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Solving the simplified model of the Hartree-Fock Bogoliubov equation in coordinate space with the correct
asymptotic boundary conditions, the spin-orbit splitting, occupation probabilities, effective pair-gap, mean
square radius, and spin-response function are studied for weakly lponedtrons. As the binding energy of
psj> heutrons becomes small or approaches zero, the spin-orbit splijsgp;,» in the one-body potential
drastically decreases and, at the same time, the effective pair-gap fomgwgrons becomes small, while the
occupation probability of th@s,, level decreases only slightly. Consequently, in that limit low-lying broader
spin response with almost constant amount of total strength appears with the peak moving toward very low
excitation energies.
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I. INTRODUCTION ability. The strength of spin response may be energetically

Weakly bound neutrons with small orbital angular- pusheq up by p.oss'ible coupling to other particle-hié)
momentum¢ play a unique role in neutron drip line nuclei, e>_<0|ta_t|ons, but it will not be pushed down, though the cou-
since they have an appreciable probability to be outside of!ind is generally expected to be weak for weakly bound
the core nucleus and are thereby insensitive to the strength #fW-¢ neutrons. In order to study response functions for ex-
the potential provided by the well-bound nucleons in theCiting weakly bound lowé neutrons by spin operators, we
system. Those neutrons are especially sensitive to the cofiad better go at least o neutrons, though very weak exci-
pling to the nearby continuum of unbound states and aréations ofs,;;, neutrons by spin operator without radial de-
known to be the origin of halo phenomena, change of shelpendence are obtained in our HFB calculations. We note that
structure, low-energy threshold strength, unique responsidie excitation ofs;;, neutrons, namely ©:2 quasiparticle
functions to various external fields. It was also pointed out inexcitations, by the spin operator is forbidden for the pairing
Ref. [1] that extended one-particle wave functions of smallerfield A, which does not depend anIn the present paper we
¢ orbitals lead to small spin-orbit splitting, due to the smalleremploy the same model as used in R&{3] and study the
probability of those particles around the nuclear surfacespin-response functions of excitirg neutrons and the re-
where the spin-orbit potential is effective. lated phenomena. Comparing the present result with that of

Itis expected that in medium-heavy nuclei the occupanciref. [3], the difference in the basic properties of weakly
of low-£ weakly bound neutrons will never make a signifi- hounds and p neutrons is exhibited. Our intention is to ex-
cant contribution to the one-body potential and the manyymine the general properties related to weakly boundfow-

body pair correlation, partly because the small number ofeytrons, rather than performing fully self-consistent numeri-
particles which can occupy those orbits and partly becausgy| caiculations of HEB for specific nuclei.

they are weakly coupled to the core nucleus. Neglecting the
contribution, we have developed a simplified model of
Hartree-Fock BogoliuboyHFB) [2,3,5.

In Ref. [2,3] the HFB equation in a simplified model was
solved in coordinate space with the correct boundary condi-
tions [4—6], and the many-body pair correlation in neutron
drip line nuclei was studied for weakly-bound neutrons with Il. MODEL AND FORMULAS
various{. Various aspects of weakly boursg, neutrons are
especially examined in Ref3]. We have found that as the  First, we give a brief summary of our model, which is the
one-particle binding energy approaches zero the effectivéame as that used in R¢2,3]. We consider the time-reversal
pair gap ofs,, neutrons approaches zero and, thus, the pognvariant and spherically symmetric system with monopole
sible s;;, occupation probability in the ground state of even-pairing correlation. Considering the coupling of the neutron
even nuclei may concentrate on the degree of freedom copne-quasiparticle witi and j to the HF field, V(r) and
responding to the region of very small quasiparticle energyVs(r), and the pairing field\(r), both of which are given by
Spin response of even-even nuclei may be appropriate fahe core nucleus, our HFB equation is reduced to the follow-
detecting the presence of the low-energy occupation probing coupled equations:

In Sec. Il we briefly describe our model and related for-
mulas, while numerical results and discussions are given in
Sec. lll. Conclusions are drawn in Sec. IV.
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FIG. 2. Occupation probabilitiesg., v, and vy, for the

FIG. 1. Spin-orbit splitting,ewd2p1/2) ~ewd 23/, calculated — 2psj Orbit as a function ok =ewg2p3;,). Volume-type pairing with
in Woods-Saxon potentials, of which the depth is varied so that thev=1 MeV and the radius of the Woods-Saxon potenfalr ,A1/3
2pgy, level is always an eigenstate. The radius of the potential isyith ry=1.27 fm andA=44 are used. FOA=gyg>-0.46 MeV
fixed for R=roAY3 with ro=1.27 fm andA=44. Filled circles are there is no discrete solution of the HFB equatidi
for the case that the®,, level is bound, while open circles express
one-particle resonant levels with the width indicated by the lengtithe radial wave functions in the HFB approximation, respec-
of the vertical line. The one-particle resonant energy is defined s§vely. We take positive quasiparticle energigg,>0 and
that the calculated phase shiftpasses throughr/2 with positive ~ consider bound states<0. Then,(\-Egp) is always nega-
slope at the one-particle energy, while the width of the resonance ive, while (\+Egy) can be either negative or positive.
defined byl'=2/(dé&/ds) estimated at the resonant energy. The normalization in the case 6k +E,,) <0, whereEg,

is a discrete eigenvalue of the HFB equation, is written as

&* ey N
P [x + Eqp= V(1) = Vo] Uy f (Jug(EqpD P + o4 (Eqpn)P)dr =1, (2)
0
z—mA(r)vg,- ~o while in the case o()\+Eqp)>0, where HFB solution exists
o 5 for any value ofE,, we normalizeu,; by [2,4,6
+

- - [>\ Eqp— V(1) = V. r)])v
(dr2 r2 ® ol ! fdrufl(Eqp’r)ufJ(Eqp’ = o(Eqp~ Egp)- ®

2m
+ ?A(r)uézj =0

(1) The normalization of the lower component of the radial wave
functionuy; in the latter case is determined by K8§) via the
whereu,; andv,; express the upper and lower components ofHFB equation(1), and the quantity

TABLE I. Mean square radii of bound eigenstates of Woods-Saxon potentials, together with the eigen-
values or one-particle resonant energies with widths. The radius=d# is used for the potential, of which
the depth is denoted by,ys One-particle resonant energies in the continuum and their widths are obtained
by the phase shift analysis. See the caption to Fig. 1.

ewd2p3p) Vws (r2ws (2pa2) ewd2p1) (width) (rPws (2p1/2)
(MeV) (MeV) (fm?) (MeV) (keV) (fm?)
-10.0 -56.804 17.27 -7.110 18.55
-5.0 -48.225 21.50 -2.841 25.19
-3.0 -44.288 25.45 -1.260 33.58
-2.0 -42.090 29.24 -0.538 46.20
-1.0 -39.593 37.46 0.0458.4)
-0.8 -39.032 40.48 0.14116.0
-0.65 -38.59 43.98 0.28877.0
-0.5 -38.124 48.62 0.36816.0
-0.3 -37.45 59.46 0.642.29x 10°)
-0.2 -37.08 70.12 1.023.63x 10%)
-0.1 -36.672 93.94
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The averaged strength of the pair field defined by
f r2drA(r)f(r)
I — Jo
12 A=s—gF— (8
10 f r2drf(r)
0
5 08 . . .
S is an input of numerical calculations expressing the strength
il 06 of the pair field.
< =---% ;gmggl'ﬂn":zg::i‘:g; We solve the HFB equatiofl) in coordinate space with
04T " ] the correct asymptotic boundary conditions. In numerical in-
45 | tegrations we use a radial meah=0.025 fm in the neigh-
borhood of the origirr =0, while Ar=0.2 fm is used other-
0.0 s s . . . wise. The way of solving the coupled equatiais is taken
-12 -10 -8 -6 -4 -2 0 2

A=t 1) (MeV) from Ref.[8].
It should be emphasized that both the one-body potentials
V(r) andV,(r) and the many-body pair field(r) come al-
FIG. 3. (Color onling Calculated HFB quasiparticle energies as most exclusively from the well bound or weakly bougmit
a function ofA=syd¢j), where the depth of the Woods-Saxon po- high-¢) particles. Thus, in our present work we study the
tentials is varied depending difj) so thateyd¢j) is always an  behavior of weakly boungb;, and/orp,,, neutrons in the
eigenvalue of respective potentials. Filled marks express HFB dismany-body pair correlation for give¥i(r), Vso(r), andA(r).

crete solutions fulfilling the conditiof +Eqy(€})] <0, while open We define the effective pair gal,s by
marks denote the quasiparticle energy at the local maximum of the
derivative of the phase shift af;; in the case of\+Eq,(£j)]>0. Aer(€]) = Egp(£]), (9)

The width for thep orbits indicated by the length of vertical lines in
(a) is obtained from the energies where the derivative of the phas#here the quasiparticle enerdgy(¢) is calculated by set-
shift is half of its maximum[6]. In (a) the 1f,, 2psp and Dy,  ting the Fermi level\ satisfying the conditio\=eyd{j).
orbits are studied witih=44, while in(b) the 1g;,, and 3,,, orbits  The effective pair gap defined in this way corresponds to the
are examined withA=80. gap parameter in the BCS approximation, while in the
present case af\ +E,) <O it is approximately equal to the
oo smallest quasiparticle energy for a givéftj) orbit [2].
J |u€j(Eqp,r)|2dr where(\ + Eqp) >0, (4) We study the response function of the ground state of
0 even-even nuclei, namely the quasiparticle vacuum, to the
spin operatoro, using the wave functions,; and v ob-
tained from solving Eq¢l1). In the present study we examine
represents the occupation number probability density per unén unperturbed quasiparticle response function, in contrast to
energy interval4]. the quasiparticle-random-phase approximati@RPA) re-

For simplicity, we replace the HF potential by the Woods-sponse studied in the literature for spin-independent external
Saxon potential together with the spin-orbit potential, offields[9,10. The neglect of RPA correlation may be accept-
which the parameters are the standard ones us@dsiable able, mainly because we are interested in the low-energy
nuclei [2,7]. For the given radiusR=r,AY3 with r,  threshold strength of drip line nuclei, which is almost decou-
=1.27 fm, the diffusenesa=0.67 fm and the strength of pled from the well-bound core particles, and partly because
spin-orbit potential, we vary the potential strength by changthe spin-dependent part of the effective interactifor ex-
ing the depth of the Woods-Saxon potentid)ys so that the ample, Skyrme interactioip$ias not been well fixed. Denot-
corresponding single-particle energysis varied. Writing ing the two quasiparticles by and j, we have in general
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three cases depending on the combination of the signs of @max
(\+E) and (\+E)). For (\+E;))<0 and(\+E;) <0 we ob- My(HFB) = X B(w,) + f doS(w) (13
tain the strength n
B(w=E; +Ej) = [((ij)J™ = 17 of|0") and
Tmax Dmax
= [Gllo i) J dr[ui(E;,1)oj (1) = uj(Ej,nvi(E, 02 My(HFB) = 2 wiB(an) + f odoSw), (14
0 n

(10 respectively, where,,,=10 MeV is used. In the above Egs.
(13) and(14) the first term on rhs has non-zero contributions
only when discrete solutions exist.

We define the occupation probability fox+Eqp) >0 in
the ground state of even-even nuclei by integrating over the
relevant energy region

at a discrete state wit=E;+E;, while in the case of\
+E) <0 and (\+Ej))>0 a continuous spectrum of the
strength per unit energy at

3(1) = Ei + EJ) :f dEJ|<(|] )\]Tr: 1+||O'||O+>|25(E| + E] - (1)) E .
vgontE f | qupJ dr|U€j(Eqp-r)|2 (15)
A

= |<i||(7||j>f maxdr[ui(Eiyr)vj(Ej,r) - Ui(E;,nvi(E,n]1% 0
0 and that for(\ +E,,) <0 by

(11) ,
whereE; >\ is a continuous variable, is obtained. When we Vhisc= f drlv(EGsSnI2, (16)
have both(\ +E;) >0 and(\ +E;) >0, the response function 0

per unit energy ai, which is a continuous spectrum starting where we use,,,,=10 MeV andr =64 fm. The total oc-

at w=2|\|, is calculated by using the formula cupation probability of the one-particléj) level is
S(w) = f dE, f dE|((i})J7 = 1% 01|07 [28(E; + E; - o) Viptal = Udisc+ Veont (17)
-l . The expectation value of mean square radius @or
- fl B[l | o (E, vy (- E) +Eqp) <0 is defined by
A 0 rmax
g
= Uy = ENoi(E,N]P. (12 fo drrfo (Bg )
2y —
In the numerical calculations of EqEL0)—(12) we uSer max (rdisc = Uﬁ, ' (18)
=64 fm. If for o> 2|\| both expressiongll) and(12) have s
nonzero contributions, the sum of Eq41) and(12) is the ~ while that for (A +E,p) >0 by
response of the system. The difference between the dimen- Era -
sion of B(w) in (10) and that ofS(w).in Eqs.(ll) and (12 f dEf drr2v(E, )2
comes from the fact that the normalizationsugfandv,; are ) N 0
different depending on the sign 6f+Ej)). (rcont= 2 (19
The non-energy-weighted sum-ruléNEWSR) and cont
energy-weighted sum-rulEWSR) are defined as Thus, the averaged value is written as
|
I'max . Emax max
J drr2|u(E‘q‘§°,r)|2+J dEf drr?u(E,r)[?
0 | 0
(r)otal = (20)
o Uﬁisc+ Ugont
[
lll. NUMERICAL RESULTS AND DISCUSSIONS function of e\yd2ps»). Filled circles show the case that the

ha12p1/2 level is bound in respective Woods-Saxon potentials,
hé(vhile open circles express that the,2 level is a one-
particle resonant state with the width indicated by the length

Varying the depth of the Woods-Saxon potential so t
the 25/, State is always an eigenstate, in Fig. 1 we show t
calculated spin-orbit splittingewd 2p1/2) —ewd 2ps2), as a
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TABLE Il. HFB calculations for the volume pairing with=1 MeV andA=44. The Fermi energy is
placed at =4 2ps/»). Tabulated quantity?(¢j) is vfma,(ej) in Eg.(17). The values oy, and the width in
the case of\+Ey,) >0 are obtained by calculating the derivative of the phase shift. See the text for details.

A Eqp(2p3/2) (Width) <r2>total Eqp( p1/2) (Width) <r2>total
(MeV) (MeV) (keV) v22pg)  (fm?) (MeV) (keV) vApp)  (fmd)
-10.0 0.997 0.481 16.82 3.090 0.025 16.01

-5.0 0.857 0.477 20.49 2.334 0.030 19.17
-3.0 0.759 0.474 23.66 1.891 0.033 21.73
-2.0 0.686 0.471 26.44 1.590 0.035 23.82
-1.0 0.574 0.463 31.71 1.108YH 0.037 27.48
-0.5 0.475 0.455 37.21 0.8e117) 0.038 30.82
-0.3 0.40641) 0.455 41.20 0.66852 0.038 33.03
-0.2 0.37484) 0.449 44.11 0.61301 0.038 34.55
-0.1 0.348139) 0.440 48.32 0.58894) 0.037 36.50

of the vertical line. As the eigenvalugyd2ps,) increases tained from the energies where the derivative of the phase
from -10 MeV to -1 MeV, the spin-orbit splitting is seen shift is half of its maximuni6]. It is seen from Figs. @) and
to decreasél] from 3 MeV to 1 MeV. 3(b) that, as\ =g\ approaches zero, the effective pair gap
In Table | the mean square radii calculated for boundAc(€]) defined in Eq(9) approaches zero for thg,, orbit
eigenstates of Woods-Saxon potentials, together with the eand becomes very small for thm,, and p,,, orbits, while it
genvalues and one-particle resonant energies with widths, af@mains comparable tA for higher ¢ orbits.
shown for the By, and 2, orbits. Taking the Fermi level so that the condition
In Fig. 2 we plotug, from Eq. (16), veon from EQ. (15 =4,y2p; ) is satisfied, in Table Il calculated values &f,
andvig, from Eq.(17) as a function of\=ewd2ps2). The  gccupation probabilities?,, and mean square radii?) s
similar figure for the 8y, orbit can be found in Fig. 8 of Ref. 5.6 tapulated. In the case 6t +E,p) >0 where the calcu-
[3]. Using A=1 MeV, a discrete quasiparticle solution was |ated width is also shown, the value Bf,, is the energy at
obtained for\=zys=<-0.28 MeV for the 3,, orbit [3],  the local maximum of the derivative of the phase shiftigf
while it can be obtained foh=gys<-0.46 MeV for the and the width is obtained from the energies where the deriva-
2psy, orbit. Noting that HFB discrete solutions can be ob-tive of the phase shift is half of its maximuf8].
tained only for(\ +Eg,) <0, the minimum value oE in the In Fig. 4 the mean square radii of thepg2 and 2,
discrete spectra, namely the approximate value of effectiverbits calculated by using Woods-Saxon wave functions as a
pair gap is smaller than 0.28 and 0.46 MeV for tlsg;3and  function ofsygare compared with those in E¢0) by HFB
2ps, orbit, respectively, when the averaged volume-type paifyave functions withA=1 MeV as a function oh=ewd ).
gapA=1 MeV is used. It is also seen from Fig. 2 that the when we adjust the depths of respective Woods-Saxon po-
value of vz, for the 2, orbit decreases very little, as

=ewd 2ps,) approaches zero. The range of the valuexof 100
=gews in Which bothv3. andv?,,, are appreciable, is nar- 9 | il A e
rower for the 5/, orbit than for the 8, orbit. a0 |
In Figs. 3a) and 3b) we show calculated HFB quasipar- = ol
ticle energies as a function af=g\4€j) usingA=1 MeV, % ol —— 2p,,(Woods-Saxon)
in which the depth of Woods-Saxon potentials is varied de- K Len 22::2%2‘225_sm
pending on the orbit¢j) so thatey,d¢j) is always an eigen- g %I = 20(HFB)
value of respective potentials. In Figagthe 1f,,, 2ps, and g 4or
2p,» orbits are studied and the radius of the potential used is g w0
R=r A3 with ro=1.27 fm andA=44, while in Fig. 3b) A 20 | S
=80 is used in the study of thes3, and 1g,, orbits. In the 1wl
latter case the radius of the potentials is increased to the one g , , , , ,
used in[2,3], in order to have the depth of Woods-Saxon -2 -1 -8 -6 -4 -2 0 2

potentials to be in a realistic range, say 40—50 MeV. Filled sl or Az (V)

marks express HFB discrete solutions fulfilling the condition g5 4 (Color onling Comparison of the calculated mean
[N +Eqp(€j)]<0, while open marks denote the case[df  gqyare radii of the Ry, and 2, orbits for the Woods-Saxon
+Eqp(€))]>0 in which we plot the quasiparticle energy at wave-functions with those of HFB wave functions in Eg0). In
the local maximum of the derivative of the phase shifugf  the former case theaxis denotes the eigenenergyd¢j), while in
The width of the open marks for thepg, and 2y, orbits  the latter thex axis expresses=eyd2pa,) and\=eywd2p;;,) for
indicated by the length of vertical lines in Fig(a® is ob-  the curves of the |2, and 2, orbits, respectively.
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FIG. 5. Spin-response functid®w) as a function of excitation B da 3
ap

energyw, which is calculated using the HFB wave functians .,
Upy,r Up, » @Ndop, for various values ok =ewd2p3/»). The plotted
quantity is the sum o8(w) in Egs.(11) and(12). See the text for
details.

FIG. 6. (Color onlineg Occupation probability4) calculated
from HFB solutions for both th@s, andpy, orbits in the case of
N=ewd2p;2)=-0.5 MeV. The quasiparticle energy of the HFB
discrete solutionE%S42ps/,)=0.475 MeV, is denoted by the verti-

tentials so thatyd2pz) =ewd 2p; ) or for the same values ., arrow. ap

of N=ewd2psp) and A=eywd2pys»), the calculated mean

square radius of theg,, orbit is slightly larger than that of —0.46 MeV the strengti®(w) appears at much lower values
the 2py,, orbit, due to different signs of the spin-orbit poten- thanw=2|\[, due to the contribution b w) in (11), namely
tials. As\ =gsapproaches zero, the mean square radius fodue to the presence of the HFB discrete solution for thg,2
p orbits in HFB increases appreciably, while the one in theorbit where EG542ps») <|\|. For reference, the occupation
Woods-Saxon potential approaches infinity sygs goes to  probability (4) of HFB solutions for both the (&, and 2,
Zero. orbits is shown for\=eyd2ps,)=-0.5 MeV in Fig. 6,

In Fig. 5 we show the spin responSaw) as a function of ~ where the P, quasiparticle energy of the HFB discrete so-
excitation energys, which is calculated using the HFB wave lution, E3°=0.475 MeV, is denoted by the vertical arrow. It
functions Upa/a Upa/2, Up1/ze @nd oy, for various values of is seen from Fig. 5 that as the value ®Eeyd2psp,) in-
N=ewd2ps»). The plotted quantity is the sum & w) from  creases from —-1.0 MeV and approaches zero, the spin re-
Egs.(11) and(12). There is no contribution bB(w) from  sponse function becomes broader and, at the same time, the
Eq. (10) in the plotted range of the variabig,42ps/,), since  major strength shifts to the region of smallevalues, which
no HFB discrete solution for thep?,, orbit is obtained for are indeed much smaller thah22 MeV.
the Woods-Saxon potential which givesyd2p;,) = Though it may be estimated from Fig. 5 that the NEWSR
-1.0 MeV. For the parameter valued=gyd2ps;,) < remains nearly unchanged aseyd2ps,) increases from

__ TABLE lll. Spin Response Sum Rules #=44. wpyq=10 MeV, A =ewd2p3/») and volume pairing with
A=1 MeV are usedE, (HFB) is the sum of the two discrete quasiparticle energies.far-1 MeV, while it

is the peak energy of the response in the case that the response becomes continuous, nanzely for
-1 MeV. See the text for details.

ewd2P32) =\ Ex (BCY my (BCS Ex (HFB) my (HFB)
(MeV) (MeV) my (BCS) (MeV) (MeV) my (HFB) (MeV)
-10.0 4.06 1.794 7.28 4.09 1.735 7.09
-5.0 3.38 1.546 5.23 3.19 1.623 5.18
-3.0 3.01 1.338 4.03 2.65 1.584 4.40
-2.0 2.75 1.146 3.15 2.28 1.543 3.82
-1.0 2.45 0.823 2.02 1.69 1.527 3.22
-0.8 2.37 0.724 1.72 1.55 1.510 3.04
-0.65 2.34 0.671 1.57 1.44 1.497 2.89
-0.5 1.35 1.484 2.74
-0.3 1.17 1.479 2.53
-0.2 1.09 1.450 2.37
-0.1 1.00 1.418 2.18
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%20 AR A A A M A creases approaching zero, because the effective paikgap
_ for the p orbits in the HFB calculation decreases at the same
A=dd AnTOMeY, time as the spin-orbit splitting becomes small. This feature of
ots T T the HFB result does not depend on the position of the Fermi
----- A,:ew:(2§§Z)=—O.SMeV, E,(p,)=0.8MeV level used in the calculation.

Since our system is a bound system, the lower compo-
nents of the HFB radial wave functiong; are bound-state
wave functions, however, the upper componenjsare con-
tinuum wave functions in the case 0f+Eyy)>0. The or-
thogonality(3) of those continuumu;(Egp,r) functions, for

example, can be numerically obtained, only when the radial
L TP SR Vo o e integral is carried out to infinity. To perform such a numeri-
2 4 6 8 M0 12 14 16 18 20 cal integration is practically impossible. Therefore, it is not
easy to make a reliable numerical estimate of response to

FIG. 7. (Color online Examples of the dependence of the HFB One-particle operators, which contain a faaju,;, in the
pairing factor (Uzp, vp, ,~V2p, Up, ) ON radial variable. Fork case that none ofi;; and u,/j are bound-state wave func-
=ewd2p3)=-10 MeV all radial wave functionspiz,, , vz,  tions. The spin response, which we study in the present
Up,» andv,  are bound-state wave functions. Rorewd2ps?)  work, contains the pairing faCtO(UZPBIzvpllZ_v2p3/2up1/2)’
=-0.5 MeV together wittEq,(p2)=0.8 MeV, bothvz,, , andvp, . where vy;(Eg,, 1) are always bound-state wave functions.
are bound-state wave functions, howewgy, is a continuum wave  Therefore, the spin response can be reliably estimated. In
function while up,,, can be either a bound or continuufor  Fig. 7 we show examples of the radial dependence of the
Eqp>|)\|_=0.5 MeV) _v_vavze function.(See, fqr example, Fig. 6: the {ER pairing faCtor(u2P3/zvpl/z_UZPa/zuP;uz)’ in order to dem-
grﬁﬁﬂirftxgvsrﬁjbnit:ilngpm ;’?ﬁot::iigsrr:'?ﬁ:ﬁ)ﬁ%p ;?;tecoxf;ve onstrate the reliability of the present numerical results. As

20 e - - -
funcion g, (E3(2po10.475 Movy) is used. Acomparison -0 1P B SCE sl SEOCTEE SO0 T L
between two curves in the figure should be made only in their radia\Bv 9 9 i ; I ’
. . . T - e have checked that the numerical values $iv),

shape, since the dimension @b, ~Vgp, p, ) is differentin . . _ i

two examples. my(HFB) and ml(HFB) espmatfad withr ,,,,=64 fm in Egs. _
(11) and(12), which are given in the present paper, are reli-

-1.0 MeV to -0.1 MeV, in Table Il we list the calculated able, thanks to the fact that our spin operator has no radial

HFB sum rules together with either the sum of the two qua-dependence.

siparticle energies in the case of the discrete response or the

peak energy in the case of the continuous response. In order IV. CONCLUSIONS

to clarify the effect of the presence of nearby continuum . )

taken into account in the HFB calculation, our HFB resultis We have studied the properties of weakly boyndeu-

compared with the simplest version of BCS calculations. Thérons and the related spin response functions, solving a sim-

latter is estimated using the usual BCS formulas with thePlified model of the HFB equation in coordinate space with

pair-gapA=1 MeV and one-particle eigenenerggr reso- Fhe correct asymptotic bounc_jary conditions. When the bl_nd—

nant energyeyd¢j) that is calculated for the Woods-Saxon iNg energy ofps, neutrons in the Woods-Saxon potential

potentials used for respective HFB calculations. The overlagPProaches zero, we have showay: the spin-orbit splitting

between the B, and 2/, wave functions is taken to be P12~ Psjz2in the one-particle energy spectra decreases drasti-

unity as in the harmonic-oscillator model. The NEWSR of @lly; (b) the total occupation probability of thps, level
the BCS estimate,my(BCS), decreases strongly ax decreases only slightlyc) the effective pair gap for the

= ewd2ps)) increases, due to the strongly decreasing spin'€utrons becomes very smail)) the mean square radius

orbit splitting, sy 2Py/5)—ewd 2Ps), Which makes the rel- becomes appreciably large) an appreciable amount of spin

evant BCS pairing factofUy, Vo, Vo, Uy, | much — F€Sponse appears at.excitation epergies much lower than 2
32 T2 A K g (H the NEWSR of spin response in the HFB result decreases

smaller. Note that in the limit of small spin-orbit splittin A ; .
compared with pair gap the BCS pairing factbr2p3/2V2p1/2 only slightly compared with that of BCS calculations.

—V2p3/2U2p1/2| approaches zero. Here we denote the BCS oc-
cupation and unoccupation amplitudes Uy; and V;, re-
spectively, which are just numbers and do not depend.on  This work was supported in part by the Japanese Ministry
In contrast, the NEWSR from the HFB calculation, of Education, Science, Sports and Culture by Grant-In-Aid
my(HFB), remains almost unchanged wheneyd2ps,) in-  for Scientific Research under Program Ng2C16540259.
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