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A continuum shell model has been constructed which allows inclusion of any nonspurious states of the core
nuclei and any nonspurious states of the composite system. The resulting coupled-channels solutions are
antisymmetric and translationally invariant. These wave functions can be used to calculate many nuclear
phenomena, from capture reactions at astrophysical energies, to knockout reactions at low energies, to nucleon
scattering and charge exchange at intermediate energies. The model is used to investigate the4Hesg ,pd3H,
4Hesg ,nd3He, and,3Hesp,pd3He reactions.
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I. INTRODUCTION

The need for accurate solutions of nuclear systems with
one particle in the continuum are numerous. Elastic, inelastic
and charge exchange reactions, capture reactions, and one-
nucleon knockout reactions all require these wave functions.
Such reactions are often addressed with optical model, dis-
torted wave, or in some cases with resonating group calcu-
lations. Each procedure has approximations which may make
them inappropriate for describing particular phenomena. The
recoil corrected continuum shell model(RCCSM), intro-
duced by Philpott[1], is also a model, and hence provides an
approximate solution to the nuclear many-body problem, but
it is one in which it is possible to systematically improve the
solution by adding additional shell-model configurations.

The first application of the RCCSM was to nucleon scat-
tering from closed shell nuclei.[1] Here the importance of a
translationally invariant model was exhibited. The model
was extended to 1p-1h excitations in Refs.[2–7]. Calcula-
tions were made forA=4, 12, and 16 composite systems.
These calculations included many types of reactions, from
investigations of polarization-analyzing power differences in
sp,nd reactions[4] to sp ,p8Nd knockout reactions[2]. Re-
cently the model was extended to include allp-shell nuclei
and applied to medium energy nucleon-induced reactions[8]
and to low energy7Be+p elastic scattering[9]. Now the
model has been extended by allowing anyA−1 shell-model
core states, as long as they are nonspurious, and any states of
the composite system, as long as they are nonspurious, and
include them in a calculation with one nucleon in the con-
tinuum. The first purpose of the paper is to describe the
implementation of this model.

The most successful application of the RCCSM was to the
A=4 composite system. The M3Y interaction of Ref.[10]
amazingly turned out to be the near perfect effective interac-
tion for cores states of the 0s3 configuration. Almost all phe-
nomena involving one nucleon in the continuum below
60 MeV were accurately described by this simple model.
Apparently, the main ingredients are the correct effective in-
teraction and the translationally invariant solutions. An ex-
ception to this agreement occurs when comparing data from
reactions involving real or virtual photons. However, in elec-
tron scattering many of the data sets are not consistent with

each other, and it was difficult to determine exactly when the
calculations were not correctly describing the phenomena.
After a comparison with virtually allse,e8Nd data, it was
concluded in Ref.[6] that agreement with most data is good,
except, on average, the transverse convection current is 10–
30% too weak at low momentum transfer and in the energy
region Ex=20–40 MeV, and that the calculated Coulomb
multipoles are possibly too strong in that same momentum
and energy region. The real photon case is more clear, in
that, one is not sorting through many different energies and
momentum transfers, but again, different data sets disagree.
This disagreement is demonstrated in Figs. 1 and 2. The data
for Fig. 1 have been divided into three groups. The data of
Refs. [11–15] are classified as high. Of these, only the data
of Ref. [11] are plotted as open circles to represent this
group. The data of Refs.[16–18] are classified as intermedi-
ate. Of these, only the data of Ref.[17] are plotted as dia-

FIG. 1. The4Hesg ,pd3H total cross section. The data of Refs.
[11, 17, and 19] are plotted as open circles, diamonds, and3 ’ s,
respectively. Light dotted curves are from calculations withN=0
with pure 0s4 ground state. Solid, dark-dotted, dashes, and dot-
dashed lines are forN=0, 2, 4, and 6, respectively. Upper curves are
with Coulomb operator; lower curves are with transverse current
operator.
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monds to represent this group. The data of Refs.[19 and 20]
are classified as low. Of these, only the data of Ref.[19] are
plotted as3 ’ s to represent this group. Here one sees a 35%
discrepancy among data sets in the4Hesg ,pd cross section.

In Fig. 2 the ratiossg ,pd /ssg ,nd is plotted for only those
data sets that come from the same experiment or the same
laboratory, in which bothssg ,nd and ssg ,pd magnitudes
were determined, and that extend into the peak cross section
region. Therefore, the data of Refs.[13,16,18], and [19] di-
vided by [21] are plotted as open circles, diamonds, open
squares, and3 ’ s, respectively. The data of Ref.[11] divided
by that of Ref.[21] are also plotted as solid circles to dem-
onstrate one among the many ways that a ratio near two can
be obtained.

These results are very disconcerting in view of the need
for accuracy in recent and future capture measurements with
radioactive beams, and this accuracy does not appear to be
available with a stable beam. Therefore, the second purpose
of this paper is to test whether an extension of theA−1 core
to more complicated configurations beyond 0s3 can provide
theoretical guidance for the4Hesg ,Nd reaction. Particular at-
tention is paid to thessg ,pd /ssg ,nd ratio because it pro-
vides a connection among data sets, and has, in past calcu-
lations, shown a large discrepancy between the results of
calculations and experiments. In addition, tests are made to
see if more complicated core configurations improve nucleon
scattering above 60 MeV.

II. THE GENERAL RCCSM

The procedure for the general RCCSM closely follows
that of thep-shell RCCSM[8]. One picks an oscillator size
parameter,v=mv /", which yields a correct fit to the size of
the core, and a realistic two-body interaction. The effective
interaction may be of any form that is consistent with trans-

lational invariance. It may contain central, spin-orbit, qua-
dratic spin-orbit, and tensor terms. The nonspuriousA−1
core statesuJAal are then calculated by standard techniques
within a specified model space. ForA=4, this would be the
states of3H and3He. If one believes that coupling a nucleon
onto these core states does not provide a sufficient basis, then
additional bound states of theA=4 composite system could
be calculated. In the notation of Ref.[1], these are noted as
beta statesuJBbl. One must provide the one, two, and three-
body densities for the core states,

kJAaifa+
ktk

atl
gJxiJ8Aa8l,

kJAaifsak
+al

+dJyTysamandJxTxgJT
MT

iJ8Aa8l,

and

kJAaihfsak
+al

+dt
JxTxa+

lti
gJ8xfsamand−t

JxTxaptp
gJ8yjJiJ8Aa8l.

These quantities are used in calculating the matrix elements
of the Hamiltonian, unit operator, and transition operators for
A-particle system in the shell-model basis. Ifb states are
allowed, then one must provide the overlaps,

kJBbufa+uJAalgJB,

fkJBbifsai
+al

+dtx

JxTxaktk
gJiJAalg,

and

kJBbihfsak
+al

+dt
JxTxa+

iti
g j8xsamand−t

JxTxj jiJAal.

The a states are constructed by coupling one nucleon to the
core states in the shell-model coordinate system as,fa+

nljt
^ uJAalgJ, and the matrix elements of the Hamiltonian,

HA = o
i=1

A

pi
2/2m− Tc.m.+ o

i, j

A

vi j , s1d

are calculated in this basis. The present calculations include
all 2n+ l ø22 to insure adequate representation of the wave
function within the channel radius. The matrix elements are
then transformed to the coordinate connecting the extra
nucleon to the center of mass of the core, thus removing
spurious components[1]. If b states are included, the matrix
elements of the Hamiltonian are calculated amonga and b
states, and those transformed to the relative coordinate be-
tween the center of mass of the core and the last nucleon.
The transformation must also be done for the reduced matrix
elements of transition operators and for the unit matrix.

TABLE I. Oscillator constants, radii and energies.

N 0 2 4 6

v sfm−2d 0.360 0.290 0.315 0.275
3H, kr2l1/2 (fm) 1.667 1.669 1.668 1.670
3He kr2l1/2 (fm) 1.667 1.721 1.758 1.749

p-separation energy
(MeV)

22.5 21.2 20.9 21.3

FIG. 2. The ratiossg ,pd /ssg ,nd. The data of Refs.[13,16,18],
[19] divided by [21], and [11] divided by [21] are plotted as open
circles, diamonds, open squares,3 ’ s and solid circles, respectively.
Curves are the same as in Fig. 1.
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To implement theR-matrix procedure, the matrix ele-
ments are then truncated at a cutoff radiusac. The unit ma-
trix, 1, within ac, is diagonalized to produce an orthogonal
basis set, truncated so as not to be overcomplete. One can
then set up the standardR-matrix equations with this basis as
in [22].

III. RESULTS

The procedure to calculate theE1 cross section with the
R-matrix framework is described in Ref.[23] and the refer-
ences therein. Calculations for theA=3 systems are shown
below for N=0, 2, 4, and 6, where the basis includes all
oscillator states with 2sn1+n2+n3d+ l1+ l2+ l3øN, n starts at
zero. In each case, an oscillator constant is chosen which
reproduces the3H point charge radius. Comparing calcula-
tions with different oscillator constants poses some problems
concerning convergence criteria, but it would make no sense
to make calculations with an inappropriate core radius. The
resulting radii and oscillator constants, along with the proton
separation energies are shown in Table I.

Several curves accompany the data for4Hesg ,pd in Fig. 1.
The two light-dotted curves with the label 0s4 are from cal-
culations withN=0, but instead of taking the corresponding
RCCSM solution for the4He ground state, it is taken to be
pure 0s4 and with the experimental proton separation energy,
19.8 MeV. The two solid, dark-dotted, dashed, and dot-
dashed lines are forN=0, 2, 4, and 6, respectively. The cal-
culations include only the dominate, spin-independentE1
contribution, but the upper set of lines is calculated with the
E1 current operator,Q10=2bsi /kdpzs−t3d, and the lower set
of lines is calculated with the standard Coulomb effective
operator,sQ10deff=ezs−t3d, obtained by applying the continu-
ity equation to the matrix element ofp. Here, k=sEi

−Efd /"c, b=e" /2mc, and t3sp,nd= s−1
2 , + 1

2
d. The photon

wave number will always be calculated with the theoretical
value unless stated otherwise. The upper and lower sets of
curves differ by much more than the few percent one would
expect from gauge invariant terms or exchange terms. A
similar comparison was made in Ref.[24] for the direct cap-
ture model. Here it was found that use of the two different
transition operators gave vastly different results when the
continuum and final state were calculated with different
single-particle potentials, but gave nearly the same results
when the same potential was used for both.

The difficulty with the twoE1 transition operators comes
in the relation

d

dt
kf uruil =

i

"
kf ufH,rguil = − = · kf uj uil. s2d

The Hamiltonian must act left and right, but the initial and
final states do not satisfy the operator equationHc=Ec. One
could use the energies obtained in the model space or one
could use the experimental energies, but either wayH oper-
ating on a model space wave function does not give a con-
stant times the model space wave function. The very same
difficulty occurs inse,e8pd when substituting the density for
the third component of the currentvia the continuity equa-

tion. One can obtain very different results with the two dif-
ferent operators[6,25]. In conventional distorted wave cal-
culations one has no chance of sorting this out, because the
states will never be an eigenfunctions ofH, no matter how
accurately the residual core state is determined. In contrast,
the general RCCSM will provide an accurate solution to the
continuum problem and the bound state with the same
Hamiltonian, and the only question is whether the basis is
big enough. Hence, by calculating the cross sections with
both operators, one has a very strict test of the completeness
of the basis.

For a better comparison between the two operations, the
ratios of the cross sections with the Coulomb operator to that
with the current operator are plotted in Fig. 3. Graphs using
the proton cross sections or neutron cross sections would be
indistinguishable to the eye. The light dotted line is again
representing the 1p-1h sN=0d calculation with the RCCSM
ground state replaced by 0s4 and with the experimental pro-
ton separation energy. This was the first calculation per-
formed with the RCCSM[3], except that a factore2=1.44
was erroneously omitted. This curve demonstrates how sen-
sitive the ratio is to having a final state which is a solution to
your Hamiltonian, even in a limited basis. The change from
the light-dotted line to theN=0 solid line is huge. Again
questions of convergence withN are clouded by the use of
different oscillator constants. In addition, theN=6 calcula-
tion is having the most difficulty representing the tail of4He
bound state because it is trying to describe a very compact
object with oscillator wave functions derived with a large
oscillator constant(large b, small v). But the similarity be-
tweenN=4 dashed line andN=6 dot-dashes line indicates
that one is coming to an end of the improvement that can be
obtained by increasing the complexity of the core states. An
argument for convergence can also be made from Fig. 1.
However, this is actually good news, in that it shows that
considerable progress toward current conservation can be

FIG. 3. The ratio of cross sections calculated with Coulomb
multipoles to that calculated with transverse current operator. Solid,
dark-dotted, dashes, and dot-dashed lines are forN=0, 2, 4, and 6,
respectively.
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made by just improving the core state wave functions. Of
course this relies on a proper solution of the scattering equa-
tions, which would not be possible in distorted wave calcu-
lations, where one is not finding a continuum solution to the
same Hamiltonian used to generate the bound state wave
function.

Returning to Fig. 1, one sees that the decrease in the ratio
of operator cross sections is a result of the cross sections
from the Coulomb operator becoming smaller and those
from the transverse current operator becoming larger. This
result is in the correct direction to alleviate the two problems
in electron scattering at low momentum transfer as men-
tioned above.

When the first strong evidence appeared that the ratio of
cross sections for4Hesg ,pd3H and 4Hesg ,nd3He were not
unity in the energy range,Ex=20–30 MeV, [21,26] many
attempts were made to reproduce the phenomena within the
1p-1h version of the RCCSM. All possible multipoles were
included, the spin-dependentE1 operator was included, the
second-order correction to theE1, spin-independent operator
was included,[23] and the operators were recalculated in
Jacobi coordinates in order to eliminate the long-wavelength
approximation and correctly calculate the matrix elements of
the 1p-1h contributions of the4He ground state[6]. Nothing
changed the ratio from approximately unity except adding an
explicitly charge symmetry breaking interaction[27].

An older calculation in Ref.[28] did produce a ratio of
approximately two, but this calculation was essentially a
bound state-calculation. However, what it did have were con-
figurations not included in the 1p-1h RCCSM. The general
RCCSM allows one to test the effect of increasing the model
space. Only, when one looks at the basis, it could include the
deuteron-deuteron channel and three- and four-body
breakup. The task would appear daunting. However, the
d-d channel and three and four-body breakup were not in-
cluded in the 1p-1h model, and still near perfect agreement
with nucleon scattering data was obtained. This result plus

the improvement in the sensitive ratio of cross sections cal-
culated with the transverse current operator and Coulomb
operator provide confidence in a calculation with the im-
proved structure in theA−1 system. In fact, an improvement
in the A−1 structure already provides one with a possible
source for thessg ,pd /ssg ,nd ratio being different from
unity. The3H and3He radii will not be the same as they were
in the 1p-1h sN=0d model. Shown in Table I in addition to
the 3H radii are the calculated3He r.m.s. radii. This is an
asymmetry not tested in previous RCCSM calculations.

FIG. 4. The4Hesg ,nd3H total cross section. Solid lines enclose
calculation of Ref.[30], dashed line is from Ref.[32], and dot-
dashed line is RCCSM result with effective interaction derived from
MTI-III potential.

FIG. 5. The 40 MeV cross section and polarization for
3Hesp,pd3H. The data are from Ref.[34]. Solid is for N=0; dot-
dashed line is forN=6.

FIG. 6. The 85 MeV cross section for3Hesp,pd3He. Data are
from Ref. [35]. Solid line is N=0. Dot-dashed line is forN=6.
Dashed line is for Reid Soft Coreg-matrix interaction from Ref.
[33].
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The ssg ,pd /ssg ,nd ratio, calculated with the Coulomb
operator, for the same five calculations shown in Fig. 1 are
shown in Fig. 2. The curves are nearly identical, and the
same result is obtained if one uses the transverse current
operator. Since the data sets that show thessg ,pd /ssg ,nd
ratio near two do so byEp

c.m.=5 MeV, and since the ratio of
cross sections calculated with the Coulomb operator to that
with the transverse current operator is low at that energy, one
has a fair degree of confidence in the calculations. Therefore,
only those data sets with a ratio near unity atEp

c.m.

=5 MeV are acceptable. This includes the data of Refs.
[13,16,18] and[19] divided by[21]. Of these, the ones clas-
sified as intermediate above provide the best agreement with
the magnitude of theN=6 result with the Coulomb operator.
These would be Refs.[16,18].

The data of Ref.[19] appear to be about 20% low; how-
ever, they do fall between the Coulomb and transverse cur-
rent results. According to Siegert’s theorem[29], one has
greater confidence in cross sections employing the Coulomb
multipole. Use of the experimental proton separation energy
in the calculation would lower the curve slightly, and includ-
ing the E2 multipole would increase it slightly, hence, an
approximate 20% discrepancy is firm. If the data of Ref.[19]
are correct, then this would be another case where the struc-
tureless nucleon approximation overestimates a single par-
ticle strength.

Although the authors test only the CoulombE1 mutipole,
the above results are very similar to those obtained in the
recent calculation in Ref.[30]. Here the authors employ the
Lorentz integral transform method. The advantage of this
method is that it allows calculation of the photodisintegration
cross section without the intermediate step of calculating
continuum wave functions, and it is anab initio calculation
in the sense that they are solving the four-body problem. The
disadvantage is that, without the continuum wave functions,
one has no other way to test the appropriateness of the solu-
tion, such as elastic scattering or charge exchange. In fact,
because the centrals-wave interaction of Malfiet and Tjon
[31] (MTI-III ) was employed, one is certain that the experi-
mental, low-energy nucleon scattering data will not be repro-
duced.

The ssg ,pd and ssg ,nd cross sections obtained by this
method are very similar theN=2 result of this present work,
i.e., slightly higher than theN=6 result. However, both the
present calculation and that of Ref.[30] produce a shape
which is peaked around atEp

c.m.=6 MeV and a
ssg ,pd /ssg ,nd ratio near unity. The shape of thessg ,nd
cross section obtained in this present work and that of Ref.
[30] differs from that in Ref. [32], where the Alt-
Grassberger-Sandhas integral equations were solved. This is
a bit surprising since the MTI-III potential was also em-
ployed as in Ref.[30] and both solve the four-body problem,
albeit by different methods. Thessg ,nd cross section of Ref.
[32] is flatter in the peak region and resembles the data of
Ref. [21].

Although the RCCSM is not anab initio calculation, one
can obtain an effective interaction from the MTI-III potential
and determine whether a subsequent calculation for the
ssg ,nd resembles that of Refs.[30] or [32]. One follows a

procedure similar to that used to generate the effective inter-
action from the Reid potential used below[33]. Perform a
Brueckner calculation for4He with v=0.36 fm−2 and a
propagator,v−sHosc−Dd. Fit the resulting hole-hole and
particle-hole, two-body matrix elements to sums of Yukawas
to produce an effective interaction. Calculate the2H, 3H,
3He, and4He binding energies within the 0s model space.
Vary D until the binding energies closely reproduce those
from exact calculations. WithD=30 MeV, binding energies
of 2.22, 8.57, 7.88, and 28.35 MeV are obtained. AnN=0
calculation is then performed since that keeps3H and3He in
the 0s model space. The resulting cross section is shown as a
dot-dashed line in Fig. 4 along with the calculation of Ref.
[30] as lying within the two solid lines and the calculation of
Ref. [32] as a dashed line. The present calculation appears to
more closely resemble that of Ref.[30].

As mentioned above, the cross sections from the 1p-1h
calculations for nucleon scattering begin to vary from the
experimental cross sections at about 60 MeV. To illustrate
this effect, the 40.5 MeV cross section and polarization for
3Hsp,pd3H are plotted in Fig. 5 forN=0 as a solid line and
N=6 as a dot-dashed line along with the data of Ref.[34].
The agreement is good, and the difference between theN
=0 andN=6 calculations is minimal. Here it would appear
that the cross sections are insensitive to the structure.

In Fig. 6 is plotted theN=0 result as a solid line for
3Hesp,pd3He at 85 MeV, and one sees the disagreement with
the data of Ref.[35] developing around 120°. The question
that arises is whether the disagreement is due to the simple
N=0 structure or the effective interaction. The dot-dashed
line is theN=6 result. It differs little from theN=4 result.
The minimum begins to fill in nicely, but the back-angle rise
increases. Also, the minimum is not at quite the correct
angle. One could argue that theN=6 result is an improve-
ment since nucleon knockout, omitted from the calculation,
would reduce the back-angle cross section. However, the for-
ward angle cross section remains small. This can be cured, as
seen in the dashed line, by using the4He effective interaction
described in Ref.[33] and derived from the Reid Soft Core
potential. This effective interaction is very similar to M3Y,
since most of the matrix elements used to construct M3Y
were Reid Soft Coreg-matrix elements. The interaction
gives low energy results that are almost as good as M3Y, and
as seen here, gives better medium energy results. So part of
the disagreement with the 85 MeV cross section was due to
structure and part due to the effective interaction. One could
argue, however, that it was not the structure, but the better
3He density distribution ofN=6 that produced a better cross
section. Within the RCCSM, one could not separate the two.

IV. CONCLUSION

This article has introduced a general RCCSM which al-
lows inclusion of anyA−1 shell-model core states, as long as
they are nonspurious, and any states of the composite sys-
tem, as long as they are nonspurious, and include them in a
calculation with one nucleon in the continuum. The model
demonstrated that increasing the model space of theA=3
core from 0"v to 6"v decreases the4Hesg ,pd3H cross sec-
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tion calculated with a Coulomb operator and increases that
calculated with the transverse current operator, hence, im-
proving current conservation. An increased model space did
not, however produce assg ,pd /ssg ,nd ratio different from
unity. This result favors the data of Refs.[16] and [18]. An
improvement was seen in the3Hesp,pd3He cross section at
85 MeV as theN=6 results filled in the midangle cross sec-
tion. However, agreement at the forward angles required

changing form the M3Y interaction to one entirely based on
the Reid Soft Core potential.
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