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Fluctuations of charged particle number are studied in the canonical ensemble. In the infinite volume limit
the fluctuations in the canonical ensemble are different from the fluctuations in the grand canonical one. Thus,
the well-known equivalence of both ensembles for the average quantities does not extend for the fluctuations.
In view of the possible relevance of the results for the analysis of fluctuations in nuclear collisions at high
energies, a role of the limited kinematical acceptance is studied.
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I. INTRODUCTION

The statistical approach to strong interactions is surpris-
ingly successful in describing experimental results on hadron
production properties in nuclear collisions at high energies
(see, e.g., Ref.[1], and references therein). This motivates a
rapid development of statistical models and it raises new
questions, previously not addressed in statistical physics. In
particular, an applicability of the models formulated within
various statistical ensembles has been considered for average
quantities. The micro-canonical ensemble, where the mo-
tional and material conservation laws are strictly fulfilled in
all microscopic states of the system, has to be used for col-
lisions in which a small number of particles is produced, like
p+p interactions at low energies(see, e.g., Ref.[2]). The
canonical ensemble(c.e.), where only the material conserva-
tion laws are obeyed, is relevant for the systems with a large
number of all produced particles, but a small number of car-
riers of conserved charges like electric charge, baryon num-
ber, strangeness or charm(see, e.g., Ref.[3]). Finally, models
formulated using grand canonical ensemble(g.c.e.) can be
used when the number of carriers of conserved charge is
large enough(see, e.g., Ref.[4]). In the latter approach both
material and motional conservation laws are relaxed and the
mean values of conserved charges and energy are adjusted by
introduction of chemical potentials and temperature, respec-
tively.

The question of applicability of various statistical en-
sembles for the study of fluctuations of physical quantities
has not been addressed up to now. In the textbooks of statis-
tical mechanics, the particle number fluctuations are consid-
ered in g.c.e. only. It is because the discussion is limited to
the non-relativistic cases, so that in the c.e. the particle num-
ber is fixed. However, in the relativistic case, relevant for the
models of hadron production in high energy nuclear colli-
sions, only conserved charges are fixed, and consequently the
particle number fluctuates in both c.e. and g.c.e.

The analysis of fluctuations is an important tool to study a
physical system created in high energy nuclear collisions
(see, e.g.,[5]). Recently, rich experimental data on fluctua-
tions of particle production properties in nuclear collisions at

high energies have been presented(see, e.g., presentations at
“Quark Matter 2004”). In particular, intriguing results con-
cerning the particle number fluctuations in collisions of small
nuclei at the CERN SPS have been shown[6]. These new
results motivate our work, in which the particle number fluc-
tuations are calculated in c.e. and compared with those ob-
tained in g.c.e. Finally, the possible influence of the limited
experimental acceptance on observed fluctuations is studied.

II. PARTITION FUNCTION IN G.C.E. AND C.E.

Let us consider the system which consists of one sort of
positively and negatively charged particles(e.g.,p+ andp−

mesons) with total charge equal to zeroQ=0. In the case of
the Boltzmann ideal gas(the interactions and quantum sta-
tistics effects are neglected) in the volumeV and at tempera-
ture T the g.c.e. partition function reads:

Zg.c.e.sV,Td = o
N+=0

`

o
N−=0

`
sl+zdN+

N+!

sl−zdN−

N−!
= expsl+z+ l−zd

= exps2zd. s1d

In Eq. (1) z is a single particle partition function

z=
V

2p2E
0

`

k2dkexpF−
sk2 + m2d1/2

T
G =

V

2p2Tm2K2Sm

T
D ,

s2d

wherem is a particle mass andK2 is the modified Hankel
function. Parametersl+ and l− are auxiliary parameters in-
troduced in order to calculate the mean number and the fluc-
tuations of positively and negatively charged particles(the
chemical potential equals zero to satisfy the condition
kQlg.c.e.=0). They are set to one in the final formulas.

The c.e. partition function is obtained by an explicit intro-
duction of the charge conservation constrain,N+−N−=0 for
each microscopic state of the system and it reads:
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Zc.e.sV,Td = o
N+=0

`

o
N−=0

`
sl+zdN+

N+!

sl−zdN−

N−!
dsN+ − N−d

=
1

2p
E

0

2p

df expfzsl+eif + l−e−ifdg

= I0s2zd. s3d

In Eq. (3) the integral representations of thed-Kronecker
symbol and the modified Bessel function were used:[7]

dsnd =
1

2p
E

0

2p

df expsinfd,

IQs2zd =
1

2p
E

0

2p

df expf− iQf + 2zcosfg.

III. MEAN PARTICLE NUMBER

The average number ofN+ andN− can be calculated as

kN±l = S ]

]l±
ln ZD

l±=1
, s4d

and in the g.c.e.(1) they are equal to:

kN±lg.c.e.= S ]

]l±
ln Zg.c.e.D

l±=1
= z. s5d

By construction the mean total charge is equal to zero:
kQlg.c.e.=kN+lg.c.e.−kN−lg.c.e.=0. In the c.e.(3) the charge
conservationQ=N+−N−=0 is imposed on each microscopic
state of the system. This condition introduces a correlation
between particles which carry conserved charges. The aver-
age particle numbers are[3]:

kN±lc.e.= S ]

]l±
ln Zc.e.D

l±=1
= z

I1s2zd
I0s2zd

. s6d

The exact charge conservation leads to the c.e. suppression
sI1s2zd / I0s2zd,1d of the charged particle multiplicity rela-
tive to the result for the g.c.e.(5). The ratio ofkN±l calcu-
lated in the c.e. and g.c.e. is plotted as a function ofz in Fig.
1.

In the large volume limit(V→` corresponds also toz
→`) the results for mean quantities in the c.e. and g.c.e. are
equal. This result is referred as an equivalence of the canoni-
cal and grand canonical ensembles. It can be obtained using
an asymptotic expansion of the modified Bessel function[7]:

lim
z→`

Ins2zd =
exps2zd
Î4pz

F1 −
4n2 − 1

16z
+ OS 1

z2DG , s7d

which givesI1s2zd / I0s2zd→1 and therefore

kN±lc.e.> kN±lg.c.e.= z. s8d

Using the series expansion one gets[7] for small systems
sz!1d:

Ins2zd =
zn

n!
+

zn+2

sn + 1d!
+ Oszn+4d, s9d

and consequentlyI1s2zd / I0s2zd>z which results in

kN±lc.e.> z2 ! kN±lg.c.e.= z. s10d

The asymptotics of the mean multiplicity discussed above
are clearly seen in Fig. 1.

IV. SCALED VARIANCE

An useful measure of fluctuations of any variableX is the
ratio of its varianceVsXd=kX2l−kXl2 to its mean valuekXl,
referred here as the scaled variance:

vX ;
kX2l − kXl2

kXl
. s11d

Note thatvX=1 for the Poisson distribution. Thus, to study
the fluctuations of charged particles the second moment of
the multiplicity distributionkN±

2l has to be calculated. In the
g.c.e.(1) and c.e.(3) one finds:

kN±
2lg.c.e.=

1

Zg.c.e.
F ]

]l±
Sl±

]Zg.c.e.

]l±
DG

l±=1
= z+ z2, s12d

kN±
2lc.e.=

1

Zc.e.
F ]

]l±
Sl±

]Zc.e.

]l±
DG

l±=1
= z

I1s2zd
I0s2zd

+ z2I2s2zd
I0s2zd

= z2.

s13d

The corresponding scaled variances are:

vg.c.e.
± =

kN±
2lg.c.e.− kN±lg.c.e.

2

kN±lg.c.e.
= 1, s14d

vc.e.
± =

kN±
2lc.e.− kN±lc.e.

2

kN±lc.e.
= 1 −zF I1s2zd

I0s2zd
−

I2s2zd
I1s2zdG . s15d

The dependence of the scaled variance calculated within
the c.e. and g.c.e. onz is shown in Fig. 2.

Using Eqs.(7) and(9) the asymptotic behavior ofvc.e.
± for

both z→0 and z→` can be found. The c.e. fluctuations
measured in terms ofv are equal to those in the g.c.e. for the

FIG. 1. The ratio ofkN±lc.e. (6) to kN±lg.c.e. (5) as a function of
z.
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small systemsz!1d (another variable to treat the fluctua-
tions in the small systems is discussed in Appendix):

vc.e.
± > 1 −

z2

2
> 1 = vg.c.e.

± . s16d

For large systemssz@1d the scaled variance for the c.e. is
two times smaller than the scaled variance for the g.c.e.:

vc.e.
± >

1

2
+

1

8z
>

1

2
=

1

2
vg.c.e.

± . s17d

The scaled variance shows a very different behavior than
the mean multiplicity. In the limit of smallz the ratio of the
results for c.e. and g.c.e. approaches zero for the mean mul-
tiplicity (Fig. 1) and one for the scaled variance(Fig. 2). On
the other hand in the largez limit the mean multiplicity ratio
approaches one and the scaled variance ratio 0.5. Thus in the
case of fluctuations the canonical and grand canonical en-
sembles are not equivalent.

V. MULTIPLICITY DISTRIBUTION

In the g.c.e. the multiplicity distribution ofN+ (andN−) is
equal to the Poisson one:

Pg.c.e.sN+d ; o
N−=0

`

Pg.c.e.sN+,N−d =
1

Zg.c.e.
o

N−=0

`
zN+

N+!

zN−

N−!

= exps− zd ·
zN+

N+!
, s18d

whereas the corresponding distribution in the c.e.(3) is:

Pc.e.sN+d ; o
N−=0

`

Pc.e.sN+,N−d =
1

Zc.e.
o

N−=0

`
zN+

N+!

zN−

N−!

3dsN+ − N−d =
1

I0s2zd
·S zN+

N+!
D2

. s19d

As an example, the distributions in g.c.e. and c.e. are plot-
ted in Figs. 3 and 4 forz=0.5 (the small system) andz=10
(the large system), respectively.

As expected from the previous discussion, the c.e. distri-
bution (19) is narrower(the variance is smaller) than the

g.c.e. one(18). This result is valid for both the largesz
@1d and the smallsz!1d system. On the other hand, the
average value ofN± is smaller in the c.e. than in the g.c.e. for
small z. It results invc.e.

± →vg.c.e.
± =1 at z→0. Moreover, for

kN±l!1 one can easily demonstrate thatv± >1 for any
PsN±d distribution if the conditionsPs0d@ Ps1d@ Pskd (with
kù2) are satisfied. Indeed, in this limit one can neglect all
PsN±d for N± ù2 which results in:

v± ;
kN±

2l − kN±l2

kN±l
>

Ps1d · 12 − fPs1d · 1g2

Ps1d · 1
> 1 s20d

asPs1d>kN±l!1. In the large volume limit, see Fig. 4, the
mean values of the c.e. and g.c.e. distributions become equal,
but the c.e. distribution is narrower than the g.c.e. one.

VI. TOTAL MULTIPLICITY OF CHARGED PARTICLES

The total multiplicity of charged particles is defined as
Nch=N++N−. Its average in the g.c.e. and c.e. reads:

kNchlg.c.e.= kN+ + N−lg.c.e.= kN+lg.c.e.+ kN−lg.c.e.= 2z,

s21d

FIG. 2. The scaled variances ofN± calculated within the g.c.e.,
vg.c.e.

± =1 (14), and c.e.,vc.e.
± (15). FIG. 3. Multiplicity distributionsPc.e.sN±d (19) and Pg.c.e.sN±d

(18) for z=0.5.

FIG. 4. Multiplicity distributionsPc.e.sN±d (19) and Pg.c.e.sN±d
(18) for z=10.
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kNchlc.e.= kN+ + N−lc.e.= kN+lc.e.+ kN−lc.e.= 2z
I1s2zd
I0s2zd

.

s22d

In the g.c.e. one finds:

kN+N−lg.c.e.= kN+lg.c.e.· kN−lg.c.e.= kN±lg.c.e.
2 = z2 Þ kN±

2lg.c.e.

= z2 + z. s23d

This leads to

kNch
2 lg.c.e.= kN+

2 + 2N+N− + N−
2lg.c.e.= kN+

2lg.c.e.

+ 2kN+lg.c.e.kN−lg.c.e.+ kN−
2lg.c.e.

= z2 + z+ 2z2 + z2 + z

= 4z2 + 2z, s24d

and consequently the scaled variance ofNch in the g.c.e. is:

vg.c.e.
ch ;

kNch
2 lg.c.e.− kNchlg.c.e.

2

kNchlg.c.e.
=

4z2 + 2z− s2zd2

2z
= 1.

s25d

The result(25) also follows from explicit expression on the
probability distribution ofNch in the g.c.e.:

Pg.c.e.sNchd ; o
N+

`

o
N−=0

`

Pg.c.e.sN+,N−d · dfNch − sN+ + N−dg

=
1

Zg.c.e.
o
N+

`

o
N−=0

`
zN+

N+!

zN−

N−!
· dfNch − sN+ + N−dg

= exps− 2zd
s2zdNch

Nch!
. s26d

Thus distributions ofNch andN± are Poissonian in the g.c.e.
In the c.e. the negatively and positively charged particles are
correlated,kN+·N−lc.e.Þ kN+lc.e.·kN−lc.e.. The correlation term
reads:

kN+N−lc.e.= kN±
2lc.e.= z2

Þ kN+lc.e.· kN−lc.e.

= kN±lc.e.
2 = z2I1

2s2zd
I0
2s2zd

. s27d

Using Eqs.(13) and (27) one obtains the scaled variance of
Nch in the c.e.:

vc.e.
ch ;

kNch
2 lc.e.− kNchlc.e.

2

kNchlc.e.
= 1 +zF I2s2zd + I0s2zd

I1s2zd
− 2

I1s2zd
I0s2zdG .

s28d

The scaled variancesvg.c.e.
ch andvc.e.

ch as functions ofz are
shown in Fig. 5 together withvg.c.e.

± andvc.e.
± .

From Eqs. (15) and (28) and the recurrence relation
I0s2zd= I2s2zd+ I1s2zd /z [7] it follows that vc.e.

ch =2vc.e.
± , i.e.,

the relative variance of total charge multiplicityNch is two
times larger than the one ofN±. This is becauseN+=N− and
thus Nch=2N± in each microscopic state of the c.e., so that

the relation kNch
2 l−kNchl2=vch·kNchl is equivalent to

ks2N±d2l−k2N±l2=v± ·k2N±l. It then follows thatvch=2v±

as the straightforward consequence of an exact charge con-
servation. One obtains a similar result for the case of charged
particle production via decay of neutral resonances, e.g.,r
→p++p−. The distributions ofp+ andp− coincide with the
r distribution, and consequentlyv±=vr. But becauseNch
=2Nr one getsvch=2vr for any value ofvr, i.e., for arbi-
trary r distribution.

Probability distribution ofNch in the c.e. reads:

Pc.e.sNchd ; o
N+

`

o
N−=0

`

Pc.e.sN+,N−d · dfNch − sN+ + N−dg

=
1

I0s2zd o
N+=0

`

o
N−=0

`
zN+

N+!

zN−

N−!
· dsN+ − N−d · dfNch

− sN+ + N−dg

=
1

I0s2zdF zNch/2

sNch/2d! G2

. s29d

It coincides, of course, withPc.e.sN+d (19) at N+=Nch/2.
As an example, the probability distributionsPg.c.e.sNchd (26)
and Pc.e.sNchd (29) are shown forz=0.5 (the small system)
and for z=10 (the large system) in Figs. 6 and 7, respec-

FIG. 5. The scaled variancesvc.e.
ch (28), vc.e.

± (15) and vg.c.e.
±

=vg.c.e.
ch =1 (14) and (25) as functions ofz.

FIG. 6. Multiplicity distributions ofNch for z=0.5 in the g.c.e.
and c.e.
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tively. Only even multiplicitiesNch=0,2,4, . . . areallowed in
the c.e. because of an exact charge conservation. For the
small systemsz!1d the vch reads[both Pg.c.e.sNch=1d!1
andPc.e.sNch=2d!1 at z!1g:

vg.c.e.
ch >

Pg.c.e.s1d · 12 − fPg.c.e.s1d · 1g2

Pg.c.e.s1d · 1
> 1, s30d

vc.e.
ch >

Pc.e.s2d · 22 − fPc.e.s2d · 2g2 − fPc.e.s2d · 2g2

Pc.e.s2d · 2
> 2.

s31d

In the largez limit the average number of charge particles
kNchl and its scaled variancevch in the g.c.e, Eqs.(21) and
(25), are equal to those in the c.e., Eqs.(22) and (28).

Nevertheless the corresponding probability distributions
are different, see Fig. 7. This is because all odd multiplicities
are excluded in c.e. as a consequence of the charge conser-
vation. The relation betweenPg.c.e.sNchd (26) and Pc.e.sNchd
(29) for the large systemsz@1d can be established as fol-
lows. Let us introduce the probability distributionP*sNchd
defined as

P*sNchd ; C · Pg.c.e.sNchd, Nch = 0,2,4, . . . , s32d

P*sNchd ; 0, Nch = 1,3,5, . . . , s33d

where the constantC is given by a normalization condition

1 = o
Nch=0,2,4,. . .

P*sNchd ; C o
Nch=0,2,4,. . .

Pg.c.e.sNchd

= C · exps− 2zdo
n=0

`
s2zd2n

s2nd!

= C · exps− 2zdcoshs2zd. s34d

Using Eq.(34) one getsC=2·f1+exps−4zdg−1>2 for z@1.
The origin of the resultC>2 is the fact that

Pg.c.e.sNch + 1d ; Pg.c.e.sNchd
2z

Nch + 1
> Pg.c.e.sNchd, s35d

for Nch close to its average valuekNchlg.c.e=2z@1, i.e., if the
odd numbersNch=1,3,5, . . . areforbidden the probabilities
Pg.c.e.sNchd for the even numbersNch=0,2,4, . . .should be
approximately doubled to have a correct normalization for
P*sNchd (32).

Using the Stirling formula,n! >nne−nÎ2pn, valid for n
@1, one finds thatPc.e.sNchd> P*sNchd for Nch close to its
average value equal to 2z@1. Both distributions are plotted
in Fig. 8 for a comparison.

VII. LIMITED KINEMATICAL ACCEPTANCE

In the experimental study of nuclear collisions at high
energies only a fraction of all produced particles which carry
conserved charges is registered. Thus the multiplicity distri-
bution of the measured particles is expected to be different
from the distribution of all produced particles. Within c.e. the
effect of the limited kinematical acceptance(the acceptance
in the momentum space) can be taken into account introduc-
ing a probabilityq that a single particle is registered. Be-
cause in c.e. particles are uncorrelated in momentum space
the multiplicity distribution of accepted particles for a fixed
number of produced particlesN is given by the binomial
distribution:

Paccsn,Nd = qns1 − qdN−n ·
N!

n ! sN − nd!
. s36d

Consequently one gets:

n̄ = qN, n2 − n̄2 = qs1 − qdN, s37d

wheresk=1,2d

nk ; o
n=0

N

nkPaccsn,Nd. s38d

Introducing the probability distributionPsNd the first two
moments of the distribution of accepted particles can be cal-
culated:

FIG. 7. Multiplicity distributions ofNch for z=10 in the g.c.e.
and c.e.

FIG. 8. Multiplicity distributions Pc.e.sNchd (29) and P*sNchd
(32) for z=10.
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knlacc; o
N=0

`

PsNdo
n=0

N

nPaccsn+,Nd = q · kNl, s39d

kn2lacc; o
N=0

`

PsNdo
n=0

N

n2Paccsn,Nd = q2 · kN2l + qs1 − qd · kNl,

s40d

wheresk=1,2d

kNkl ; o
N=0

`

NkPsNd. s41d

Finally, the scaled variance for the accepted particles can be
obtained:

vacc= q · v + s1 − qd, s42d

wherev in Eq. (42) is the scaled variance of thePsNd dis-
tribution. Assuming thatPsNd corresponds to the c.e., one
finds from Eq.(42) the scaled variance for the accepted par-
ticles in the c.e.vacc

+ >1 for q!1 andvacc
+ >vc.e.

+ for q>1.
These limiting behaviors agree with the expectations. In

the large acceptance limitsq<1d the distribution of mea-
sured particles approaches the distribution in the full accep-
tance. For a very small acceptancesq<0d the measured dis-
tribution approaches the Poisson one independent of the
shape of the distribution in the full acceptance.

VIII. SUMMARY

The particle number fluctuations have been considered
within canonical ensemble for a system with zero net charge.
The results are compared to those in the grand canonical
ensemble where only the mean value of charge is required to
be zero. In the large volume limit the fluctuations in c.e. are
found to be different from those in the g.c.e. Thus the well
known equivalence of both ensembles for the mean quanti-
ties is not valid for the fluctuations. The scaled variance of
the multiplicity distribution of same charge particles is cal-
culated to be 0.5 in the c.e. and it is two times smaller than
the scaled variance in g.c.e. These results may be relevant for
the analysis of fluctuations in high energy nuclear collisions.
In view of this the influence of the limited kinematical ac-
ceptance on multiplicity fluctuations also has been discussed.

In this work the influence of the electric charge conserva-
tion was discussed. However, other material conservation
laws, e.g., baryon number, strangeness or charm, can be
treated within the same scheme. An extension of this work
for a non-zero value of the conserved charge and several
species of charged particles as well as an influence of an
exact charge conservation on the energy fluctuations in the
c.e. will be presented elsewhere.
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APPENDIX

A variableF2
X=kXsX−1dl / kXl2 was used for study of the

fluctuations ofN± andNch in small systemssz!1d [8]. In the
g.c.e (i.e., for the Poisson distribution ofN± and Nch) one
getssF2

±dg.c.e.=sF2
chdg.c.e.=1, whereas in the c.e. one finds(see

also Fig. 9):

sF2
±dc.e.;

kN±sN± − 1dlc.e.

kN±lc.e.
2 =

I0s2zd · I2s2zd
I1
2s2zd

>
z!1

1

2
+

z2

6
,

sA1d

sF2
chdc.e.;

kNchsNch − 1dlc.e.

kNchlc.e.
2 =

I0
2s2zd + I0s2zd · I2s2zd

2I1
2s2zd

>
z!1

1

2z2 .

sA2d

In the large volume limitF2
±→1 and F2

ch→1 because
kN±l2@ kN±l@1 (the same forNch). Therefore, this measure
is not suitable for a study of the particle number fluctuations
in the large systems.

FIG. 9. The fluctuation measureF2 as a function ofz in the c.e.
The dashed and solid lines indicatesF2

±dc.e. (A1) and sF2
chdc.e. (A2),

respectively.
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