W:]"Ch cobnserves th? er?er?yl’l mo-
rather problematic for time scales shorter thap,. Note, [)nentgm an Iy aryonic Oglar.ge ecause of the following
however, that the discontinuities at the time-like part&of oundary conditiongv={0; 1}):

(usual shocKshave no such restrictions and, hence, in what Ly s L s e

follows we shall analyze only these discontinuities. Tin-(Tins 4inVin) = Toue(Tous Hous Voud » (31)

Teoll < At < Trgjax- (29
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Niln _(Ti*n, Mi*n,vjn) = Néut—(T:)ub ,u;ut,v’;ut)_ (32) distribution functions. A*simplg analy§is of *the systea_zn)
. " . and(35) shows that forT,,<T,, and u, < u,, the relative
The above choice of boundary conditions¥atreduces sys-  yelocity v, in the local frame should be collinear to the
tems (26) and (27) for S,=1 to the identities, and, hence, external normal vectan’ . Such a discontinuity is analogous
from the systemg26) and(27) there remain only three inde- 5 the rarefaction shock wave in the relativistic hydrodynam-
pendent equationg3l) and (32) for S,=-1. Along with @ jcs Thuys, in contrast to the TLS choice, E83) should be
switch-off criterion, these four equations can now be solved;seq as the initial conditions for the out domain while study-
for six independent variables with the two variables choserpng the rarefaction process of matter with anomalous thermo-
to be free for a moment. Thus, both the outgoing and incomdynamic properties.
ing parts of the distribution functiof80) can be chosen as ~ Now, we are ready to discuss how the nontrivial solutions
the equilibrium ones, but with different temperatures, ghemi-(30) and (33) will modify the system of the hydrecascade
cal potentials, and nonzero relative velocityy=(voy  equationg19), (23), and(24). In what follows we assign the
—vin)/ (1-vo,pin) With respect to the distribution function hydrodynamic equations to the in domain and the cascade
Pin- ones to the out domaithe opposite case can also be con-
Note a principal difference between this discontinuity andsidered. Inserting(30)<32) into the in Eqs.(23) and (24),

all the ones known in relativistic hydrodynamics: the outand into the out Eq(19), one obtains the fo||owing system:
domain state consists, in general, of two different subsystems

(fluxe9 that have individual hydrodynamic parameters. It is v ﬁ) vl

clear that it is impossible to reduce three of those hydrody- Oind,.Tin _f p° P*Cin(x.p), (36)
namical parameters of one flux to those three of another flux

because there are only two free variables out of six. Thus, 0.9 N-=0 (37)
together with the in domain flux there are in total three fluxes mosn

involved in this discontinuity. Therefore, it is appropriate to " | I

name it athree flux discontinuityn order to distinguish it OoutP’duboutX,P) = CouX,P) + CoulX,p),  (38)
from the ordinary shocks that are defined by maximum ofie. due to the boundary condition80)«32) the &like

two fluxes. terms have disappeared from the original system of equa-

The outgoing component of the distributidB0) coin-  tjons. It is clear also that the source term in the rhs of Eq.
cides with the choice of the bOUndary conditions Suggeste@6) does not p|ay any role because it is finite on the hyper-
in the TLS mode[3], whereas Eqg31) and(32) are missing  surfaceX" and vanishes everywhere outsitle
in this model. For this reason, the TLS model fails to con- In order to obtain the system of hydﬁmascade equations
serve energy, momentum, and charge. Note also that th@g)(38) for the nontrivial solution defined by Egs.
lower values of the temperaturg,,<T;, and baryonic (33)~35), the hydrodynamic description has to be extended

chemical potentiak,,, < u;,, which are typical for the rar- tg the outere-vicinity (s — 0) of the hypersurfac&”
efaction process considered in RE3], should be compen-

sated by an extra flow from the incoming particles to the in v _ @ T

domain, i.e.,u,, should be opposite to the external normal Ooud, Tow= p° P*CoulX,P), (39
vectorn, in the rest frame of thehree flux discontinuity

Therefore, such a discontinuity is analogous to the compres- Ooud, N =0, (40)

sion shock wave in relativistic hydrodynamics, and cannot

appear in the rarefaction process for any of the hadronigvhich in practice means that for Eg83)—«35) one has to

species considered in Rg8]. solve the cascade equati(88) a bit inside of the out domain
Similarly, one can find another nontrivial solution of the infinitesimally close t&" in order to remove thé-like term

systemg26) and(27) which corresponds to opposite choice in (38) and move this term to the discontinuity on the hyper-

of Eq. (30) surfacey”.
_ A 15 The remarkable feature of the system of hydoascade
bouts* = bin(Tins Kin:Vin) O (= PTALF) equationg36)—40) is that each equation automatically van-

£k 1 ishes outside the domain where it is specified. Also, by the
* boulTouw oo OP'0F), (33 construction, it is free of the principal difficulties of the BD
i.e., the incoming to the in domain component of the distri-and TLS models discussed above. The question how to con-
bution abovdthe first term in the rhs of Eq33)] is continu-  jugate thethree flux discontinuitywith the solution of the
ous on hypersurfac&”, but the component leaving the in hydro equationg36), (37), (39), and(40) will be discussed
domain has a discontinuity ai" which obeys the following in the next section.
conservation law$r={0;1}):

T (T i Uin) = T (Tous Mot Vout) » (34) VI. BOUNDARY CONDITIONS AT 3" FOR MANY
DEGREES OF FREEDOM

l L * * _ 1 L3 * *
Nins (Tin: in-Vin) = Noue (Toue Hour Voud (39 In order to apply the above results to the description of
It is clear that both the outgoing and incoming componentshe QGP-HG phase transition occurring in relativistic nuclear
of the distribution(33) can be chosen as the equilibrium collisions, it is necessary to take into account the fact that the
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real situation differs from the previous consideration in two bouls* = (T i, Ui O(PLOLF,), (42)
respects. The first one is that in the realistic case inside the in

domain there should exist the QGP, whereas it should nowvhere, in contrast t@30), there is no incoming component of
appear in the out domain. Of course, the discussion of théhe distribution because the noninteracting particles cannot
QGP kinetic theory is a much more complicated problem andescatter and change their velocity. Note also that a small
lies beyond the scope of this work. For our purpose it ismodification of the incoming part af/ ¥ momentum distri-
sufficient to generalize the equations of moti@6)—40) bution due to decay of heavier charmonia in the out domain
inside domains and the conservation lai@6) and(27) be-  can be safely neglected. Remarkably, the cascade initial con-
tween these domains to the realistic case. Such a generalizgition (41) exactly coincides with the one used in the TLS
tion can be made because in the case of the QGP-HG phaggydel. Therefore, the main TLS conclusiof8 on the ¢
transition there will also be an exchange of particles betweepesons an€) hyperons remain unchanged, whereas for had-

the in and out domains which must be accounted for by thegg with large scattering cross sections the TLS conclusions
&-like source terms in the transport equations. The only iMinay change significantly.

portant difference from the formalism developed in the pre- Omitting the contributions of weakly interacting hadrons

ceding sections is that QGP must hadronize while entering. | "o components of the energy-momentum tensor and

the out domain, whereas the hadrons should melt while er- ; . .
tering the in domain. Note, however, that in relativistic hy—rbaryonlc 4-current, one can generalize the boundary condi-

drodynamics one has to assume that all reactions, i.e., {Hens (26);?d (2—0' (t)nttr?e hypersurfaca tbetweedn tﬁe do-
QGP hadronization and melting of hadrons in this case, ocains and formuiate the energy-momentum and charge con-
cur instantaneously. Under this assumption one can justi ervation laws in terms of the parts of tbet_offdlstnbl_Jtlon

the validity of the equations of motiof86)<40) and the unctions. For definiteness we shall consider the first-order

conservation laws between QGP and HG on the boundarghase transition .between QGP and hadronic matter through-

s ut thg rest of this work. The case of the second-order phase
The second important fact to be taken into account is thattran3|§|on can be analyzed S|m|la_rly. In terms of the local

some hadrons have the large scattering cross sections Wiﬁqordlnates(tL(x,_);x,_), introduced in Seg. V, the conserva-

other particles and some hadrons have the small cross se@ 1aws (26) and (27) can be generalized as follows

tions, because of this, different hadrons participate in the10:1)):

collective flow differently. A recent efforf23,24 to classify

1V x * *
the inverse slopes of the hadrons at SPS lab energy % _2_ Toe(TinZo * HinrVin)
158 GeV-A led to the conclusion that the most abundant Q=a .
hadrons, e.g., pions, kaor@ntinucleons,A hyperons, etc., +(1-ay) > THAT W Zy - i)
participate in the hadron rescattering and resonance decay till H=mK,...
the very late time of expansion, where@shyperons,J/, _ 1y ot s
and ¢/ mesons practically do not interact with the hadronic - H:gf( Tre(Toue 2 * MourVour) (42)

media and, hence, the freeze-out of their transverse momen-
tum spectrgkinetic freeze-oytmay occur just at hadroniza-

tion temperaturdly. Therefore, the inverse slopes of the q E_ Ncl'gx(Tin:ZQ * Hin:Vin)
J/y, and /' particles are a combination of the thermal mo- Q=44
tion and the transversal expansion of the media from which +(1-ag) S NL(TZh o i vn)
these particles are formed. HemK.. ..
These results for th€) baryons andp mesons were ob- 1o ..
tained within the BD and TLS models, whereas for fhe/ = 2 Niu(TowZu - Howvouw (43)

and ¢/ mesons it was suggested for the first time in Refs. HEmK,...

[23,24. Later these results were further refined in R&p] where oy is the volume fraction of the QGP in a mixed
by the simultaneous fit with only one free parametitte  phase, and th€ sums of the energy-momentum tensor and
maximal value of transversal velocjtypf the measured) baryonic 4-current components, denoted as

[26,27, J/ and ¢’ [28] transverse momentum spectra in o

Pb+Pb collisions at 158 GeV-A that are frozen out at had- wr — | 2P e (4 P

ronization temperaturd@,. The experimental situation with To: = f p° PP bo(x PIOER,F), (44
the ¢ mesons at SPS is, unfortunately, not clarified yet be-

cause the results of the NA429] and NA50[30] Collabo- d®p
rations disagree. The analysis of the transverse momentum Ng: = J —o5 P*Zodo(X,P)O(2p°d,F ), (45)
spectra of() hyperons[31,32 and ¢ mesons[31] reported P
by the STAR Collaboration for energies=130 A-GeV in  run over all corresponding degrees of freedom of QGP. The
Refs.[33,34, respectively, and fof's=200 A-GeV in Ref. H sums also run over all hadronic degrees of freedom. In
[32] shows that this picture remains valid for RHIC energiesEgs.(42) and(43) Z, andZ, denote the baryonic charge of

as well. the corresponding particle species.

It is easy to find that for particles like, (), I/, andy/, Now, from Eqgs.(44) and (45) it is clearly seen that the
which weakly interact with other hadrons, the distribution correct hydro+cascade approach requires more detailed in-
function ¢,,; should coincide withg;, formation about the microscopic properties of QGP than is
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usually provided by traditional equations of state. To proceed Again, the number of unknowns matches the number of
further we assume that those components are known. Thequations, and the procedure to solve the system of hydro
general approach to calculate the angular and momentueuationg36), (37), (39), and(40) simultaneously with the
integrals in Eqs(44) and(45) was developed in Ref7] and  boundary conditiong42) and(43) is the same as in cagp.
was applied to the massive Boltzmann gas description in Now, it is appropriate to discuss the switch-off criterion
Refs.[7,35]. F (t,x)=0 in more detail. By the construction of the hydro
The important difference between conservation 842, +cascade approach, the cascade treatment should be applied
(43) and(26), (27) is that in the out domain the temperature when hydrodynamics starts to lose its applicability: accord-
T.ue Chemical potential,,,, and relative velocity ; of the  ing to the original assumption the hydro equatiéd®), (37),
incoming toX" hadrons should differ from the corresponding (39), and(40) work well inside of the 4-volume surrounded
quantitiesT,, seue andvg,, of the outgoing fromd,” par- by the hypersurfacE” and in the outee vicinity (¢ —0) of
tlcles and both sets should differ from the quantifigs u;,, 3" [see also a discussion after £§8)], whereas just outside
andv;, of the in domain. In order to prove this statement, it of this domain the thermal equilibrium dismantles and one
is necessary to compare the number of equations and numbeginnot use theutoff equilibrium distributions interior of the
of unknowns for the two distinct cases. Namgly if the  out domain. Consequently, a switch-off criterion should be
initial state is in the mixed QGP-HG phase, aiid if the  formulated solely for some quantity defined in the outer
initial state belongs to the QGP. vicinity of hypersurfac&”, and it has to define the bounds of
In case(i) there are ten equations and ten unknowns.  applicability of thermal equilibration and/or hydrodynamic
(1) The equations are as follows: six conservation lawsdescription. Note that in the BD and TLS models this did not
from Egs.(42) and(43); value of the initial energy density; matter because both groups kept the cascade initial condi-
value of the initial baryomc density; the relation betweentions as close as possible to the output of hydro. However, in
|n|t|al temperatureTIn and the baryonic chemical potential the case of théhree flux discontinuityn the time-like parts
,um taken at the phase boundary; and the switch-off criterionof hypersurface&” the proper use of the switch-off criterion
2 The unknowns are as follows: three temperatt]’rﬁs plays a decisive role in the construction of the mathemati-
Touw To out, three chemlcal potentlal&,n, Mour Mous three ve-  cally correct hydro+cascade solutigsee also a discussion
locities vy, Vgyw Vey defined in the rest frame of a disconti- of the freeze-out criterion in Ref$6,7)). It is clear that, in
nuity; and the QGP fraction volume,. contrast to the BD and TLS formulations, the switch-off cri-
Thus, in this case, one can find a desired solution of théerion may generate a sizable effect while applied to interior
system of ten transcendental equations, which is the mosif hadronic phase. This is so, because even a small differ-
general form of the three flux discontinuity introduced by ence(just a few Me\j between the temperatuf'én, which
Egs.(30)—(32). belongs to the phase transition region, and temperafijgs
To complete the solution of hydro equauo(ﬁﬁ) (37), andT;, of the out domain may lead to a tremendous flow of
(39), and(40), one must find the value of velocity,, from  outgoing hadrons because of the enormous latent heat of the
the system of ten transcendental equations discussed abov@GP.
This velocity then defines an ordinary differential equation
dx'/dt =-v;, for the hypersurfac&” in the rest frame of
matter of the in domain, which must be solved simulta-
neously with the hydro equations. In the preceding sections we have derived a system of
If initial state belongs to the interior of the QGP phase,relativistic kinetic equations which describes the particle ex-
case(ii), then the usual hydro solution will be valid till the change between two domains separated by the hypersurface
system reaches the boundary with the mixed phase, frorof arbitrary properties. We showed that the usual Boltzmann
which the nontrivial discontinuity described by E@¢42) and  equation for the following sum of two distributiorB(x, p)
(43) will begin. The differences from the previously consid- = 0;,¢i,(X,p) + OoudouiX,p) automatically follows from
ered case are now clear: in contrast to cagethe volume  the derived system, but not vice versa. Integrating the kinetic
fraction of QGP is fixed to unity;=1; the energy and bary- equations, we derived the system of the hyedcascade
onic charge densities are no longer independent, but are coraquations for a single degree of freedom. Remarkably, the
pletely defined by the temperature and baryonic chemicatonservation laws on the boundary between two domains
potential, which are connected by the entropy conservatiogonserve the incoming and outgoing components of the en-

VII. CONCLUDING REMARKS

for the continuous hydro solution in QGP. ergy, momentum, and baryonic charge separately, leading to
Therefore, in casgii) there are nine equations and nine twice the number of conservation laws on the separating hy-
unknowns, which are as follows. persurface compared to the usual relativistic hydrodynamics.

(1) The equations are: six conservation laws from EqsThen, we showed that for a single degree of freedom these
(42) and (43); temperature dependence of the baryonichoundary conditions between domains can be satisfied only
chemical potentials;, = u;,(T;,) due to the entropy conserva- by a special superposition of twautoffequilibrium distribu-
tion; the relation connectmg temperatuT% and baryonic tions for the out domain. Since the obtained discontinuity has
chemical potentla#m, since they belong to the phase bound-three irreducible fluxes, it is namedlaee flux discontinuity

ary; and the switch-off criterion. in contrast to usual shocks defined by two fluxes. It was also
(2) The unknowns, except for the fixed volume fraction shown that the TLS-like choice of the boundary conditions,
ag=1, are the same as in cagg in contrast to the expectation of R¢8], corresponds to an
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analog of the compression shock in traditional hydrodynamshould, of course, be found by the cascade simulations, but it
ics, and, therefore, cannot be used to model the rarefactios clear that the fastest of them will decelerate and the cold
process. one will reheat. Beside the possibility to accelerate or decel-
Then, we showed that existence of ttime-like shocks erate the outgoing transversal flow more rapidly than in the
[13,14, formally rederived by this formalism, contradicts the BD and TLS models, théhree flux discontinuitynay natu-
usual assumptions adopted for the one-particle distribution&lly generate some turbulence patterns in the out domain.
and, hence, the solution of this problem requires the analysis 1aking into account all these features, along with the fact
of higher order distribution functions. Therefore, in the restthat neither the BD nor TLS boundary conditions have such
of the paper we concentrated on a detailed analysis of th@ Strong discontinuity, we conclude that theee flux discon-
discontinuities at the time-like hypersurfaces, i.e. the spaceinuity opens a principally new possibility not only to resolve

like shocks in terms of Ref$13,14. These results were then t_he HBT puzzlg8], but also to study SOME New phenor_nena,
generalized to a more realistic case: when the mixe ike a turbulence pattern, associated with a new kind of

QGP-HG phase exists in the in domain and hadrons exist irjrhOCk’ a three flux  discontinuity in- relativistic hydro

. L ) cascade approach.
the out domain. Such a generalization also required the ex- Despite 512: reasonably good description of the one-

clusion of the hadrons with the small scattering cross seCtioBarticle spectra of the most abundant hadrons, even such a
(like Q, J/4, andy’ particleg from the boundary conditions  gqppisticated model as the TLS one badly overestimates both
between domains. As we showed in the preceding sectionyf the transverse radii measured by pion interferometry like
the presence of the first-order phase transition makes the rgther hydrodynamic models. This is a strong indication that
sulting system of transcendental equations more complicateghe hydro part of all existing hydrecascade and hydrody-
than in the case of a single degree of freedom. namic models requires an essential revision. How this revi-

It turns out that a minimal number of variables in this sjon will affect the present BD and TLS results is unclear at
discontinuity is either nine or ten, depending on the locationthe moment, but the solution of the HBT puz#B should
of the initial state on the phase diagram. Therefore, on theerve as a good test for the correct picture of the space-time
hadronic side thehree flux discontinuityshould have two eyolution during the posthadronization stage. The additional
different flows with their own temperatures, chemical poten-ests for the correct hydrecascade equations should be the
tials, and collective velocities. This solution has a number ofeproduction of three recently established signals of the de-
unique features in comparison with usual shocks. confinement phase transition, i.e., the pion kiBB,37 seen

(1) This discontinuity may generate a very strong, at lab energy of~30 GeV-A, theK*/ 7" peak at the same
explosive-like flow of outgoing particles from the in domain, |ab energy{36] (the strangeness horrand the platea(38]
first because a huge latent heat of QGP is involved, andn the inverse slope of thi* transverse momentum spectra
second due to an extra momentum associated witlcdk®ff  at the whole range of the SPS energiiee step in caloric
distribution. Indeed, considering the outgoing component oturveg measured by the NA49 Collaboratig9,40. It is
the distribution ¢,,© (p*d,F) for massless pions in the also necessary to check other predictions of the statistical
frame where this function maximally resembles the noncuimodel of the early stagg36], namely the anomalies in the
Boltzmann distribution, i.e., in the rest frame of the latter,entropy to energy fluctuation@1] (the “shark fin) and in
one finds a nonvanishing collective velocity=(1+v,)/2.  strangeness to energy fluctuatigag] (the “tooth”), because
Here,v,=dR, /dt(jv,| <1 for time-like parts of") denotes  both the shark fin and tooth may be sensitive to the turbu-
the transversal radius velocity in this frame. lence behavior due to energy dissipation.

(2) The strong explosive flow of outgoing particles is Io-  Note, however, that the completion of this task requires an
calized at the time-like parts of the hypersurf&ewhereas additional research of the hydro+cascade approach. First, it
at the space-like parts & there will be a continuous flow. is necessary to develop further the microscopic models of the
It is even possible that for some choice of parameters th@GP equation of state in order to find out the components of
space-like boundary may be absent. the cutoff energy-momentum tensor and baryonic 4-current

(3) The particle density of outgoing pions will strongly required by Eqs(42)—(45). This can be done, for example,
depend on the speed of the transversal radius expansiowithin the phenomenological extensiorjg3-45 of the
Thus, for massless pions the particle density found accordinglagedorn model. Second, a similar problem for hadrons
to the Eckart definition  [10] is P should be solved as well, otherwise, as we discussed in the
=[pATo0l/4J(1-0v,)3%3+v,), i.e., it is smaller for all preceding section, thewitch-offcriterion from the hydro to
v,>-1 than the thermal particle densjty(T, ). Therefore, cascade cannot be formulated correctly within the hydro
the two particle correlations off the low particle density re-+cascade approach. And, finally, for practical modeling it is
gions should be reduced. Since the situatigs>—1 is typi- necessary to formulate a mathematical algorithm to solve
cal for the beginning of the transversal expansi8h the  simultaneously the system of hydro+cascade equations
main contribution to the transversal pion correlations will (36)«40) with the boundary conditiong42) and (43) be-
come from the later times of expansion. Thus, it is possibléween the hydro and cascade domains. These problems, how-
that the space-time region which defines the side and outver, should be considered elsewhere.
pion correlation radii will be essentially more localized both
in space and time than in traditional hydrodynamic solutions.

(4) Because there are two fluxes in the out domain, they The author is thankful to D. Blaschke, W. Cassing, J. B.
will interact with each other. The resulting distribution Elliott, L. W. Phair, and P. T. Reuter for valuable comments,
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