PHYSICAL REVIEW C 70, 034901(2004)

Particle number fluctuations in a canonical ensemble
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Fluctuations of charged particle number are studied in the canonical ensemble. In the infinite volume limit
the fluctuations in the canonical ensemble are different from the fluctuations in the grand canonical one. Thus,
the well-known equivalence of both ensembles for the average quantities does not extend for the fluctuations.
In view of the possible relevance of the results for the analysis of fluctuations in nuclear collisions at high
energies, a role of the limited kinematical acceptance is studied.
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[. INTRODUCTION high energies have been presentseke, e.g., presentations at

The statistical approach to strong interactions is surpris-Quark Matter 2004). In particular, intriguing results con-
ingly successful in describing experimental results on hadro§€rning the particle number fluctuations in collisions of small
production properties in nuclear collisions at high energieguclei at the CERN SPS have been shoigh These new
(see, e.g., Ref1], and references thergirThis motivates a  results motivate our work, in which the particle number fluc-
rapid development of statistical models and it raises newuations are calculated in c.e. and compared with those ob-
questions, previously not addressed in statistical physics. Itained in g.c.e. Finally, the possible influence of the limited
particular, an applicability of the models formulated within experimental acceptance on observed fluctuations is studied.
various statistical ensembles has been considered for average
quantities. The micro-canonical ensemble, where the mo-
tional and material conservation laws are strictly fulfilled in

all microscopic states of the system, has to be used for col- | ot 5 consider the system which consists of one sort of
I|S|on§ in Whlph a small number of particles is produced, “kepositively and negatively charged partickesg., =* and 7~
p*+p njteractlons at low energiesee, e.g., Rgf[Z])_ The meson$ with total charge equal to zet@=0. In the case of
canonical ensemble.e), where only the material conserva- iha Bolizmann ideal gaéhe interactions and quantum sta-

tion laws are obeyed, is rele_vant for the systems with a larg§qtics effects are neglectgth the volumeV and at tempera-
number of all produced particles, but a small number of cary 1o T the g.c.e. partition function reads:

riers of conserved charges like electric charge, baryon num-

II. PARTITION FUNCTION IN G.C.E. AND C.E.

ber, strangeness or cha(see, e.g., Ref3]). Finally, models w o N N

formulated using grand canonical ensemtdec.e) can be Z. . (VT)= S (2™ (2™ = exp(\,z+ \_2)
used when the number of carriers of conserved charge is “%“* """ = = N N T
large enouglisee, e.g., Ref4]). In the latter approach both

material and motional conservation laws are relaxed and the = exp22). 1)

mean values of conserved charges and energy are adjusted by ) . ) . )
introduction of chemical potentials and temperature, respedn EQ. (1) zis a single particle partition function
tively.
The question of applicability of various statistical en- ij* K exol - K+mA)H2 | v 2K (m)
sembles for the study of fluctuations of physical quantities 4~ 5.2 . ex o2 2\ 1)
has not been addressed up to now. In the textbooks of statis-
tical mechanics, the particle number fluctuations are consid- 2
ered in g.c.e. only. It is because the discussion is limited to
the non-relativistic cases, so that in the c.e. the particle nunmwherem is a particle mass anil, is the modified Hankel
ber is fixed. However, in the relativistic case, relevant for thefunction. Parameters, and\_ are auxiliary parameters in-
models of hadron production in high energy nuclear colli-troduced in order to calculate the mean number and the fluc-
sions, only conserved charges are fixed, and consequently thiégations of positively and negatively charged partioftee
particle number fluctuates in both c.e. and g.c.e. chemical potential equals zero to satisfy the condition
The analysis of fluctuations is an important tool to study &Q)q.ce=0). They are set to one in the final formulas.
physical system created in high energy nuclear collisions The c.e. partition function is obtained by an explicit intro-
(see, e.g.[5]). Recently, rich experimental data on fluctua- duction of the charge conservation constradin,-N_=0 for
tions of particle production properties in nuclear collisions ateach microscopic state of the system and it reads:

0556-2813/2004/13)/0349017)/$22.50 70034901-1 ©2004 The American Physical Society



BEGUN et al. PHYSICAL REVIEW C 70, 034901(2004)

[

Z..(V,T)= 2

N=onN=0 N N

“ N, N_
D (A\2)™(\-2) SN, = N.) 14

1 2m . ]
=— | depexdzr,e?+re?)]
277 0 % "z

=15(22). )

In Eqg. (3) the integral representations of theKronecker

symbol and the modified Bessel function were ug&{: 00 — T,

Z

1 2m )
on) =—— fo d¢ expling), FIG. 1. The ratio ofN,)ce. (6) 10 (Ny)g.c.e.(5) as a function of

Z.

2
1o(22) = zij dg exd-iQa¢ + 2zcosg]. Pl 72
mJo In(Zz):H+(n+l)I

+0(z"), 9

and consequentli;(22)/1,(2z) = z which results in
I1l. MEAN PARTICLE NUMBER

Ni)ee =22 <(N =z 10
The average number of, andN_ can be calculated as Nadee, (Nedgee (10
The asymptotics of the mean multiplicity discussed above
P g
(N, :( In Z) , @ e clearly seen in Fig. 1.
+ A=1
and in the g.c.e(1) they are equal to: IV. SCALED VARIANCE

d An useful measure of fluctuations of any varialflés the
(No)gce= (&_M In Zg-c.e>% :1: z. ) ratio of its varianceV(X) =(X?)—(X)? to its mean valugX),
h * referred here as the scaled variance:

By construction the mean total charge is equal to zero: 5 5
(Qgee=(NDgee(N)gee=0. In the c.e.(3) the charge S X7 (1)
conservatioQ=N,—-N_=0 is imposed on each microscopic X
state of the system. This condition introduces a correlationgte thatwX=1 for the Poisson distribution. Thus, to study
between particles which carry conserved charges. The avefe fiyctuations of charged particles the second moment of
age particle numbers af8j: the multiplicity distribution(N2) has to be calculated. In the

9 1,(22) g.c.e.(1) and c.e(3) one finds:
<Ni>c.e.: K In Zee. = Z| (22) : 1 9 97
: N0 <Ni>g.c.e.: Z [(9)\ (7\1 (”\'C'e')} =z+72, (12
The exact charge conservation leads to the c.e. suppression g.cel P S
(11(22)/19(22) <1) of the charged particle multiplicity rela-
tive to the result for the g.c.€5). The ratio of(N,) calcu- (N2). . = 1109 ( 6’Zc.e.) :Z|1(2Z) +22|2(22) _p
lated in the c.e. and g.c.e. is plotted as a function iof Fig. T Zoe LN\ T N ) L2 1027 10(22)
1. )
In the large volume limit(\V— oo corresponds also ta 13
— ) the results for mean quantities in the c.e. and g.c.e. arghe corresponding scaled variances are:
equal. This result is referred as an equivalence of the canoni- 5 5
cal and grand canonical ensembles. It can be obtained using o = (NDgce™ (Nedgee 1 (14)
an asymptotic expansion of the modified Bessel funcfigin g.c.e. (Na)gce. '
, exp(22) 4n’-1 1
im 1,2 = 222 {1 - + o(—)], (7) s (NDeem(NoZe _, 11122 15(22)
- Vamrz 16z v Wi = e e o g T 2 (15)
<Nt>c.e. I 0(22) I 1(22)
which givesl;(22)/1o(22) —1 and therefore The dependence of the scaled variance calculated within

(NDe o= (Ny)gco=2. (8) the c.e. and g.c.e. anis shown in Fig. 2.
Hee Hace Using Egs(7) and(9) the asymptotic behavior @#. , for
Using the series expansion one gt$ for small systems both z—0 andz—c can be found. The c.e. fluctuations
(z=1): measured in terms @b are equal to those in the g.c.e. for the
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FIG. 2. The scaled variances W, calculated within the g.c.e.,
+

wgce=1(14), and c.e.w;, (15). FIG. 3. Multiplicity distributionsPg¢(N.) (19) and Pg ¢ ¢(N.)
(18) for z=0.5.

small system(z<1) (another variable to treat the fluctua-

tions in the small systems is discussed in Appendix g.c.e. one(18). This result is valid for both the larg&
2 >1) and the smallz<1) system. On the other hand, the
Wee=1l-—=1= wé ce: (16) average value d¥l, is smaller in the c.e. than in the g.c.e. for
£ 2 L.c.

smallz. It results inw; . — wgy . =1 atz— 0. Moreover, for

For large systemé&s 1) the scaled variance for the c.e. is {N+)<1 one can easily demonstrate that=1 for any
two times smaller than the scaled variance for the g.c.e.. P(N:) distribution if the conditions>(0)> P(1) > P(k) (with
k=2) are satisfied. Indeed, in this limit one can neglect all
L 1.1 1 1, 17 P(N.) for N.=2 which results in:
We e = 2 + 8z = 2 - ng.c.e: ( )

The scaled variance shows a very different behavior than . (ND=(N)?* P 22-[P(1) - 1]?
the mean multiplicity. In the limit of smalt the ratio of the “ = (N,) - P(1) -1
results for c.e. and g.c.e. approaches zero for the mean mul- B
tiplicity (Fig. 1) and one for the scaled variang@ég. 2). On . .
the other hand in the largelimit the mean multiplicity ratio 25 P(1)=(Nx)<1. In the large volume limit, see Fig. 4, the
approaches one and the scaled variance ratio 0.5. Thus in tRéeéan values of the c.e. and g.c.e. distributions become equal,
case of fluctuations the canonical and grand canonical erfut the c.e. distribution is narrower than the g.c.e. one.

sembles are not equivalent.

=1 (20

VI. TOTAL MULTIPLICITY OF CHARGED PARTICLES

V. MULTIPLICITY DISTRIBUTION L . . .
The total multiplicity of charged particles is defined as

In the g.c.e. the multiplicity distribution dfl, (andN_)is ~ N.,=N.+N_. Its average in the g.c.e. and c.e. reads:
equal to the Poisson one:

b N i 5 NN 1 i e AN <Nch>g.c.e.: (N, + N—)g.c.e.: <N+>g.c.e.+ <N—>g.c.e.: 2z,
g.c.e.( )= = g.c.e.( HNo) = Zg conzo NaI NI (21)
AN 0.2
=exp-2) - NI (18) ' I I —@--c.e.
" JF“D\ ® - gce.
whereas the corresponding distribution in the ¢3.is: PO
o0 o ; ee
1 ZN+ ZN_ 2” !’._" ...‘\
P..(N,) = P..(N,,N.)=— - < 0.1 4
ce(Ny) N%O ce(Ni,N-) Zc.e.N%O N,!N_! A ‘ i\.{‘o
1 - )2 g T
XO(N;—N_) = ( 19 ¢
e ) @9
As an example, the distributions in g.c.e. and c.e. are plot- 0 0 "’“Ué 10 1'5u'”g'20
ted in Figs. 3 and 4 for=0.5 (the small systemandz=10 N

(the large systein respectively.
As expected from the previous discussion, the c.e. distri- FIG. 4. Multiplicity distributionsP ¢(N,) (19) and Py ¢ ¢(N.)
bution (19) is narrower(the variance is smallgrthan the (18) for z=10.
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11(22)
“10(22)°
(22)

(Newce.= Ny + Noc e =(Ni)c e+ (N e =2

In the g.c.e. one finds:

<N+N—>g.c.e.: <N+>g.c.e.' <N—>g.c.e.: <Nt>s.c.e.: 7+ <Ni>g.c.e.

=Z+z (23)
This leads to
(NZDgce= (N2 + 2NN+ N2)g co = (ND)g e
+ 2ANgcelNDgeet (NDg e,
= +z+2P+7+z
=472 + 2z, (24)

and consequently the scaled varianceéNgf in the g.c.e. is:

<N h>g c.e. <Nch>g c.e _ 422 +2z- (22)2
<Nch>g.c.e. 2z

ch
Wy ce=

(25)

The result(25) also follows from explicit expression on the
probability distribution ofN., in the g.c.e.:

Pg.c.e.(Nch) = E E Pg.c.e.(N+rN—) ’ 5[Nch_ (N+ + N—)]

N, N_=0
o0 N+ Z
Zg C. eNE NEO N+| m §[NCh N+ * N_)]
(Zz)Nch
=exp- 227~ (26)
ch

Thus distributions o\, andN, are Poissonian in the g.c.e.

In the c.e. the negatively and positively charged particles are

correlated{N, -N_)¢ ¢ # {Ny)ce{N_)cc. The correlation term
reads:

(NN e =(NDee =2
# <N+>ce '<N >ce

22 1(22)
15(22)°

Using Egs.(13) and(27) one obtains the scaled variance of
Nch in the c.e.:

=(Nu)ze. (27)

o Novee = Newge [ 12022 +16(22) _14(22)
e <Nch>c.e. I 1(22) I 0(22)
(28)
The scaled variances:", , and <", as functions ok are

shown in Fig. 5 together withj; . . and o .

From Egs. (15 and (28) and the recurrence relation
10(22)=1,(22) +1,(22)/z [7] it follows that 0y =20, i.€.,
the relative variance of total charge multlplICIN'ch is two
times larger than the one of,. This is becaus&,=N_ and
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2 .
ch
® + _ ch
) c.e. mg.c.e = mg.c.e
21 .'Q‘ __________ ]
1N +
\a(EC..e.
0 T
0 5 10
Z

FIG 5. The scaled variances, (28), wf, (15) and wgce.
= gce—l (14) and(25) as functlons ofz.

the relation (N3)-(Ng)?=w"-(Ng) is equivalent to
((2N,)?—(2N,)?=w*-(2N,). It then follows thatw®'=2w*
as the straightforward consequence of an exact charge con-
servation. One obtains a similar result for the case of charged
particle production via decay of neutral resonances, ¢.9.,
— 7"+ 7. The distributions ofr™ and 7~ coincide with the
p distribution, and consequently*=w". But becauseN.,
=2N, one getsw®'=2w" for any value ofw?, i.e., for arbi-
trary p distribution.

Probability distribution ofN, in the c.e. reads:

Pce(Neh) = 2 E Pce(Ni,No) - [Neh— (N + ND) |

N, N_=0
1 o] o)
> 2

19222 12 N N - 8N, = N_) - [ Nep
= (N, +N.)]

N, N_!
1 [z"‘ch’z

2
1422 <Nch/2>!} '

It coincides, of course, withP, o(N,) (19) at N,=N./2.
As an example, the probability distributioR ¢ .(Nc,) (26)
and P; .(N¢) (29) are shown forz=0.5 (the small system
and for z=10 (the large systeiin Figs. 6 and 7, respec-

ANe AN

(29)

6sd e
® gc.e.
0.6
Z 0.4 .
oy b8
0.2
0 T T T T ‘I' T T
0 1 2 3 4 5 6
N

FIG. 6. Multiplicity distributions ofN.,, for z=0.5 in the g.c.e.

thus Ng,=2N, in each microscopic state of the c.e., so thatand c.e.
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FIG. 7. Multiplicity distributions ofN, for z=10 in the g.c.e. FIG. 8. Multiplicity distributions P; ¢(Ngy) (29) and P"(Ng)
and c.e. (32 for z=10.
tively. Only even multiplicitiedN.,=0,2,4,... arallowed in 2z
the c.e. because of an exact charge conservation. For the  Pgce(Nent 1) = Pg.c.e.(Nch)m = Pyce(Ner), (35)
C

small system(z<1) the »°" reads[both Pgce(Nep=1) <1

andP; o(N.p=2) <1 atz<1]:

ch Pg.c.e.(l) i 12 - [Pg.c.e.(l) i 1]2 =

for Ngp, close to its average valu®leyg . 22> 1, i.e., if the
odd numberdN.,=1,3,5,... ardorbidden the probabilities
Pgce(Ne) for the even numbersdl,=0,2,4,...should be

Wgce= P (1)1 1, (B0  approximately doubled to have a correct normalization for
g.c.el

ch Pc.e.(z) ) 22_ [Pc.e.(z) . 2]2 ~ [Pc.e.(z) ) 2]2 -

P*(Ng) (32).
Using the Stirling formulan! =n"e™"y27n, valid for n
>1, one finds thaP,¢(N.)=P"(Ng,) for N, close to its

@ee.= P.o(2) -2 2, average value equal ta2 1. Both distributions are plotted
o in Fig. 8 for a comparison.
31) g p
In the largez limit the average number of charge particles VII. LIMITED KINEMATICAL ACCEPTANCE

(Ngp and its scaled variance® in the g.c.e, Eqs(21) and

(25), are equal to those in the c.e., E¢®82) and(28).

In the experimental study of nuclear collisions at high
energies only a fraction of all produced particles which carry

Nevertheless the corresponding probability distributions,onserved charges is registered. Thus the multiplicity distri-
are different, see Fig. 7. This is because all odd multiplicities, ion of the measured particles is expected to be different
are excluded in c.e. as a consequence of the charge consgism the distribution of all produced particles. Within c.e. the
vation. The relation betweeRy c(Ncr) (26) and Pee(Nen  effect of the limited kinematical acceptan@e acceptance
(29) for the large systentz>1) can be established as fol- iy the momentum spagean be taken into account introduc-
lows. Let us introduce the probability distributid? (Ncr)  ing a probabilityq that a single particle is registered. Be-

defined as

P"(Nep) =C - Pgce(New), Nen=0,2,4,..., (3

P'(Ng) =0, Nh=1,3,5, ..., (3

cause in c.e. particles are uncorrelated in momentum space
the multiplicity distribution of accepted particles for a fixed

where the constar is given by a normalization condition

1= E P*(Nch) =C E Pg.c.e.(Nch)

Ng=0,2,4,... Ng=0,2,4,. ..

~ B “ (ZZ)Zn
=C - exq 22)2O o

=C - exfg— 2z)cosh2z). (3

Using Eq.(34) one getsC=2[1+exd-42)] =2 for z>
The origin of the resulC=2 is the fact that

2 number of produced particleN is given by the binomial
distribution:
? Pacd N =61 g — (3
acen nt(N=-n)!’
Consequently one gets:
n=qN, i’ -n?=q(1-g)N, (37
where(k=1,2)
N
‘=2 nPedn,N). (39)
n=0

4)
Introducing the probability distributioiP?(N) the first two

1. moments of the distribution of accepted particles can be cal-
culated:
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o N 3
(Mace= 2 P(N) 2 nPyedn,N) =g -(N), (39
N=0 n=0 Fch)
2_ ( 27¢ce.
@ N
(Mace= 2 P(N) 2 n?Pocdn,N) =2 - (N?) +q(1 -q) -(N), 5
N=0 n=0 O B
40 LenTTTTTTT
( ) r- (FZ )c,e,
where(k=1,2) 0
0 5 10

(N9 =2 NP(N). (41)
N=0 FIG. 9. The fluctuation measuf as a function ot in the c.e.

Finally, the scaled variance for the accepted particles can bEhe dashed and solid lines indicafé)c .. (A1) and (F§)c.e. (A2),
obtained: respectively.

Wace=0-w+(1-0Q), (42) ACKNOWLEDGMENTS

wherew in Eq. (42) is the scaled variance of tH&(N) dis-
tribution. Assuming thafP(N) corresponds to the c.e., one
finds from Eq.(42) the scaled variance for the accepted par-
ticles in the c.ew, =1 for q<1 andw, = w;, for q=1.
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Vill. SUMMARY
The particle number fluctuations have been considered APPENDIX

within canonical ensemble for a system with zero net charge. , X_ 5
The results are compared to those in the grand canonical A VariableF>=(X(X-1))/(X)” was used for study of the
ensemble where only the mean value of charge is required fHctuations ofN, andNg, in small system¢z<1) [8]. In the
be zero. In the large volume limit the fluctuations in c.e. ared-c.€(i.e., for the Poisson distribution df. and N, one
found to be different from those in the g.c.e. Thus the wellgets(F3)gce=(F5)g.ce=1, whereas in the c.e. one findee
known equivalence of both ensembles for the mean quantilso Fig. 9:

ties is not valid for the fluctuations. The scaled variance of

the multiplicity distribution of same charge particles is cal- . (Ny(N; = D)eo 1622 -15(220 1 7
culated to be 0.5 in the c.e. and it is two times smaller than ~ (F2)ce.= 2 = 2 =t
. . (No)g e 1722)  z<12 6
the scaled variance in g.c.e. These results may be relevant for
the analysis of fluctuations in high energy nuclear collisions. (Al)

In view of this the influence of the limited kinematical ac-
ceptance on multiplicity fluctuations also has been discussed.

2
In this work the influence of the electric charge conserva- (Fgh _ — {Ner(Nen = D)e.e. _ 10(22) +10(22) - 15(22) _ i_
tion was discussed. However, other material conservation e (Nen? o, 213(22) <127
laws, e.g., baryon number, strangeness or charm, can be (A2)

treated within the same scheme. An extension of this work

for a non-zero value of the conserved charge and several In the large volume limitF;—1 and F3"—1 because
species of charged particles as well as an influence of afN:)?>(N.)>1 (the same foiN,). Therefore, this measure
exact charge conservation on the energy fluctuations in this not suitable for a study of the particle number fluctuations
c.e. will be presented elsewhere. in the large systems.
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