
Goldstone bosons in the pairing Hamiltonian: The path integral approach

M. B. Barbaro and A. Molinari
Dipartimento di Fisica Teorica, Università di Torino and Istituto Nazionale de Fisica Nucleare, Sezione di Torino, Torino, Italy

F. Palumbo
INFN, Laboratori Nazionali di Frascati, Frascati, Italy

M. R. Quaglia
Dipartimento di Fisica, Università di Genova and Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Genova, Italy

(Received 9 April 2003; revised manuscript received 8 July 2004; published 27 September 2004)

As a first step to derive the interacting boson model from a microscopic nuclear Hamiltonian, we bosonize
the pairing Hamiltonian in the framework of the path integral formalism, respecting both the particle number
conservation and the Pauli principle. Special attention is paid to the role of the Goldstone bosons. We construct
the saddle point expansion which reproduces the sector of the spectrum associated with the addition or removal
of nucleon pairs.
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I. INTRODUCTION

The problem of relating the interactingboson model
(IBM ), so successful in interpreting the low-energy nuclear
phenomenology, to an underlyingfermionic nuclear Hamil-
tonian has been attacked in a number of papers(see in par-
ticular [1–3]).

In principle, a possible procedure to deal with it could be
(1) to derive an effective interaction in a chosen model
space,(2) to express it in terms of pairing, quadrupole and
other forces, and(3) to bosonize the model Hamiltonian thus
obtained.

Less ambitiously one could start by assuming from the
outset a multipole expansion of the effective interaction in
the chosen model space.

Following these steps one should be able to relate the
parameters appearing in the IBM to those occurring in the
fundamental nucleon-nucleon interaction and the bosonic op-
erators to the original fermionic ones.

A vast literature exists concerning the problem of map-
ping the fermionic model space into the bosonic one[4].
However, it appears to us that the actual realization of these
mappings still deserves futher analyses, especially in connec-
tion to the nature of the interacting bosons, namely, whether
they are Goldstone bosons or not. Let us comment on why
the Goldstone bosons should play a role in nuclear structure
and how they relate to some of the bosons of the IBM.

In this connection, we recall that underlying the IBM is
the recognition that the nuclear interaction is attractive
enough to form pairs of nucleons. In low-energy phenomena
these conserve their identity inside nuclei, thus becoming the
relevant degrees of freedom for the collective nuclear levels.
The analogy between these pairs of nucleons and the Cooper
pairs of superconductivity is clearly suggestive and indeed
the simplified version of the BCS theory of superconductiv-
ity represented by the so-called pairing Hamiltonian was ap-
plied to atomic nuclei long ago and was dealt with by the
Bogoliubov-Valatin(BV) transformation.

The pairing Hamiltonian, in its simplest form, governs the
dynamics of pairs of nucleons moving in a mean field and

coupled to zero angular momentum(referred to ass bosons
in the IBM). The great success of the IBM stemmed from the
introduction of pairs of nucleons coupled to angular momen-
tum 2 as well, thed bosons, which can also be treated
through a generalized BV transformation. In all cases the BV
transformation does not conserve the number of particles.
Although elaborated methods have lately been devised to
preserve the number of particles[4], it is of importance to
realize that this feature of the BV transformation is con-
nected to the central concept lying at the core of supercon-
ductivity, namely, the spontaneous breaking of the global
gauge invariance related to the particle number conservation.
Thus in a superconducting system there must exist an asso-
ciated Goldstone boson. Now in the IBM nuclei are indeed
viewed as superconducting systems, even if only approxi-
mately, since they are finite systems. As a consequence, the
IBM should embody at least one Goldstone boson. Other
Goldstone bosons should of course appear if other symme-
tries, like the rotational one, are(approximately) spontane-
ously broken.

In infinite systems the Goldstone fields carry specific sig-
natures: indeed they live in the coset space of the spontane-
ously broken group Us1d of the global gauge transformation
eiqL/", q being the electric charge, with respect to the unbro-
ken subgroupZ2 consisting of the gauge transformations as-
sociated withL=0 andL=p" /q and display only derivative
interactions. If these distinctive features survive in finite sys-
tems, the identification of Goldstone bosons becomes of rel-
evance not only for a deeper understanding of the bosoniza-
tion mechanism, but also for a convenient choice of the
variables. One could indeed choose bosonic fields not living
in the coset space, but at the price of rendering the formalism
quite cumbersome, as exemplified by the chiral physics[5].

Motivated by the above heuristic considerations, in this
paper we present an investigation of the program outlined at
the beginning of this Introduction, limiting ourselves to con-
fronting the third point, namely, to considering only the pair-
ing interaction. Yet, since, in a model space, the pairing in-
teraction is an important component of any realistic effective
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interaction[6], then our work may also be viewed as a first
step in the derivation of the IBM.

We will use the path integral formalism where the prob-
lem of superconductivity is readily solved independently of
which quantum numbers the Cooper pairs carry[5]. The ba-
sic question we address is to what extent the features of
superconductivity in an infinite system, in particular the sig-
natures of the Goldstone fields, survive in a finite system.
Our main result is that indeed these signatures are exactly
preserved in the pairing model. Accordingly we argue that
the extension of the latter to include higher multipolarities of
the force should be easily feasible, as confirmed by recent
work [7].

The plan of the present paper is as follows.
In Sec. II we discuss from the point of view illustrated

above the well known spectrum of the pairing Hamiltonian,
which is characterized by the two quantum numbersn (the
number of pairs) and s (the number of broken pairs), natu-
rally related to two types of excitations. Those associated
with n relate to the addition or removal of a correlated pair of
nucleons and can be viewed as Goldstone bosons stemming
from the (almost) broken conservation of particle number.
Those related tos, namely, to the breaking of pairs(seniority
excitations), we view as corresponding to the Higgs par-
ticles.

In Sec. III we derive the Euclidean path integral formula-
tion and introduce auxiliary bosonic fields via the Hubbard-
Stratonovitch transformation.

In Secs. IV and V we set up a saddle point expansion of
the effective action of the auxiliary fields. The expansion
parameter turns out to be the inverse of the energy

M =
gV

2
, s1d

g being the strength of the pairing force andV= j +1/2 the
pair degeneracy of a single-particle level with angular mo-
mentum j (for the sake of simplicity we shall consider the
case of one level only).

Within such an expansion we succeed in reproducing the
excitation energies associated with the addition or removal of
pairs of nucleons. We do not explore, however, the seniority
excitations, which are not easily accommodated in the frame-
work of our expansion since their energies are of the order of
M. A reasonable estimate, based on the available nuclear
phenomenology[8], yields M ù3 MeV in the region of the
Sn isotopes. As anticipated, our analysis shows that the pair-
ing model encodes in a striking way the basic features of
spontaneous symmetry breaking in an infinite system:indeed
the field which describes the Goldstone excitations lives in
the coset of the Us1d symmetry related to particle number
conservation with respect to the conserved Z2 subgroup and
displays only derivative couplings.

Then we investigate two paths for selecting a sector of a
given number of nucleons: one based on the chemical poten-
tial (Sec. VI) and the other on a projection operator(Sec.
VII ). Since at zero temperature, even in the presence of the
chemical potential, the number of particles does not fluctu-
ate, the two formalisms lead exactly to the same result.

In Sec. VIII we derive the Hamiltonian of thes bosons. In
the present case, since the spectrum of the pairing model is
known, this Hamiltonian has been determined in a simpler,
direct way by Talmi[16]. This work, however, ignores the
Pauli principle, which, therefore, must be addeda posteriori
as anad hoc prescription. Moreover our approach has the
merit that it can be applied as well when forces of higher
multipolarity are active, thus opening the way to the micro-
scopical derivation of the IBM. In Sec. IX we present our
conclusions and outlook.

For the sake of completeness, in concluding this Introduc-
tion, we mention two approaches to the problem of bosoniza-
tion attempted in the past.

The first, also limited to the pairing interaction, was based
on the use of even Grassmann variables in the generating
functional[10,11], but substantial difficulties were met in its
extension to include the quadrupole interaction.

The second was carried out by Mukherjee and Nambu
[12] who explored in depth the connection between the BCS
theory of superconductivity and the IBM. These authors, lin-
earizing in the frame of the mean field approach a nuclear
BCS Hamiltonian embodying a contact four-nucleon interac-
tion, accounted for second order corrections. They were thus
able to derive a bosonic Hamiltonian expressed as a sum of
Casimir operators and hence qualitatively of the IBM type.
However, these authors actually explored an infinite homo-
geneous system and dealt with finite nuclei only in some
approximate schemes, thus failing to enforce the particle
number conservation. Moreover their approach appears
hardly suitable for a realistic derivation of the IBM model, in
particular as far as the fermion-boson mapping is concerned.

II. THE EXCITATIONS OF THE PAIRING HAMILTONIAN
AS GOLDSTONE AND HIGGS BOSONS

According to the framework outlined in the Introduction
we consider the schematic pairing Hamiltonian, which ac-
counts for much of the physics of the low-energy spectra of
nuclei. Our aim is to establish a connection between its well
known spectrum and the(almost) spontaneous breaking of
the particle number conservation, which entails the existence
of Goldstone and Higgs modes.

In its simplest version the pairing Hamiltonian describes a
system of interacting bounded identical nucleons living in
one single-particle level of angular momentumj and reads

Ĥ = o
m=−j

j

eml̂m
† l̂m − gÂ†Â s2d

where

Â = o
m.0

s− 1d j−ml̂−ml̂m, s3d

l̂†, l̂ are the usual creation and annihilation nucleon opera-
tors, m is the third component of the angular momentumj ,
theem are the(negative) single-particle energies, andg is the
strength of the pairing force. For the sake of simplicity we
setem=e independent ofm. In the Conclusions we will men-
tion how and when the level dispersion can be accounted for
[13].
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In this paper we shall consider an even number of identi-
cal nucleons only. In such a case the energy spectrum is
given by the well-known formula[14]

En,s = 2en− gnsV − n + 1d + gssV − s+ 1d, n ù s, s4d

where n is the number of pairs ands the pair seniority.1

Clearly Eq.(4) holds valid for

n ø V s5d

and not only forsøn, but for

sø V − n s6d

as well, as a consequence of the Pauli principle.
In an infinite system the energy of the Goldstone bosons

vanishes with the associated quantum number. This does not
occur in a finite system, but, to the extent that the energy
spectrum of the latter displays a pattern similar to that of an
infinite system, it should exhibit two quite different energy
scales. Actually the excitation energies associated with both
the quantum numbersn and s appear to be of ordergV.
However, the Goldstone nature of the energy spectrum asso-
ciated with the quantum numbern is clearly apparent when
one considers the excitations with respect to the minimum.
This, if n is viewed as a continuous variable, occurs for

n0 =
1

2
sV + 1d −

e

g
. s7d

In fact, sincen assumes only integer values, the minimum of
Eq. (4) takes place for

n0 = fn0g, s8d

f¯g meaning the integral part. Introducing then the shifted
quantum number

n = n − n0 s9d

Eq. (4) becomes

En0+n,s = gn2 + 2gnsn0 − n0d − gn0s2n0 − n0d + gssV − s+ 1d.

s10d

Now we see that the addition(or removal) of one pair of
nucleons with respect to the ground state requires an energy
of orderg: this is the energy of the Goldstone boson. Instead,
the energy required to break a pair, the seniority energy, is of
order gV: this is the energy of a Higgs boson. Such corre-
spondence can be made more strict by taking the limitsg
→0, V→`, with gV constant: then the Higgs energy would
stay finite, while the energy of the Goldstone boson would
vanish.

We should now point out that using the physical values
for V, g, ande appropriate, for example, to the Sn nucleus
(these can be taken from[8,9]), one would obtain a value for
n0 corresponding to an unphysical nucleus. However, the ex-

citation energies of both modes, measured with respect to the
minimum [see Eq.(10)] are essentially independentof the
single-particle energye. Hence our argument, although heu-
ristic, remains qualitatively correct. The real justification of
its validity will be given in the next section.

Finally, since in the pairing Hamiltonian the degeneracy
V is fixed by the model space, the excitation energies related
to the quantum numbersn ands can be predicted once two
conditions are chosen in order to fix the parameterse andg.

III. THE GENERATING FUNCTIONAL

As is well known[15] the path integral must be evaluated
in its discretized form. The discretized Euclidean action of
our system is

S= t o
t=−N0/2

N0/2–1 H− gĀstdAst − 1d

+ o
m=−j

j

fl̄mstds¹t
+ + edlmst − 1dgJ , s11d

wheret is the time spacing,N0 the number of points on the
time lattice,

s¹t
± fdstd = ±

1

t
ffst ± 1d − fstdg, s12d

and

Z =E fdl̄dlge−S s13d

the generating functional. Moreoverl, l̄,

A = o
m.0

s− 1d j−ml−mlm,

and

Ā = o
m.0

s− 1d j−ml̄ml̄−m

are Grassmann variables. We recall that the fermion fields
must satisfy antiperiodic boundary conditions in time.

Now, to cast the action in a form convenient for the saddle
point expansion, we perform a number of manipulations:
their role will be illustrated when appropriate. First we shift

the time label in the variablesl (but not l̄) according to

lst − 1d → lstd s14d

in order to haveĀ andA with the same time argument. This
yields for the action the expression

1According to our definition the pair seniority quantum numbers
is half the usual seniorityv and corresponds to the number of pairs
not coupled to angular momentumJ=0, and as such, blind to the
action of the pairing force.
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SI = t o
t=−N0/2

N0/2–1 H− gĀstdAstd + o
m=−j

j

fl̄mstds¹t
+ + edlmstdgJ .

s15d

Carrying out next the Hubbard-Stratonovitch transformation,
we get the new action

SII = t o
t=−N0/2

N0/2–1 Hgh̄stdhstd + gh̄stdAstd + ghstdĀstd

+ o
m=−j

j

fl̄mstds¹t
+ + edlmstdgJ . s16d

Clearly the auxiliary fieldsh̄ and h should satisfy periodic
boundary conditions.

Finally we introduce the Goldstone fieldu through the
polar representation[5] for the auxiliary fields

h = Îre2iu, h̄ = Îre−2iu. s17d

The fieldr has been placed under a square root to avoid the
Jacobian which would otherwise appear. Notice that for this
change of variable to be one to one(with the only exception
of the pointr=0), u must vary in the range 0øu,p. Hence
the field u lives in the coset space of the(almost) broken
symmetry group Us1d of particle conservation with respect
to the unbroken subgroupZ2, as appropriate to a Goldstone
field [5]. From the periodic boundary conditions for theh
field periodic boundary conditions forr andu follow as well.

We note now that, after the transformation(17), theu field
appears in the action(16) with nonderivative couplings
whereas the Goldstone field should display only derivative
couplings. However, the former can be eliminated introduc-
ing the following transformation on the nucleon fields:

lm = eiucm, l̄m = e−iuc̄m. s18d

As a consequence of the above transformation the follow-
ing operators:

q± = exps7 iud¹t
±exps± iud ± e, s19d

whose matrix elements read

sq+dt1t2
=

1

t
fexphits¹t

+udt1
jdt2,t1+1 − dt1t2

g + edt1t2
, s20d

sq−dt1t2
=

1

t
fdt1t2

− exphits¹t
+udt2

jdt2,t1−1g − edt1t2
, s21d

will appear in the action. Theu field appears only in these
operators and therefore under a derivative, as appropriate to a
Goldstone field.

Hence Eq.(16) can be recast in the form

SIII = t o
t=−N0/2

N0/2–1 Hgr + o
m.0

fc̄mq+cm + c̄−mq+c−m

+ gÎrs− 1d j−msc̄mc̄−m + c−mcmdgJ = t o
t=−N0/2

N0/2–1 Hgr + o
m.0

hfc̄m

+ gÎrs− 1d j−mc−msq+d−1g

3q+scm + gÎrs− 1d j−msq+d−1c̄−md − g2rc−msq+d−1c̄−m

+ c̄−mq+c−mjJ . s22d

Now we first integrate over the fermionic fieldsc̄m and
cm for a given positivem: this yields Detsq+d, independent of

m. Likewise, performing the integration overc̄m andcm for
a given negativem, we get Dethq++g2rfsq+d−1gTj, T meaning
the transpose operation, againm independent. Lumping the
two results together and exploiting the relation

sq+dT = − q−, s23d

we find for the fermionic functional integration the result

fDets− q−q+ + g2rdgV. s24d

Thus, disregarding here and in the following all the field
independent factors, we get for the generating functional the
following expression:

Z =E
0

`

fdrgE
0

p

fdugexps− Sef fd, s25d

with

Sef f = to
t

gr − Tr lns− q−q+ + g2rd. s26d

Note that the argument of the logarithm is symmetric, but not
Hermitian. The trace must be taken over the quantum num-
ber m.0 and the time. The Us1d symmetry is now nonlin-
early realized in the invariance ofSef f under the substitution

u → u + a, s27d

with a time independent.

IV. THE SADDLE POINT

In this section we look for a minimum ofSef f at constant
fields: hence only the time independent component of ther
field, to be referred to asr̄, will enter into the effective ac-
tion. We start by defining

M = Îe2 + g2r̄ s28d

and

P−1 = − ¹t
+¹t

− + es¹t
+ − ¹t

−d + M2 = − s1 − etd h + M2,

s29d

where h=¹t
+¹t

−. Notice thatet cannot be neglected with
respect to 1. Indeed, in our calculations we will first perform
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the limit N0→` and then we shall lett→0. The effective
action at constant fields reads then

S̄ef f = to
t

gr̄ − Tr ln P−1. s30d

The trace is conveniently evaluated in the Fourier represen-
tation, yielding

S̄ef f = tN0gr̄ − V o
n0=−N0/2

N0/2–1

lnF4s1 − etdsin2 p

N0
sn0 + 1/2d

+ t2M2G , s31d

where the antiperiodic boundary conditions of the nucleon
fields have been taken into account. Converting the sum into
an integral we get

S̄ef f = N0tHgr̄ −
2V

t
lnF1

2
stM + Î4s1 − etd + t2M2dGJ

= N0tsgr̄ + Ve− VMd + Ost2d. s32d

Notice that the pieceVe stems from the termte in Eq. (31).
The minimum ofS̄ef f occurs for

M =
gV

2
, s33d

which is independent ofe andr̄. Inserting the above into Eq.
(28) one gets for the valuer̄0 of r̄ at the minimum the ex-
pression

r̄0 =
V2

4
−

e2

g2 , s34d

so thatS̄ef f at the minimum is

S0 = N0tS−
MV

2
−

e2

g
+ VeD . s35d

Although the values forV, g, ande appropriate for the Sn
isotopes would lead to a negativer̄0, actually in selecting a
given nucleus(see Sec. VI) the replacemente→e=e−m (m
being the chemical potential) should be performed. When
this is done, as will be shown in Sec. VI,r̄0 turns out indeed
to be positive, as it should be, in the physical range 1øn
øV, attaining its maximum value forn.V /2, namely, for a
half-filled level.

V. THE SADDLE POINT EXPANSION

To perform this expansion we start by defining the fluc-
tuation of ther field according to

r = r̄0 + r = r̄0S1 +
r

r̄0
D s36d

and by noticing that the generating functional(25) now reads

Z =E
−r̄0

`

fdrgE
0

p

fdugexps− Sef fd. s37d

Now two cases should be considered.

(a) r̄0 is sufficiently large: then the functional integral
definingZ becomes Gaussian and an expansion inr / r̄0 can
clearly be performed. Actually, as will be later shown[see
formula (57) below], r̄0 is indeed large whenn,V /2,
namely, when the level where the pairs live is far from being
fully occupied or empty.

(b) r̄0 is small, which occurs forn.1 or n.V [see again
formula (57) below]. In this case the shift in Eq.(36) is
absent and ther field acts only through its fluctuations,
which are small, thus assuring the validity of the expansion.

To proceed further we rewriteSef f in the form

Sef f = to
t

gsr̄0 + rd + Tr ln P − Tr lnf1 + PsR1 + R2dg,

s38d

where

R1 = − q−q+ + s¹t
+ + eds¹t

− − ed s39d

and

R2 = g2r . s40d

We set then

Sef f = o
r=0

`

Sr , s41d

the termS0 being the saddle point contribution, given by Eq.
(35). This grows likeV2; however, it contains also a term of
order V and a term of order 1, which should be kept if an
expansion in powers of 1/V is sought for. It seems to us,
however, more convenient to stick to the definition(29) for
the operatorP and to compute the further contributions to the
expansion(41) (the quantum fluctuations) by developing the
logarithm (38): the terms thus obtained are naturally orga-
nized in powers ofM−1. It is worth recalling that this expan-
sion does not break the Us1d invariance.

In the following we shall confine ourselves to evaluating,
in addition to the first order terms, those quadratic in¹tu
and r.

A. First order contributions

These contributions stem from the term linear inr and
from the first term in the expansion of the logarithm; hence

S1 = tgo
t

r t − TrfPsR1 + R2dg. s42d

The explicit computation of the second term on the right-
hand side(RHS) of the above yields

− TrsPR1d =
V

t2o
t

PttHf1 − e2isut+1−utdg − f1 − eisut+1−utdg

3Ft2M2 −
t2

Ptt
+ 2s1 − etdGJ , s43d

wherePtt is found to read
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Ptt =
t

2M
S1 − et +

t2M2

4
D−1/2

. s44d

By expanding the exponentials up to second order inu we
get

− TrsPR1d =
V

2M
F1 +SM +

3

2
eDtGto

t

sut+1 − utd2

t2 + Ost3d.

s45d

The contribution arising from the third term on the RHS
of Eq. (42) turns out to be

− TrsPR2d = − Vg2o
t

Pttr t. s46d

Notably this contribution, linear inr, is canceled by the first
term in S1, owing to the equation for the minimum of the

actionS̄ef f. The cancellation holds to the orderOst2d, which
is the approximation we keep in our analysis and in obtain-
ing the equation for the action minimum.

In conclusion, for the first order contribution to the action
we get

S1 = − TrsPR1d =
1

g
F1 +SM +

3

2
eDtGt o

t=−`

`

us− ! du,

s47d

whereot runs from −̀ to ` since we letN0→` in evalu-
ating P. We note that these contributions are of orderV and
1, namely, areOs1/Vd with respect to those of the saddle
point.

B. Second order contributions

We have seen in the previous subsection that all the terms
linear in r cancel out: hence ther integration remains unde-
fined. Our aim now is to ascertain whether the surviving
terms inr stabilize the action.

Among these we consider the contributions arising from
the second term in the expansion of the logarithm. They read

S2 =
1

2
TrsPR1d2 + TrsPR1PR2d +

1

2
TrsPR2d2. s48d

In the above the first term isr independent, the second is
linear in r, and the third one is quadratic. Therefore, for the
present purpose, it is sufficient to evaluate the latter. For this
we have found

1

2
TrsPR2d2 =

g4V

2 o
tt1

rtfPtt1
g2rt1

. s49d

Hence the integral overr is well defined.
In conclusion we remark that, as will be seen in the fol-

lowing sections, in order to obtain the Goldstone boson en-
ergies we must find out how they depend upon the single-
particle energye. For this purpose we have to perform in the
integral expressing the generating functionalZ1 (associated
with the actionS1) the u integration, which appears to be
Gaussian, but actually it is not, becauseu is compact. Yet we

can choose¹tu as a new integration variable, thus rendering
the integral Gaussian. We then get

−
1

N0t
ln Z1 =

3

4
e+

M

2
=

3e+ gV

4
. s50d

We notice that this contribution stems from the termsM
+3e/2dt in S1, which is irrelevant because it vanishes in the
formal continuum limit.

VI. FIXING THE PARTICLE NUMBER
BY THE CHEMICAL POTENTIAL

In this section we apply the saddle point expansion to a
specific nucleus using the method of the chemical potential.
For this purpose we replacee with

e = e− m, s51d

m being the chemical potential. Its value is fixed according to

kN̂l =
1

N0t

]

] m
ln Z = −

1

N0t

]

] e
ln Z, s52d

where

N̂ = o
m=−j

j

l̂m
† l̂m s53d

is the particle number operator. Since, however, we shall let
N0→` with t constant, which corresponds to the limit of
vanishing temperatureT=1/sN0td, we are allowed to replace

kN̂l with 2n. We also notice that becauseM does not depend
upone [see Eq.(1)], it does not depend onm either. So Eq.
(52) becomes

n =
1

2N0t

]

] e
sS0 − ln Z1d = −

e

g
+

V + 3/4

2
, s54d

which gives

m = gsn − V/2 – 3/8d + e s55d

for the chemical potential. Hence, in the presence of the
chemical potential, the energy of the system becomes

En,0 =
1

N0t
sS0 − ln Z1d + 2 mn = 2en− gnsV − n + 3/4d

+
g

8
S5V +

9

8
D . s56d

We thus see from the above that in our approach the excita-
tion spectrum of the pairing Hamiltonian is reproduced with
good accuracy. On the other hand the ground state energy
differs from the exact value −gfsV+1d /2−e/gg2 by the
quantity s3gV+g−ed /4, which corresponds to a relative er-
ror of order 1/V.

We conclude this section by further examining the issue,
already addressed in the beginning of Sec. V, of the validity
of our expansion. For this purpose it is of importance to
assess the size ofr̄0. With this aim we replace in Eq.(34) e
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by e and use Eq.(55), dropping the term −3/8 in the paren-
theses on the RHS, thus getting

r̄0 = nsV − nd. s57d

Now, whenn,V /2, then the single-particle energye almost
coincides with the chemical potentialm. In such a situatione
is almost vanishing and, from Eq.(57), r̄0.V2/4. This large
value corresponds to the situation when the level where the
pairs live is neither fully filled nor almost empty. On the
other handr̄0 attains its lowest value whenn=1 or n=V. It
is remarkable that even in these cases, where an expansion in
1/r̄0 cannot be performed, our approach still yields the cor-
rect excitation spectrum of the system.

VII. FIXING THE PARTICLE NUMBER
BY THE PROJECTION OPERATOR

Owing to the importance of properly fixing the particle
numbern, in this section we address the problem through an
alternative procedure, namely, by introducing in the path in-
tegral the projection operator

Pn =E
−p

+p da

2p
e−isN̂−2nda. s58d

Using then the variables(18) and performing the Hubbard-
Stratonovitch transformation as previously done, we get for
the generating functional the expression

Zsnd =E
−p

+p da

2p
E fdl dl̄ dc dc̄ dh dh̄ge−Ssnd

s59d

where

Ssnd = t o
t=−N0/2

N0/2–1 Hgr + o
m.0

fc̄mqs
+cm + c̄−mqs

+c−m+ gÎrsc̄mc̄−m

+ c−mcmdgJ − 2N0tss − edn s60d

(remember that the labeln indicates the number of pairs),
having defined

s = e+
ia

N0t
s61d

and

qs
± = exps7 iud¹t

±exps± iud ± s. s62d

Next we carry out the integration over the fermionic de-
grees of freedom, getting for the partition function the ex-
pression

Zsnd ~ E
e−ip/N0t

e+ip/N0t

dsE fdr dugexpf− Sef f
sndss,r,udg, s63d

where

Sef f
snd = − 2N0tss − edn + to

t

gr − Tr lnf− qs
−qs

+ + g2rg.

s64d

At constant fields Eq.(64) simplifies to

S̄sndss,r̄d = N0tfgr̄ + 2ne+ sV − 2nds − VÎs2 + g2r̄g,

s65d

which is stationary when

] S̄sndss,r̄d
] r̄

= N0tgS1 −
Vg

2Îs2 + g2r̄
D = 0 s66d

and

] S̄sndss,r̄d
] r̄

= N0tS−
Vg

M
+ V − 2nD = 0. s67d

The solutions of the above equations read

r̄0 = nsV − nd s68d

and

s0 =
g

2
sV − 2nd. s69d

Finally the effective action(65) at the minimums0 turns out
to be

S̄sndss0,r̄0d = N0tE0
snd = N0tf2ne− gnsV − ndg, s70d

which differs from the zero seniority spectrum of the pairing
Hamiltonian. Indeed the latter hasV+1, rather thanV, in-
side the parentheses on the RHS of Eq.(70).

Note that the action(65) is an analytic function ofs in-
side an integration path deformed to encompass the saddle
point s0. This path goes frome− ip /N0t to s0− ip /N0t
along a straight line parallel to the real axis, then froms0
− ip /N0t to s0+ ip /N0t along a straight line parallel to the
imaginary axis, and finally it goes back froms0+ ip /N0t to
e+ ip /N0t. WhenN0→`, the contributions coming from the
paths parallel to the real axis cancel each other, while the one
parallel to the imaginary axis vanishes: hence there are no
corrections to the saddle point contribution.

Next, with the aim of checking the results obtained in the
framework of the chemical potential method, we evaluate,
using the projection operator, the first order correction in the
saddle point expansion inr andu. For this scope we set, as
in Eq. (36),

r = r̄0 + r . s71d

The action(64) can then be recast as follows:

Sef f
snd . S̄0

sndss0,r̄0d + S1
snd s72d

where

S1
snd = N0tgr − TrfPss0,r̄0dsR1

snd + R2
snddg s73d

with

R1
snd = − fqs

− + ss − s0dgfqs
+ − ss − s0dg + s¹t

+ + s0ds¹t
− − s0d

s74d

and
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R2
snd = g2r . s75d

The contribution

TrfPss0,r̄0dR2
sndg = g2Tr Pss0,r̄0dr = g2t

go
t

r s76d

cancels the first term in Eq.(73). Hence the latter simply
becomes

S1
snd = − TrfPss0,r̄0dR1

sndg. s77d

A calculation, similar to the one carried out in Sec. V A,
yields then

− TrfPR1
sndg =

V

2M
F1 +SM +

3

2
s0DtGto

t

sut+1 − utd2

t2 .

s78d

Using now the expression(69) for s0 we get

S1
snd =

1

g
F1 + gS5

4
V −

3

2
nDtGto

t

us− ! du s79d

and by performing theu integration[again using Eq.(69)]
we finally obtain the first order energy

E0
snd + E1

snd = 2ne− gnSV − n +
3

4
D +

5

8
gV, s80d

which coincides with the excitation spectrum obtained with
the chemical potential.

VIII. THE HAMILTONIAN OF THE s BOSONS

To complete our program(restricted, we recall, to the
pairing potential) we derive below the bosonic Hamiltonian
corresponding to our effective action. The most general, par-
ticle conserving, quartic Hamiltonian for a system of bosons,
confined to live in one single-particle level, reads in normal
form

Hsb̂†,b̂d = hb̂†b̂ + vb̂†b̂†b̂b̂, s81d

b̂†,b̂ being bosonic creation-annihilation operators acting in
a Fock space. They satisfy canonical commutation relations.
The values of the parametersh,v were obtained in Ref.[16]
in such a way to yield the pairing Hamiltonian spectrum. Of
course the Hamiltonian thus obtained, being intrinsically
bosonic, patently violates the Pauli principle and therefore
the conditionn,V should be addeda posteriori, when us-
ing Eq. (81) in describing a system of fermions. Here, to
show how this condition naturally emerges instead in our
framework, we obtain the parametersh andv with our meth-
ods. To this purpose we write the path integral associated
with Eq. (81), namely,

Z =E fdb*dbgexps− Sd, s82d

where

S= to
t=1

N0

hbt+1
* ¹tbt + Hsbt+1

* ,btdj s83d

and theb* ,b are holomorphic variables satisfying periodic
boundary conditions in time. We now compare the above to
our effective action.

To this end we introduce the polar representation

b = Îr expsiud, b* = Îr exps− iud s84d

in terms of which the generating functional and the action
read

Z =E
0

`

fdrgE
−p

p

fdugexps− Sd, s85d

S= to
t

hÎrt+1 exps− iut+1d¹tfÎrt expsiutdg

+ HfÎrt+1 exps− iut+1d,Îrt expsiutdgj. s86d

Now we again look for a minimum ofSat constant fields and
perform a saddle point expansion. The calculation is basi-
cally the same as the one previously developed and hence
will not be reported here. We only quote the result of the
comparison with our effective action: it yields

h = 2e− gV − g/4, v = g, n , V. s87d

The inequality in the above equation is necessary for the two
path integrals to coincide and follows from the positivity of
r̄0, given in Eq.(57): thus in our approach such a condition,
far from being artificial, is necessarily implied by the formal-
ism itself. Obviously the considerations following Eq.(41)
hold valid as well here. Thush will be affected by an error of
order 1/M. Indeed, for the Hamiltonian(81) to reproduce
exactly the pairing spectrum it must be

h = 2e− gV, v = g. s88d

Finally, it is of importance to stress once more that the
above discussion can be generalized to include other types of
bosons, as, for example, those appearing in the quartic
Hamiltonian of the IBM model, respecting basic symmetries
like particle number conservation, rotational invariance, etc.
It is then clear that our approach opens the way to micro-
scopically deduce the Arima-Iachello model: in this case to
fix the coupling constants one should again write the corre-
sponding path integral and compare the resulting bosonic
action with the effective one found extending the procedure
developed in this paper to a fermionic Hamiltonian including
forces of higher multipolarity.

IX. CONCLUSIONS

In this paper we have carried out an investigation con-
cerning the possibility of a systematic bosonization of a re-
alistic nuclear Hamiltonian for the description of the low-
lying sector of the nuclear spectrum. Our study is admittedly
preliminary since it is limited to the pairing interaction,
which is of course only a component(although an important

BARBARO et al. PHYSICAL REVIEW C 70, 034309(2004)

034309-8



one) of an effective interaction pretending to be realistic.
However, having overcome the main difficulty we expected,
namely, the one of going from an infinite to a finite system,
we hope to be able to solve the bosonization problem in the
presence of other types of interaction[7].

Our approach is based on the concept of symmetry break-
ing and on the related properties of the interaction among the
bosonic fields: indeed this framework is the most suitable for
deriving, rather than assuming, a model like the IBM.

To develop our scheme we have used the path integral
formalism because of the large flexibility it allows both in
choosing and in dealing with the variables appropriate to the
problem. This has led us to deduce an asymptotic expansion
for the system’s spectrum in the parameterM−1=2/gV.

The Euclidean path integral clearly encompasses the
whole Fock space of the system. To deal with a specific
nucleus a given number of pairs must be selected(a proce-
dure not to be confused, of course, with the projection of the
particle number when this is violated). In our approach a
definite particle sector has been chosen using both the chemi-
cal potential and the projection operator methods: the two
turn out to be completely equivalent.

Notably our expansion to first order reproduces with good
accuracy the energy of the pair addition and removal modes
(or, in the language of the IBM, of thes bosons). Moreover
the requirement thatr̄0 should be positive entails the inequal-
ity n,V [see again Eq.(57)], thus implementing the action
of the Pauli principle. This is conceptually important for the
consistency of our scheme, which respects both the Pauli
principle and the particle number conservation. Worth notic-
ing is that this crucial feature is absent in the framework
developed in[16,17], but correctly dealt with in many treat-
ments based on the mapping procedure[1,4].

Our expansion cannot account for the seniority excita-
tions, whose energies, in the framework of the pairing

Hamiltonian (2), are larger thanM: hence they should be
separately treated. For this scope clearly an analysis of the
excitations associated with the fieldr should be performed.
In this connection it is worth recalling that in the scheme of
the BV transformation these modes are described in terms of
quasiparticles whose energies, as well known, are expressed
in terms of the gapD. In an infinite systemD is associated
with the order parameter by setting a non zero vacuum ex-
pectation value for the pair(Cooper) field and it signals the
onset of the superconducting phase; in a finite system it mea-
sures the strength of the mean field(referred to as the “pair
field”) which, in the BV scheme, linearizes the pair interac-
tion.

Finally we should observe that in our analysis the impact
on the excitation spectrum stemming from the removal of the
degeneracy of the levels where the pairs are sitting and of the
higher order terms in the saddle point expansion has not been
explored. Concerning the first issue, if the spacing between
the single-particle energy levels is small with respect toM, it
can easily be accounted for within the present perturbative
scheme. Indeed this approach has already been pursued in
Ref. [13]. Actually the Sn isotopes are well suited for such
perturbative treatment since here the distance between the
single-particle energies of concern appears to be much
smaller thanM.

Concerning the second point, we can only say that it
would certainly be both interesting and important to examine
in more depth our asymptotic expansion.
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