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Solving the simplified model of the Hartree-Fock Bogoliubov equation in coordinate space with the correct
asymptotic boundary conditions, the spin-orbit splitting, occupation probabilities, effective pair-gap, mean
square radius, and spin-response function are studied for weakly boundp neutrons. As the binding energy of
p3/2 neutrons becomes small or approaches zero, the spin-orbit splittingp3/2−p1/2 in the one-body potential
drastically decreases and, at the same time, the effective pair-gap for thep neutrons becomes small, while the
occupation probability of thep3/2 level decreases only slightly. Consequently, in that limit low-lying broader
spin response with almost constant amount of total strength appears with the peak moving toward very low
excitation energies.
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I. INTRODUCTION

Weakly bound neutrons with small orbital angular-
momentum, play a unique role in neutron drip line nuclei,
since they have an appreciable probability to be outside of
the core nucleus and are thereby insensitive to the strength of
the potential provided by the well-bound nucleons in the
system. Those neutrons are especially sensitive to the cou-
pling to the nearby continuum of unbound states and are
known to be the origin of halo phenomena, change of shell
structure, low-energy threshold strength, unique response
functions to various external fields. It was also pointed out in
Ref. [1] that extended one-particle wave functions of smaller
, orbitals lead to small spin-orbit splitting, due to the smaller
probability of those particles around the nuclear surface
where the spin-orbit potential is effective.

It is expected that in medium-heavy nuclei the occupancy
of low-, weakly bound neutrons will never make a signifi-
cant contribution to the one-body potential and the many-
body pair correlation, partly because the small number of
particles which can occupy those orbits and partly because
they are weakly coupled to the core nucleus. Neglecting the
contribution, we have developed a simplified model of
Hartree-Fock Bogoliubov(HFB) [2,3,5].

In Ref. [2,3] the HFB equation in a simplified model was
solved in coordinate space with the correct boundary condi-
tions [4–6], and the many-body pair correlation in neutron
drip line nuclei was studied for weakly-bound neutrons with
various,. Various aspects of weakly bounds1/2 neutrons are
especially examined in Ref.[3]. We have found that as the
one-particle binding energy approaches zero the effective
pair gap ofs1/2 neutrons approaches zero and, thus, the pos-
sible s1/2 occupation probability in the ground state of even-
even nuclei may concentrate on the degree of freedom cor-
responding to the region of very small quasiparticle energy.
Spin response of even-even nuclei may be appropriate for
detecting the presence of the low-energy occupation prob-

ability. The strength of spin response may be energetically
pushed up by possible coupling to other particle-holesp-hd
excitations, but it will not be pushed down, though the cou-
pling is generally expected to be weak for weakly bound
low-, neutrons. In order to study response functions for ex-
citing weakly bound low-, neutrons by spin operators, we
had better go at least top neutrons, though very weak exci-
tations ofs1/2 neutrons by spin operator without radial de-
pendence are obtained in our HFB calculations. We note that
the excitation ofs1/2 neutrons, namely 0→2 quasiparticle
excitations, by the spin operator is forbidden for the pairing
field D, which does not depend onr. In the present paper we
employ the same model as used in Ref.[2,3] and study the
spin-response functions of excitingp neutrons and the re-
lated phenomena. Comparing the present result with that of
Ref. [3], the difference in the basic properties of weakly
bounds and p neutrons is exhibited. Our intention is to ex-
amine the general properties related to weakly bound low-,
neutrons, rather than performing fully self-consistent numeri-
cal calculations of HFB for specific nuclei.

In Sec. II we briefly describe our model and related for-
mulas, while numerical results and discussions are given in
Sec. III. Conclusions are drawn in Sec. IV.

II. MODEL AND FORMULAS

First, we give a brief summary of our model, which is the
same as that used in Ref.[2,3]. We consider the time-reversal
invariant and spherically symmetric system with monopole
pairing correlation. Considering the coupling of the neutron
one-quasiparticle with, and j to the HF field, Vsrd and
Vsosrd, and the pairing fieldDsrd, both of which are given by
the core nucleus, our HFB equation is reduced to the follow-
ing coupled equations:
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S d2

dr2 −
,s, + 1d

r2 +
2m

"2 fl + Eqp − Vsrd − VsosrdgDu, j

−
2m

"2 Dsrdv, j = 0,

S d2

dr2 −
,s, + 1d

r2 +
2m

"2 fl − Eqp − Vsrd − VsosrdgDv, j

+
2m

"2 Dsrdu, j = 0, s1d

whereu, j andv, j express the upper and lower components of

the radial wave functions in the HFB approximation, respec-
tively. We take positive quasiparticle energiesEqp.0 and
consider bound statesl,0. Then,sl−Eqpd is always nega-
tive, while sl+Eqpd can be either negative or positive.

The normalization in the case ofsl+Eqpd,0, whereEqp
is a discrete eigenvalue of the HFB equation, is written as

E
0

`

suu, jsEqp,rdu2 + uv, jsEqp,rdu2ddr = 1, s2d

while in the case ofsl+Eqpd.0, where HFB solution exists
for any value ofEqp, we normalizeu, j by [2,4,6]

E dru, jsEqp,rdu, jsEqp8 ,rd = dsEqp − Eqp8 d. s3d

The normalization of the lower component of the radial wave
functionv, j in the latter case is determined by Eq.(3) via the
HFB equation(1), and the quantity

TABLE I. Mean square radii of bound eigenstates of Woods-Saxon potentials, together with the eigen-
values or one-particle resonant energies with widths. The radius forA=44 is used for the potential, of which
the depth is denoted byVWS. One-particle resonant energies in the continuum and their widths are obtained
by the phase shift analysis. See the caption to Fig. 1.

«WSs2p3/2d
(MeV)

VWS

(MeV)
kr2lWS s2p3/2d

sfm2d
«WSs2p1/2d (width)

(MeV) (keV)
kr2lWS s2p1/2d

sfm2d

−10.0 −56.804 17.27 −7.110 18.55

−5.0 −48.225 21.50 −2.841 25.19

−3.0 −44.288 25.45 −1.260 33.58

−2.0 −42.090 29.24 −0.538 46.20

−1.0 −39.593 37.46 0.045(18.4)

−0.8 −39.032 40.48 0.141(116.0)

−0.65 −38.59 43.98 0.236(277.0)

−0.5 −38.124 48.62 0.363(616.0)

−0.3 −37.45 59.46 0.644s2.293103d
−0.2 −37.08 70.12 1.023s1.633104d
−0.1 −36.672 93.94

FIG. 1. Spin-orbit splitting,«WSs2p1/2d−«WSs2p3/2d, calculated
in Woods-Saxon potentials, of which the depth is varied so that the
2p3/2 level is always an eigenstate. The radius of the potential is
fixed for R=r0A

1/3 with r0=1.27 fm andA=44. Filled circles are
for the case that the 2p1/2 level is bound, while open circles express
one-particle resonant levels with the width indicated by the length
of the vertical line. The one-particle resonant energy is defined so
that the calculated phase shiftd passes throughp /2 with positive
slope at the one-particle energy, while the width of the resonance is
defined byG;2/sdd /d«d estimated at the resonant energy.

FIG. 2. Occupation probabilitiesvdisc
2 , vcont

2 , and vtotal
2 for the

2p3/2 orbit as a function ofl=«WSs2p3/2d. Volume-type pairing with

D̄=1 MeV and the radius of the Woods-Saxon potentialR=r0A
1/3

with r0=1.27 fm andA=44 are used. Forl=«WS.−0.46 MeV
there is no discrete solution of the HFB equation(1).
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E
0

`

uv, jsEqp,rdu2dr wheresl + Eqpd . 0, s4d

represents the occupation number probability density per unit
energy interval[4].

For simplicity, we replace the HF potential by the Woods-
Saxon potential together with the spin-orbit potential, of
which the parameters are the standard ones used inb stable
nuclei [2,7]. For the given radiusR=r0A

1/3 with r0
=1.27 fm, the diffusenessa=0.67 fm and the strength of
spin-orbit potential, we vary the potential strength by chang-
ing the depth of the Woods-Saxon potential,VWS, so that the
corresponding single-particle energy«WS is varied. Writing

fsrd =
1

1 + expS r − R

a
D , s5d

we have tried the functional form of either the volume-type
pairing,

Dsrd ~ fsrd s6d

or the surface-type pairing

Dsrd ~ r
dfsrd

dr
. s7d

The averaged strength of the pair field defined by

D̄ ;
E

0

`

r2drDsrdfsrd

E
0

`

r2drfsrd
s8d

is an input of numerical calculations expressing the strength
of the pair field.

We solve the HFB equation(1) in coordinate space with
the correct asymptotic boundary conditions. In numerical in-
tegrations we use a radial meshDr =0.025 fm in the neigh-
borhood of the originr =0, while Dr =0.2 fm is used other-
wise. The way of solving the coupled equations(1) is taken
from Ref. [8].

It should be emphasized that both the one-body potentials
Vsrd andVsosrd and the many-body pair fieldDsrd come al-
most exclusively from the well bound or weakly bound(but
high-,) particles. Thus, in our present work we study the
behavior of weakly boundp3/2 and/or p1/2 neutrons in the
many-body pair correlation for givenVsrd, Vsosrd, andDsrd.

We define the effective pair gapDef f by

Def fs, jd ; Eqps, jd, s9d

where the quasiparticle energyEqps, jd is calculated by set-
ting the Fermi levell satisfying the conditionl=«WSs, jd.
The effective pair gap defined in this way corresponds to the
gap parameter in the BCS approximation, while in the
present case ofsl+Eqpd,0 it is approximately equal to the
smallest quasiparticle energy for a givens, jd orbit [2].

We study the response function of the ground state of
even-even nuclei, namely the quasiparticle vacuum, to the
spin operatorsW , using the wave functionsu, j and v, j ob-
tained from solving Eq.(1). In the present study we examine
an unperturbed quasiparticle response function, in contrast to
the quasiparticle-random-phase approximation(QRPA) re-
sponse studied in the literature for spin-independent external
fields [9,10]. The neglect of RPA correlation may be accept-
able, mainly because we are interested in the low-energy
threshold strength of drip line nuclei, which is almost decou-
pled from the well-bound core particles, and partly because
the spin-dependent part of the effective interaction(for ex-
ample, Skyrme interactions) has not been well fixed. Denot-
ing the two quasiparticles byi and j , we have in general

FIG. 3. (Color online) Calculated HFB quasiparticle energies as
a function ofl=«WSs, jd, where the depth of the Woods-Saxon po-
tentials is varied depending ons, jd so that«WSs, jd is always an
eigenvalue of respective potentials. Filled marks express HFB dis-
crete solutions fulfilling the conditionfl+Eqps, jdg,0, while open
marks denote the quasiparticle energy at the local maximum of the
derivative of the phase shift ofu, j in the case offl+Eqps, jdg.0.
The width for thep orbits indicated by the length of vertical lines in
(a) is obtained from the energies where the derivative of the phase
shift is half of its maximum[6]. In (a) the 1f7/2, 2p3/2 and 2p1/2

orbits are studied withA=44, while in(b) the 1g7/2 and 3s1/2 orbits
are examined withA=80.
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three cases depending on the combination of the signs of
sl+Eid and sl+Ejd. For sl+Eid,0 andsl+Ejd,0 we ob-
tain the strength

Bsv = Ei + Ejd = uksi j dJp = 1+isi0+lu2

= ukiisi jlE
0

rmax

drfuisEi,rdv jsEj,rd − ujsEj,rdvisEi,rdgu2

s10d

at a discrete state withv=Ei +Ej, while in the case ofsl
+Eid,0 and sl+Ejd.0 a continuous spectrum of the
strength per unit energy atv

Ssv = Ei + Ejd =E dEjuksi j dJp = 1+isi0+lu2dsEi + Ej − vd

= ukiisi jlE
0

rmax

drfuisEi,rdv jsEj,rd − ujsEj,rdvisEi,rdgu2,

s11d

whereEj . ulu is a continuous variable, is obtained. When we
have bothsl+Eid.0 andsl+Ejd.0, the response function
per unit energy atv, which is a continuous spectrum starting
at v=2ulu, is calculated by using the formula

Ssvd =E dEi E dEjuksi j dJp = 1+isi0+lu2dsEi + Ej − vd

=E
ulu

v−ulu

dEiukiisi jlE
0

rmax

drfuisEi,rdv jsv − Ei,rd

− ujsv − Ei,rdvisEi,rdgu2. s12d

In the numerical calculations of Eqs.(10)–(12) we usermax
=64 fm. If for v.2ulu both expressions(11) and (12) have
nonzero contributions, the sum of Eqs.(11) and (12) is the
response of the system. The difference between the dimen-
sion of Bsvd in (10) and that ofSsvd in Eqs. (11) and (12)
comes from the fact that the normalizations ofu, j andv, j are
different depending on the sign ofsl+E, jd.

The non-energy-weighted sum-rule(NEWSR) and
energy-weighted sum-rule(EWSR) are defined as

m0sHFBd = o
n

Bsvnd +Evmax

dvSsvd s13d

and

m1sHFBd = o
n

vnBsvnd +Evmax

vdvSsvd, s14d

respectively, wherevmax=10 MeV is used. In the above Eqs.
(13) and(14) the first term on rhs has non-zero contributions
only when discrete solutions exist.

We define the occupation probability forsl+Eqpd.0 in
the ground state of even-even nuclei by integrating over the
relevant energy region

vcont
2 ; E

ulu

Emax

dEqpE
0

rmax

druv, jsEqp,rdu2 s15d

and that forsl+Eqpd,0 by

vdisc
2 ; E

0

rmax

druv, jsEqp
disc,rdu2, s16d

where we useEmax=10 MeV andrmax=64 fm. The total oc-
cupation probability of the one-particles, jd level is

vtotal
2 = vdisc

2 + vcont
2 . s17d

The expectation value of mean square radius forsl
+Eqpd,0 is defined by

kr2ldisc;
E

0

rmax

drr2uvsEqp
disc,rdu2

vdisc
2 , s18d

while that for sl+Eqpd.0 by

kr2lcont;
E

ulu

Emax

dEE
0

rmax

drr2uvsE,rdu2

vcont
2 . s19d

Thus, the averaged value is written as

kr2ltotal ;
E

0

rmax

drr2uvsEqp
disc,rdu2 +E

ulu

Emax

dEE
0

rmax

drr2uvsE,rdu2

vdisc
2 + vcont

2 . s20d

III. NUMERICAL RESULTS AND DISCUSSIONS

Varying the depth of the Woods-Saxon potential so that
the 2p3/2 state is always an eigenstate, in Fig. 1 we show the
calculated spin-orbit splitting,«WSs2p1/2d−«WSs2p3/2d, as a

function of «WSs2p3/2d. Filled circles show the case that the
2p1/2 level is bound in respective Woods-Saxon potentials,
while open circles express that the 2p1/2 level is a one-
particle resonant state with the width indicated by the length
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of the vertical line. As the eigenvalue«WSs2p3/2d increases
from −10 MeV to −1 MeV, the spin-orbit splitting is seen
to decrease[1] from 3 MeV to 1 MeV.

In Table I the mean square radii calculated for bound
eigenstates of Woods-Saxon potentials, together with the ei-
genvalues and one-particle resonant energies with widths, are
shown for the 2p3/2 and 2p1/2 orbits.

In Fig. 2 we plotvdisc
2 from Eq. (16), vcont

2 from Eq. (15)
and vtotal

2 from Eq. (17) as a function ofl=«WSs2p3/2d. The
similar figure for the 3s1/2 orbit can be found in Fig. 8 of Ref.

[3]. Using D̄=1 MeV, a discrete quasiparticle solution was
obtained for l=«WSø−0.28 MeV for the 3s1/2 orbit [3],
while it can be obtained forl=«WSø−0.46 MeV for the
2p3/2 orbit. Noting that HFB discrete solutions can be ob-
tained only forsl+Eqpd,0, the minimum value ofEqp in the
discrete spectra, namely the approximate value of effective
pair gap is smaller than 0.28 and 0.46 MeV for the 3s1/2 and
2p3/2 orbit, respectively, when the averaged volume-type pair

gap D̄=1 MeV is used. It is also seen from Fig. 2 that the
value of vtotal

2 for the 2p3/2 orbit decreases very little, asl
=«WSs2p3/2d approaches zero. The range of the value ofl
=«WS, in which bothvdisc

2 and vcont
2 are appreciable, is nar-

rower for the 2p3/2 orbit than for the 3s1/2 orbit.
In Figs. 3(a) and 3(b) we show calculated HFB quasipar-

ticle energies as a function ofl=«WSs, jd using D̄=1 MeV,
in which the depth of Woods-Saxon potentials is varied de-
pending on the orbits, jd so that«WSs, jd is always an eigen-
value of respective potentials. In Fig. 3(a) the 1f7/2, 2p3/2 and
2p1/2 orbits are studied and the radius of the potential used is
R=r0A

1/3 with r0=1.27 fm andA=44, while in Fig. 3(b) A
=80 is used in the study of the 3s1/2 and 1g7/2 orbits. In the
latter case the radius of the potentials is increased to the one
used in [2,3], in order to have the depth of Woods-Saxon
potentials to be in a realistic range, say 40–50 MeV. Filled
marks express HFB discrete solutions fulfilling the condition
fl+Eqps, jdg,0, while open marks denote the case offl
+Eqps, jdg.0 in which we plot the quasiparticle energy at
the local maximum of the derivative of the phase shift ofu, j.
The width of the open marks for the 2p3/2 and 2p1/2 orbits
indicated by the length of vertical lines in Fig. 3(a) is ob-

tained from the energies where the derivative of the phase
shift is half of its maximum[6]. It is seen from Figs. 3(a) and
3(b) that, asl=«WS approaches zero, the effective pair gap
Def fs, jd defined in Eq.(9) approaches zero for thes1/2 orbit
and becomes very small for thep3/2 andp1/2 orbits, while it

remains comparable toD̄ for higher, orbits.
Taking the Fermi level so that the conditionl

=«WSs2p3/2d is satisfied, in Table II calculated values ofEqp,
occupation probabilitiesvtotal

2 , and mean square radiikr2ltotal

are tabulated. In the case ofsl+Eqpd.0 where the calcu-
lated width is also shown, the value ofEqp is the energy at
the local maximum of the derivative of the phase shift ofu, j
and the width is obtained from the energies where the deriva-
tive of the phase shift is half of its maximum[6].

In Fig. 4 the mean square radii of the 2p3/2 and 2p1/2
orbits calculated by using Woods-Saxon wave functions as a
function of«WSare compared with those in Eq.(20) by HFB

wave functions withD̄=1 MeV as a function ofl=«WSs, jd.
When we adjust the depths of respective Woods-Saxon po-

TABLE II. HFB calculations for the volume pairing withD̄=1 MeV andA=44. The Fermi energy is
placed atl=«WSs2p3/2d. Tabulated quantityv2s, jd is vtotal

2 s, jd in Eq. (17). The values ofEqp and the width in
the case ofsl+Eqpd.0 are obtained by calculating the derivative of the phase shift. See the text for details.

l
(MeV)

Eqps2p3/2d (width)
(MeV) (keV) v2s2p3/2d

kr2ltotal

sfm2d
Eqpsp1/2d (width)

(MeV) (keV) v2sp1/2d
kr2ltotal

sfm2d

−10.0 0.997 0.481 16.82 3.090 0.025 16.01

−5.0 0.857 0.477 20.49 2.334 0.030 19.17

−3.0 0.759 0.474 23.66 1.891 0.033 21.73

−2.0 0.686 0.471 26.44 1.590 0.035 23.82

−1.0 0.574 0.463 31.71 1.108(74) 0.037 27.48

−0.5 0.475 0.455 37.21 0.861(417) 0.038 30.82

−0.3 0.406(41) 0.455 41.20 0.669(652) 0.038 33.03

−0.2 0.374(84) 0.449 44.11 0.612(801) 0.038 34.55

−0.1 0.343(138) 0.440 48.32 0.586(994) 0.037 36.50

FIG. 4. (Color online) Comparison of the calculated mean
square radii of the 2p3/2 and 2p1/2 orbits for the Woods-Saxon
wave-functions with those of HFB wave functions in Eq.(20). In
the former case thex axis denotes the eigenenergy«WSs, jd, while in
the latter thex axis expressesl=«WSs2p3/2d and l=«WSs2p1/2d for
the curves of the 2p3/2 and 2p1/2 orbits, respectively.
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tentials so that«WSs2p3/2d=«WSs2p1/2d or for the same values
of l=«WSs2p3/2d and l=«WSs2p1/2d, the calculated mean
square radius of the 2p3/2 orbit is slightly larger than that of
the 2p1/2 orbit, due to different signs of the spin-orbit poten-
tials. Asl=«WSapproaches zero, the mean square radius for
p orbits in HFB increases appreciably, while the one in the
Woods-Saxon potential approaches infinity as«WS goes to
zero.

In Fig. 5 we show the spin responseSsvd as a function of
excitation energyv, which is calculated using the HFB wave
functions up3/2, vp3/2, up1/2, and vp1/2 for various values of
l=«WSs2p3/2d. The plotted quantity is the sum ofSsvd from
Eqs. (11) and (12). There is no contribution byBsvd from
Eq. (10) in the plotted range of the variable«WSs2p3/2d, since
no HFB discrete solution for the 2p1/2 orbit is obtained for
the Woods-Saxon potential which gives«WSs2p3/2dù
−1.0 MeV. For the parameter valuesl=«WSs2p3/2d,

−0.46 MeV the strengthSsvd appears at much lower values
thanv=2ulu, due to the contribution bySsvd in (11), namely
due to the presence of the HFB discrete solution for the 2p3/2
orbit whereEqp

discs2p3/2d, ulu. For reference, the occupation
probability (4) of HFB solutions for both the 2p3/2 and 2p1/2
orbits is shown forl=«WSs2p3/2d=−0.5 MeV in Fig. 6,
where the 2p3/2 quasiparticle energy of the HFB discrete so-
lution, Eqp

disc=0.475 MeV, is denoted by the vertical arrow. It
is seen from Fig. 5 that as the value ofl=«WSs2p3/2d in-
creases from −1.0 MeV and approaches zero, the spin re-
sponse function becomes broader and, at the same time, the
major strength shifts to the region of smallerv values, which

are indeed much smaller than 2D̄=2 MeV.
Though it may be estimated from Fig. 5 that the NEWSR

remains nearly unchanged asl=«WSs2p3/2d increases from

TABLE III. Spin Response Sum Rules inA=44. vmax=10 MeV, l=«WSs2p3/2d and volume pairing with

D̄=1 MeV are used.Ex (HFB) is the sum of the two discrete quasiparticle energies forl,−1 MeV, while it
is the peak energy of the response in the case that the response becomes continuous, namely forlù
−1 MeV. See the text for details.

«WSs2p3/2d=l
(MeV)

Ex (BCS)
(MeV) m0 (BCS)

m1 (BCS)
(MeV)

Ex (HFB)
(MeV) m0 (HFB)

m1 (HFB)
(MeV)

−10.0 4.06 1.794 7.28 4.09 1.735 7.09

−5.0 3.38 1.546 5.23 3.19 1.623 5.18

−3.0 3.01 1.338 4.03 2.65 1.584 4.40

−2.0 2.75 1.146 3.15 2.28 1.543 3.82

−1.0 2.45 0.823 2.02 1.69 1.527 3.22

−0.8 2.37 0.724 1.72 1.55 1.510 3.04

−0.65 2.34 0.671 1.57 1.44 1.497 2.89

−0.5 1.35 1.484 2.74

−0.3 1.17 1.479 2.53

−0.2 1.09 1.450 2.37

−0.1 1.00 1.418 2.18

FIG. 5. Spin-response functionSsvd as a function of excitation
energyv, which is calculated using the HFB wave functionsup3/2

,
vp3/2

, up1/2
, andvp1/2

for various values ofl=«WSs2p3/2d. The plotted
quantity is the sum ofSsvd in Eqs.(11) and (12). See the text for
details.

FIG. 6. (Color online) Occupation probability(4) calculated
from HFB solutions for both thep3/2 andp1/2 orbits in the case of
l=«WSs2p3/2d=−0.5 MeV. The quasiparticle energy of the HFB
discrete solution,Eqp

discs2p3/2d=0.475 MeV, is denoted by the verti-
cal arrow.
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−1.0 MeV to −0.1 MeV, in Table III we list the calculated
HFB sum rules together with either the sum of the two qua-
siparticle energies in the case of the discrete response or the
peak energy in the case of the continuous response. In order
to clarify the effect of the presence of nearby continuum
taken into account in the HFB calculation, our HFB result is
compared with the simplest version of BCS calculations. The
latter is estimated using the usual BCS formulas with the
pair-gapD=1 MeV and one-particle eigenenergy(or reso-
nant energy) «WSs, jd that is calculated for the Woods-Saxon
potentials used for respective HFB calculations. The overlap
between the 2p3/2 and 2p1/2 wave functions is taken to be
unity as in the harmonic-oscillator model. The NEWSR of
the BCS estimate,m0sBCSd, decreases strongly asl
=«WSs2p3/2d increases, due to the strongly decreasing spin-
orbit splitting, «WSs2p1/2d−«WSs2p3/2d, which makes the rel-
evant BCS pairing factoruU2p3/2

V2p1/2
−V2p3/2

U2p1/2
u much

smaller. Note that in the limit of small spin-orbit splitting
compared with pair gap the BCS pairing factoruU2p3/2

V2p1/2
−V2p3/2

U2p1/2
u approaches zero. Here we denote the BCS oc-

cupation and unoccupation amplitudes byU, j and V, j, re-
spectively, which are just numbers and do not depend onr.
In contrast, the NEWSR from the HFB calculation,
m0sHFBd, remains almost unchanged whenl=«WSs2p3/2d in-

creases approaching zero, because the effective pair-gapDef f
for the p orbits in the HFB calculation decreases at the same
time as the spin-orbit splitting becomes small. This feature of
the HFB result does not depend on the position of the Fermi
level used in the calculation.

Since our system is a bound system, the lower compo-
nents of the HFB radial wave functionsv, j are bound-state
wave functions, however, the upper componentsu, j are con-
tinuum wave functions in the case ofsl+Eqpd.0. The or-
thogonality(3) of those continuumu, jsEqp,rd functions, for
example, can be numerically obtained, only when the radial
integral is carried out to infinity. To perform such a numeri-
cal integration is practically impossible. Therefore, it is not
easy to make a reliable numerical estimate of response to
one-particle operators, which contain a factoru, ju,8 j8 in the
case that none ofu, j and u,8 j8 are bound-state wave func-
tions. The spin response, which we study in the present
work, contains the pairing factorsu2p3/2

vp1/2
−v2p3/2

up1/2
d,

where v, jsEqp,rd are always bound-state wave functions.
Therefore, the spin response can be reliably estimated. In
Fig. 7 we show examples of the radial dependence of the
HFB pairing factorsu2p3/2

vp1/2
−v2p3/2

up1/2
d, in order to dem-

onstrate the reliability of the present numerical results. As
seen in Fig. 7, whenl=«WSs2p3/2d approaches zero, the HFB
pairing factor starts to have a long tail in radial coordinate.
We have checked that the numerical values ofSsvd,
m0(HFB) and m1(HFB) estimated withrmax=64 fm in Eqs.
(11) and(12), which are given in the present paper, are reli-
able, thanks to the fact that our spin operator has no radial
dependence.

IV. CONCLUSIONS

We have studied the properties of weakly boundp neu-
trons and the related spin response functions, solving a sim-
plified model of the HFB equation in coordinate space with
the correct asymptotic boundary conditions. When the bind-
ing energy ofp3/2 neutrons in the Woods-Saxon potential
approaches zero, we have shown:(a) the spin-orbit splitting
p1/2−p3/2 in the one-particle energy spectra decreases drasti-
cally; (b) the total occupation probability of thep3/2 level
decreases only slightly;(c) the effective pair gap for thep
neutrons becomes very small;(d) the mean square radius
becomes appreciably large;(e) an appreciable amount of spin

response appears at excitation energies much lower than 2D̄;
(f) the NEWSR of spin response in the HFB result decreases
only slightly compared with that of BCS calculations.
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FIG. 7. (Color online) Examples of the dependence of the HFB
pairing factor su2p3/2

vp1/2
−v2p3/2

up1/2
d on radial variable. Forl

=«WSs2p3/2d=−10 MeV all radial wave functions,u2p3/2
, v2p3/2

,
up1/2

, and vp1/2
are bound-state wave functions. Forl=«WSs2p3/2d

=−0.5 MeV together withEqpsp1/2d=0.8 MeV, bothv2p3/2
andvp1/2

are bound-state wave functions, however,up1/2
is a continuum wave

function while u2p3/2
can be either a bound or continuum(for

Eqp. ulu=0.5 MeV) wave function.(See, for example, Fig. 6: the
occupation probabilityv2p3/2

2 becomes continuous inEqp for con-
tinuum wave functionsu2p3/2

.) In the figure the bound-state wave
function u2p3/2

sEqp
discs2p3/2d=0.475 MeV,rd is used. A comparison

between two curves in the figure should be made only in their radial
shape, since the dimension ofsu2p3/2

vp1/2
−v2p3/2

up1/2
d is different in

two examples.
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