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Goldstone bosons in the pairing Hamiltonian: The path integral approach
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As a first step to derive the interacting boson model from a microscopic nuclear Hamiltonian, we bosonize
the pairing Hamiltonian in the framework of the path integral formalism, respecting both the particle number
conservation and the Pauli principle. Special attention is paid to the role of the Goldstone bosons. We construct
the saddle point expansion which reproduces the sector of the spectrum associated with the addition or removal
of nucleon pairs.
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[. INTRODUCTION coupled to zero angular momentuneferred to as bosons
in the IBM). The great success of the IBM stemmed from the

The problem of relating the interactingoson model . ; :
(IBM) sF()) successful in intgrpreting the Iovxt/]—energy nuclear|ntroduct|on of pairs of nucleons coupled to angular momen-

henomenology, to an underlyirfgrmionic nuclear Hamil- tum 2 as well, thed bosons, which can also be treated
pnhe 9y, Jerlying . through a generalized BV transformation. In all cases the BV
tonian has been attacked in a number of pagses in par-

ticular [1-3)) transformation does not conserve the number of particles.
v . I Although elaborated methods have lately been devised to
In principle, a possible procedure to deal with it could be

(1) to derive an effective interaction in a chosen modelP <>¢VE the number of particlgé], it is of importance to

S . realize that this feature of the BV transformation is con-
space,2) to express it in terms of pairing, quadrupole and

. . nected to the central concept lying at the core of supercon-
oLher fo(;ces, an@) to bosonize the model Hamiltonian thus ductivity, namely, the spont‘?am()e/ofs breaking of thepglobal
obtained. ! ’

Less ambitiouslv one could start by assuming from th#auge invariance related to the particle number conservation.
: y . y assuming from ey, o in a superconducting system there must exist an asso-
outset a multipole expansion of the effective interaction INiated Goldstone boson. Now in the IBM nuclei are indeed
theF((:)rlllgsv?R rﬁ?}gilesg,?eci one should be able to relate thviewed as superconducting systems, even if only approxi-
9 Step Lo ﬁwately, since they are finite systems. As a consequence, the
parameters appearing in the IBM to those occurring in thE1‘BM should embody at least one Goldstone boson. Other

fundamental nucleon-nucleon interaction and the bosonic ofs ) 4stone bosons should of course appear if other symme-

erators to @he original ferm|on|c ones. tries, like the rotational one, ar@pproximately spontane-
A vast literature exists concerning the problem of map-Ously broken

ﬂg\?vet\r/]:r fﬁr;moggrsnggdue; t?gi(iﬁelr:c(:)tlj[gleré)a(l)lisz%r;ilgnqgfthes In infinite systems the Goldstone fields carry specific sig-
It app atures: indeed they live in the coset space of the spontane-

mappings still deserves futher analyses, especially in connec- .
tion to the nature of the interacting bosons, namely, Whethe?.uAS/IZ broken group (1) of the global gauge transformation
'A% g being the electric charge, with respect to the unbro-

they are Goldstone bosons or not. Let us comment on wh o ;
the Goldstone bosons should play a role in nuclear structuré€n SUbgrougZ, consisting of the gauge transformations as-

and how they relate to some of the bosons of the IBM.  Sociated withA=0 andA =#/q and display only derivative
In this connection, we recall that underlying the IBM is interactions. If these distinctive features survive in finite sys-

the recognition that the nuclear interaction is attractivetems, the identification of Goldstone bosons becomes of rel-
enough to form pairs of nucleons. In low-energy phenomengvance not only for a deeper understanding of the bosoniza-
these conserve their identity inside nuclei, thus becoming thion mechanism, but also for a convenient choice of the
relevant degrees of freedom for the collective nuclear levelsvariables. One could indeed choose bosonic fields not living
The analogy between these pairs of nucleons and the Coopierthe coset space, but at the price of rendering the formalism
pairs of superconductivity is clearly suggestive and indeedjuite cumbersome, as exemplified by the chiral phygi¢s
the simplified version of the BCS theory of superconductiv- Motivated by the above heuristic considerations, in this
ity represented by the so-called pairing Hamiltonian was appaper we present an investigation of the program outlined at
plied to atomic nuclei long ago and was dealt with by thethe beginning of this Introduction, limiting ourselves to con-
Bogoliubov-Valatin(BV) transformation. fronting the third point, namely, to considering only the pair-
The pairing Hamiltonian, in its simplest form, governs theing interaction. Yet, since, in a model space, the pairing in-
dynamics of pairs of nucleons moving in a mean field anderaction is an important component of any realistic effective
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interaction[6], then our work may also be viewed as a first  In Sec. VIII we derive the Hamiltonian of thebosons. In
step in the derivation of the IBM. the present case, since the spectrum of the pairing model is
We will use the path integral formalism where the prob-known, this Hamiltonian has been determined in a simpler,
lem of superconductivity is readily solved independently ofdirect way by Talmi[16]. This work, however, ignores the
which quantum numbers the Cooper pairs cdfily The ba-  Pauli principle, which, therefore, must be addegosteriori
sic question we address is to what extent the features afs anad hoc prescription. Moreover our approach has the
superconductivity in an infinite system, in particular the sig-merit that it can be applied as well when forces of higher
natures of the Goldstone fields, survive in a finite systemmultipolarity are active, thus opening the way to the micro-
Our main result is that indeed these signatures are exactlcopical derivation of the IBM. In Sec. IX we present our
preserved in the pairing model. Accordingly we argue thatconclusions and outlook.
the extension of the latter to include higher multipolarities of  For the sake of completeness, in concluding this Introduc-
the force should be easily feasible, as confirmed by recenton, we mention two approaches to the problem of bosoniza-
work [7]. tion attempted in the past.
The plan of the present paper is as follows. The first, also limited to the pairing interaction, was based
In Sec. Il we discuss from the point of view illustrated on the use of even Grassmann variables in the generating
above the well known spectrum of the pairing Hamiltonian,functional[10,11], but substantial difficulties were met in its
which is characterized by the two quantum numberghe  extension to include the quadrupole interaction.
number of pairsands (the number of broken pairsnatu- The second was carried out by Mukherjee and Nambu
rally related to two types of excitations. Those associated12] who explored in depth the connection between the BCS
with n relate to the addition or removal of a correlated pair oftheory of superconductivity and the IBM. These authors, lin-
nucleons and can be viewed as Goldstone bosons stemmilegrizing in the frame of the mean field approach a nuclear
from the (almosy broken conservation of particle number. BCS Hamiltonian embodying a contact four-nucleon interac-
Those related tg, namely, to the breaking of pai¢seniority  tion, accounted for second order corrections. They were thus
excitation, we view as corresponding to the Higgs par- able to derive a bosonic Hamiltonian expressed as a sum of
ticles. Casimir operators and hence qualitatively of the IBM type.
In Sec. lll we derive the Euclidean path integral formula- However, these authors actually explored an infinite homo-
tion and introduce auxiliary bosonic fields via the Hubbard-geneous system and dealt with finite nuclei only in some
Stratonovitch transformation. approximate schemes, thus failing to enforce the particle
In Secs. IV and V we set up a saddle point expansion ohumber conservation. Moreover their approach appears
the effective action of the auxiliary fields. The expansionhardly suitable for a realistic derivation of the IBM model, in

parameter turns out to be the inverse of the energy particular as far as the fermion-boson mapping is concerned.
gQ Il. THE EXCITATIONS OF THE PAIRING HAMILTONIAN
M = 7, 1) AS GOLDSTONE AND HIGGS BOSONS

According to the framework outlined in the Introduction
g being the strength of the pairing force afid=j+1/2 the = we consider the schematic pairing Hamiltonian, which ac-
pair degeneracy of a single-particle level with angular mo-counts for much of the physics of the low-energy spectra of
mentum]j (for the sake of simplicity we shall consider the nuclei. Our aim is to establish a connection between its well
case of one level onjy known spectrum and théalmos) spontaneous breaking of
Within such an expansion we succeed in reproducing théhe particle number conservation, which entails the existence
excitation energies associated with the addition or removal o6f Goldstone and Higgs modes.
pairs of nucleons. We do not explore, however, the seniority In its simplest version the pairing Hamiltonian describes a
excitations, which are not easily accommodated in the framesystem of interacting bounded identical nucleons living in
work of our expansion since their energies are of the order opne single-particle level of angular momentjrand reads
M. A reasonable estimate, based on the available nuclear i
phenomenology8], yields M =3 MeV in the region of the A= emATxm—gATA 2)
Sn isotopes. As anticipated, our analysis shows that the pair- m=—i m
ing model encodes in a striking way the basic features of
spontaneous symmetry breaking in an infinite sysiedeed ~ Where
the field which describes the Goldstone excitations lives in A= (-1 ™A 3)
the coset of the (1) symmetry related to particle number = -mem
conservation with respect to the conservedsdbgroup and
displays only derivative couplings AT, \ are the usual creation and annihilation nucleon opera-
Then we investigate two paths for selecting a sector of dors, m is the third component of the angular momentym
given number of nucleons: one based on the chemical potethe e,, are the(negative single-particle energies, amds the
tial (Sec. V) and the other on a projection operai@ec. strength of the pairing force. For the sake of simplicity we
VIl). Since at zero temperature, even in the presence of theete,,=e independent ofn. In the Conclusions we will men-
chemical potential, the number of particles does not fluctution how and when the level dispersion can be accounted for
ate, the two formalisms lead exactly to the same result.  [13].
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In this paper we shall consider an even number of identicitation energies of both modes, measured with respect to the
cal nucleons only. In such a case the energy spectrum isinimum [see Eq.(10)] are essentially independemf the
given by the well-known formul@l4] single-particle energg. Hence our argument, although heu-

_ ristic, remains qualitatively correct. The real justification of
Ens=2en-gn(Q-n+1)+gsQ-s+1), n=s (4 g validity will be given in the next section.

where n is the number of pairs and the pair seniority. Finally, since in the pairing Hamiltonian the degeneracy
Clearly Eq.(4) holds valid for ) is fixed by the model space, the excitation energies related
to the quantum numbers ands can be predicted once two
n<Q (5 conditions are chosen in order to fix the parameteasdg.
and not only fors<n, but for
s<O-n (6) Ill. THE GENERATING FUNCTIONAL
as well, as a consequence of the Pauli principle. As is well known[15] the path integral must be evaluated

In an infinite system the energy of the Goldstone bosonén its discretized form. The discretized Euclidean action of
vanishes with the associated quantum number. This does notir system is
occur in a finite system, but, to the extent that the energy

spectrum of the latter displays a pattern similar to that of an No/2-1 _

infinite system, it should exhibit two quite different energy S=7 >, 1-gAbA(t-1)

scales. Actually the excitation energies associated with both t=-Ny/2

the quantum numbers and s appear to be of ordeg(). i

However, the Goldstone nature of the energy spectrum asso- + > [fm(t)(Vf +eN(t- D], (11)
ciated with the quantum numberis clearly apparent when me—j

one considers the excitations with respect to the minimum.

1 e time lattice,
VOZE(Q"']-)_a- (7)
. 1
In fact, sincen assumes only integer values, the minimum of (ViH =+ ;[f(ti 1) -f(v], (12)
Eq. (4) takes place for
nO = [VO] ’ (8) and
[---] meaning the integral part. Introducing then the shifted
quantum number 7= J [d\dA]eS (13)
ry=n-ng (9)
Eq. (4) becomes the generating functional. Moreovar X,
Engrs = 997 + 2g¥(Ng = vo) = gNp(2vp =~ No) + gS(Q — s+ 1). _
A= D (= DI\
(10) m>0

Now we see that the additiofor remova) of one pair of
nucleons with respect to the ground state requires an energynd

of orderg: this is the energy of the Goldstone boson. Instead,

the energy required to break a pair, the seniority energy, is of A= S (- 1)j—m;:
order g(): this is the energy of a Higgs boson. Such corre- me-m
spondence can be made more strict by taking the ligits
—0, ) — oo, with gQ) constant: then the Higgs energy would

\S;ﬁzslmte’ while the energy of the Goldstone boson woul ust satisfy antiperiodic boundary conditions in time.

. . . Now, to cast the action in a form convenient for the saddle
We should now point out that using the physical values,

for O d iate. f e 1o the S | point expansion, we perform a number of manipulations:
or %2, g, ande appropriaté, for exampie, 10 the oSn NUCICUS,oir o1 will be illustrated when appropriate. First we shift
(these can be taken frof8,9]), one would obtain a value for ) i ) — .

v, corresponding to an unphysical nucleus. However, the exN€ time label in the variables (but not) according to

m=>0

re Grassmann variables. We recall that the fermion fields

e - o AMt=1) =AY (14)
According to our definition the pair seniority quantum number

is half the usual seniority and corresponds to the number of pairs _ _ ' _
not coupled to angular momentud=0, and as such, blind to the in order to haveA andA with the same time argument. This
action of the pairing force. yields for the action the expression
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Ng/2-1 . i
S=7 > {-gADAWD + X \O(V; +eNn(D] (-

t=—-Ng/2 m=-j
(15)

Carrying out next the Hubbard-Stratonovitch transformation,

we get the new action

Ng/2-1

g=r >

t=-Ng/2

{g?(t) (1) + gRHA®D +grtAR)

J J—
+ 2 IOV} +e)>\m(t)]}- (16)

m=—j

Clearly the auxiliary fieldsy and 5 should satisfy periodic
boundary conditions.

Finally we introduce the Goldstone field through the
polar representatiofb] for the auxiliary fields

[~ -2i0

n=\pe?? 5=1pe (17)

The fieldp has been placed under a square root to avoid the
Jacobian which would otherwise appear. Notice that for thi

change of variable to be one to o(with the only exception
of the pointp=0), # must vary in the range<€ <. Hence
the field 6 lives in the coset space of th@lmosy broken

symmetry group 1) of particle conservation with respect
to the unbroken subgrou,, as appropriate to a Goldstone

field [5]. From the periodic boundary conditions for the
field periodic boundary conditions ferand 6 follow as well.
We note now that, after the transformatidr), the 6 field

appears in the actioril6) with nonderivative couplings
whereas the Goldstone field should display only derivative
couplings. However, the former can be eliminated introduc—N

ing the following transformation on the nucleon fields:

An=€%m  Am=€"y. (19)

As a consequence of the above transformation the follow-

ing operators:

" =expFif)Viexpio) e, (19

whose matrix elements read

1
(q+)tlt2 = ;[eXp{i T(Vra)tl}étz,tfl =l ted, (20)

1
(@), = ;[5t1t2 - explin(Vy O, Oyt -1l — €3y, (21)

will appear in the action. The field appears only in these

PHYSICAL REVIEW C 70, 034309(2004)

Ng/2-1

s=r E {gp"' E [qu+llfm+a—mq+'//—m

t=-Ng/2 m>0

_ o Ng/2-1 o
+ g\“‘”P(_ 1)j_m(¢m¢—m+ ‘ﬂ—m’ﬂm)]} =T 2 {gp+ E {[¢m

t=-Ng/2 m>0
+g\p(= DMy (@) ]
Xq* (Y + GVp(= DG M) = GP0de( @) iy
+Z_mq+w_m}}. (22)

Now we first integrate over the fermionic fieIangn and
U for a given positivem: this yields Detq*), independent of

m. Likewise, performing the integration ové, and i, for
a given negativen, we get Defq*+g2p[(q*)™*]"}, T meaning
the transpose operation, agamindependent. Lumping the
two results together and exploiting the relation

@)=-q, (23
we find for the fermionic functional integration the result

[Det(—q g +g?p)]°. (24)

SI'hus, disregarding here and in the following all the field

independent factors, we get for the generating functional the
following expression:

2= f [dp] f [dalexpi- Sur), 25
0

0
with

Sr= 72 dp = TrIn(=q7g" + ¢%p). (26)

t
ote that the argument of the logarithm is symmetric, but not
Hermitian. The trace must be taken over the quantum num-
berm>0 and the time. The (1) symmetry is now nonlin-

early realized in the invariance &;; under the substitution
00— 0+ a, (27)

with « time independent.

IV. THE SADDLE POINT

In this section we look for a minimum @&, at constant
fields: hence only the time independent component ofpthe
field, to be referred to ag, will enter into the effective ac-
tion. We start by defining

M=\e?+g%p (28
and
P=-ViV +e(V{ = V) +M?=~(1-en) 0 + M,
(29

operators and therefore under a derivative, as appropriate to a

Goldstone field.
Hence Eq(16) can be recast in the form

where 0=V, V. Notice thater cannot be neglected with
respect to 1. Indeed, in our calculations we will first perform
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the limit Ng— and then we shall let— 0. The effective (@ po is sufficiently large: then the functional integral

action at constant fields reads then defining Z becomes Gaussian and an expansion/j can
_ . clearly be performed. Actually, as will be later sho\isee
SefFTEt gp-Trin P (300 formula (57) below], py is indeed large whem~Q/2,

namely, when the level where the pairs live is far from being

The trace is conveniently evaluated in the Fourier represerfully occupied or empty.
tation, yielding (b) pg is small, which occurs fon=1 orn=() [see again
formula (57) below]. In this case the shift in Eq36) is

Ng/2-1 ; . .
= _ — LT absent and the field acts only through its fluctuations,
Sett = ™Nogp = Qn _% , In{4(1 —er)smzN—o(no +1/2) which are small, thus assuring the validity of the expansion.

o="Nof To proceed further we rewrit&g; in the form
2
+7M ] (31) Srr= 72 g(po+ 1) + Tr In P=Tr In[1+ P(R, + Ry)],
t

where the antiperiodic boundary conditions of the nucleon (38)

fields have been taken into account. Converting the sum into

an integral we get where
= — 20 |1 11 —on + 2N2 Ri=—qgq"+(Vi+e)(V; - 39
Set=Nom gp— —In 5(TM+\x4(1-eT)+72|\/|) 1==qq +(V{+e)(Vi —-e) (39

T
_ and
=Ngr(gp + Qe— QM) + O(7). (32)
. . . R,=gr. (40)
Notice that the piecé€le stems from the terme in Eq. (31).
The minimum ofS.¢; occurs for We set then
_9 -
M=2" (33 Si=2 S, (41)
r=0

which is independent o andp. Inserting the above into Eq.

(28) one gets for the valup, of p at the minimum the ex- the termS, being the saddle point contribution, given by Eq.
pression (35). This grows likeQ)?; however, it contains also a term of

5 order Q) and a term of order 1, which should be kept if an
—_ 0 _ f (34) expansion in powers of 11 is sought for. It seems to us,
Po="y g*’ however, more convenient to stick to the definiti@®) for
_ the operatoP and to compute the further contributions to the
so thatS¢r at the minimum is expansion(41) (the quantum fluctuationgy developing the
MQ logarithm (38): the terms thus obtained are naturally orga-
S= NO’T(— — -+ Qe). (35 nized in powers oM™ It is worth recalling that this expan-
2 9 sion does not break the(ll) invariance.
Although the values fof), g, ande appropriate for the Sn In the following we shall confine ourselves to evaluating,
isotopes would lead to a negatipg, actually in selecting a in addition to the first order terms, those quadraticVi®
given nucleugsee Sec. \jlthe replacement— e=e—u (u andr.
being the chemical potentjakhould be performed. When

this is don_g, as wiII. be shown in Sec. Ay turns out indeed A. First order contributions
to be positive, as it should be, in the physical rangenl o . ,
<, attaining its maximum value far=/2, namely, for a These contributions stem from the term linearrirand
half-filed level. from the first term in the expansion of the logarithm; hence

V. THE SADDLE POINT EXPANSION S = 1~ TIP(R, + Ry)]. (42)

To perform this expansion we start by defining the fluc- '
tuation of thep field according to The explicit computation of the second term on the right-
B o r hand sidg(RHS) of the above yields
p=po+r=po<l+:> (36)
Po

Q . .
-TrPR) =5, Ptt{[l - 1m0 — [1 — g1~ 00]
and by noticing that the generating functioi2b) now reads Lo

Z:F [dr]fﬂ [d@lexp(— Sery). (37) X[FMZ—Pﬁﬂ(l—eﬂ”, (43
-po 0

tt

Now two cases should be considered. wherePy; is found to read
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T 2M?2\ 12 can choosé&/,6 as a new integration variable, thus rendering
Pe=S-|1-er+ (44)  the integral Gaussian. We then get
2M
By expanding the exponentials up to second orde# ime Lz 28 M _Ber QQ_ (50)
get Nor = 4 2 4

QO 3 (Ber — 6)? We notice that this contribution stems from the teflh
~Tr(PRy = M 1+ M+ 58T > 2 (7). +3e/2)7in S, which is irrelevant because it vanishes in the
! formal continuum limit.

In this section we apply the saddle point expansion to a
specific nucleus using the method of the chemical potential.
Notably this contribution, linear im, is canceled by the first For this purpose we replaeewith
term in S;, owing to the equation for the minimum of the

actionS.¢. The cancellation holds to the ordéX %), which €e=e-m (5D)

is the approximation we keep in our analysis and in obtainw being the chemical potential. Its value is fixed according to
ing the equation for the action minimum.

(45)
The contribution arising from the third term on the RHS
BY THE CHEMICAL POTENTIAL
- TH(PRY) = - g’ Pyr:. (46)
t

: : byt : 19 19
In conclusion, for the first order contribution to the action (Ny=—-"Inz=-—"In Z, (52)
we get No7d u No7d €
1 3 * where
Sl:—Tr(PRl):é 1+<M+5e)7- 7> 6(-0)6, J
t=—cc ~ PPN
N= > A\ (53
(47) m:_j m'tm

where; runs from = to « since we letNo— in evalu- s the particle number operator. Since, however, we shall let
ating P. We note that these contributions are of orfleend N, with = constant, which corresponds to the limit of

1, namely, are0(1/Q) with respect to those of the saddle vanishing temperatur€=1/(Ny7), we are allowed to replace
point. (N) with 2n. We also notice that becaubé does not depend
upone [see Eq(1)], it does not depend op either. So Eq.

(52) becomes
We have seen in the previous subsection that all the terms

B. Second order contributions

linear inr cancel out: hence theintegration remains unde- n= 1 i(So— InZ,) = - £, Q+3/4 (54)
fined. Our aim now is to ascertain whether the surviving 2Ng7d € g 2
terms inr stabilize the action. . .
Among these we consider the contributions arising fromWhICh gives
the second term in the expansion of the logarithm. They read w=gn-Q/2-3/8 +e (55)

for the chemical potential. Hence, in the presence of the

— 1 2 1 2
= 2Tr(PR1) *THPRPRy) + 2Tr(PR2) . (49 chemical potential, the energy of the system becomes

In the above the first term is independent, the second is 1 _
linear inr, and the third one is quadratic. Therefore, for the Eno= N_OT(SO_ InZ,) +2 un=2en-gn(Q-n+3/4)
present purpose, it is sufficient to evaluate the latter. For this
we have found + 9<5Q + 9) _ (56)
8 8
1 ,_9'0 2 . .
S TH(PRy)"= 72 M P, 17, (49 We thus see from the above that in our approach the excita-
! tion spectrum of the pairing Hamiltonian is reproduced with

Hence the integral ovaris well defined. good accuracy. On the other hand the ground state energy

In conclusion we remark that, as will be seen in the fol-differs from the exact value gf(2+1)/2-e/g]* by the
lowing sections, in order to obtain the Goldstone boson enquantity (3g2+g-e)/4, which corresponds to a relative er-
ergies we must find out how they depend upon the singleror of order 1£).
particle energ\e. For this purpose we have to perform in the ~ We conclude this section by further examining the issue,
integral expressing the generating functio#al(associated already addressed in the beginning of Sec. V, of the validity
with the actionS;) the 6 integration, which appears to be of our expansion. For this purpose it is of importance to
Gaussian, but actually it is not, becausis compact. Yet we assess the size pf,. With this aim we replace in Eq34) e
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by € and use Eq(55), dropping the term —3/8 in the paren- At constant fields Eq(64) simplifies to
theses on the RHS, thus getting _ . N
N SV(a,p) = Ngrgp + 2ne+ (Q - 2n)o - QVo? + g%p],
po=n(Q2—n). (57) 65)
Now, whenn~ /2, then the single-particle energyalmost

coincides with the chemical potential In such a situatior which is stationary when

is almost vanishing and, from E(7), po=Q?/4. This large agn)(a—) )
value corresponds to the situation when the level where the —_’p =N, (1 - ;) =0 (66)
pairs live is neither fully filled nor almost empty. On the ap 2V + g%,

other handp, attains its lowest value whem=1 or n=. It
is remarkable that even in these cases, where an expansion’in

1/py cannot be performed, our approach still yields the cor- agn)(am Qg
rect excitation spectrum of the system. ? = 07-(— M +Q - 2n> =0. (67)
P
VII. FIXING THE PARTICLE NUMBER The solutions of the above equations read
BY THE PROJECTION OPERATOR _
, , y , po=n(2—n) (68
Owing to the importance of properly fixing the particle
numbern, in this section we address the problem through arfnd
alternative procedure, namely, by introducing in the path in- g
tegral the projection operator 0p= E(Q -2n). (69
+ar N
P, :f g—ae—i(N—Zn)a_ (58) Finally the effective actioni65) at the minimumo, turns out
- €T to be

Using then the variablegl8) and performing the Hubbard- ) T = (n _ _ _
Stratonovitch transformation as previously done, we get for S"(a0.p0) =NorEy” = Nor{2ne=gn(@ -n)l, (70
the generating functional the expression which differs from the zero seniority spectrum of the pairing
. Hamiltonian. Indeed the latter hd3+1, rather thar(, in-
7 :f da f [dA dfdw dEdﬂ dﬂe‘sm) (59) side the parentheses on the RHS of Ef).
g 2T Note that the actiori65) is an analytic function ofr in-
side an integration path deformed to encompass the saddle

where point o,. This path goes frome—im/Ngr to og—im/Ngr
No/2—1 along a straight line parallel to the real axis, then from

sn=7; > {gp+ > [qu;l/,erZ_mq;l/,_mJ, Vot —im/Ny7 to ap+im/Ny7 along a straight line parallel to the
t=-Ng/2 m>0 imaginary axis, and finally it goes back froog+i/Ny7 to

e+im/Ngr. WhenNy— =, the contributions coming from the
+ lﬂ—mlﬂm)]} —2Nor(o—e)n (60)  paths parallel to the real axis cancel each other, while the one
parallel to the imaginary axis vanishes: hence there are no
(remember that the labei indicates the number of pajrs ~corrections to the saddle point contribution.
having defined Next, with the aim of checking the results obtained in the
framework of the chemical potential method, we evaluate,

_ using the projection operator, the first order correction in the
o=e+ (61) ! S .
No7 saddle point expansion im and 6. For this scope we set, as
in Eq. (36),
and a.(36)
. o , =po+r. 71
= exp(Fi6)Viexp(£i6) £ o. (62) p=po (73)
) i . The action(64) can then be recast as follows:
Next we carry out the integration over the fermionic de- o
grees of freedom, getting for the partition function the ex- Sgpf: %n)(ffofo) + gln) (72)
pression
, where
et+im/Ng7
ALK L_ N do J [dp dblexd~ Si(a.p,0)], (63 S = Ngrgr = T P(aq, po) (R + RM)] (73)
(kv T
’ with
where
. R =~ [0, + (o~ ao)][q}, ~ (= 0)] + (V; + 00)(V; ~ o)
== 2Nor(o—e)n+ 7 gp — Tr In[- o0} + ¢p]. 79
t
(64 and
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Ry =g?r. (75) Q. .
I S= 7 {by,,Viby + H(by,q, b))} (83
The contribution t=1
—— ) — o7 and theb’,b are holomorphic variables satisfying periodic
Tr{P(00,p0)R;"] = g°Tr P(og,p0)r =9 52 r (76)  poundary conditions in time. We now compare the above to
! our effective action.
cancels the first term in Eq73). Hence the latter simply ~ To this end we introduce the polar representation

becomes b=1p expi6), b'=\p exp—=i6) (84)

gln) = _Tr[P("O*E))R(ln)]' (77) in terms of which the generating functional and the action
A calculation, similar to the one carried out in Sec. V A, 'ead
yields then % w

Z:f [d ]f [ddlexp- 9), (85)
—Tr[PR(ln)]:ﬂ[l+(M+§UO)T]TE(atﬂ—_et)z. 0 ’ o "
2M 2 : 7
(78) 5=7% {Vpres €Xp(= 16,0 V[V, expli 6)]

Using now the expressio®9) for o, we get + H[\"E exp(=i0sy), \"E expli 6)]}. (86)
gln) - }{1 +g(§Q _ §n) T] > (- 01)6 (79) Now we again look for a minimum dbat constant fi.elds_ and .
g 4 2 N perform a saddle point expansion. The calculation is basi-
) . ] ] ) cally the same as the one previously developed and hence
and by performing the integration[again using Eq(69)]  will not be reported here. We only quote the result of the
we finally obtain the first order energy comparison with our effective action: it yields

h=2e-gQ-g/4, v=g, n<Q. (87

The inequality in the above equation is necessary for the two
which coincides with the excitation spectrum obtained withPath integrals to coincide and follows from the positivity of
the chemical potential. po, given in Eq.(57): thus in our approach such a condition,
far from being artificial, is necessarily implied by the formal-
ism itself. Obviously the considerations following E@1)
VIIIl. THE HAMILTONIAN OF THE s BOSONS hold valid as well here. Thuswill be affected by an error of
To complete our progranirestricted, we recall, to the order 1M. Indeed, for the Hamiltoniai81) to reproduce
pairing potential we derive below the bosonic Hamiltonian exactly the pairing spectrum it must be
qorresponding to our gﬁectivg act_ion. The most general, par- h=2e-gQ, v=g. (88)
ticle conserving, quartic Hamiltonian for a system of bosons,
confined to live in one single-particle level, reads in normal Finally, it is of importance to stress once more that the
form above discussion can be generalized to include other types of
o o bosons, as, for example, those appearing in the quartic
H(b",b) = hb'b + vb'b'bb, (81)  Hamiltonian of the IBM model, respecting basic symmetries
A like particle number conservation, rotational invariance, etc.
b',b being bosonic creation-annihilation operators acting init is then clear that our approach opens the way to micro-
a Fock space. They satisfy canonical commutation relationsscopically deduce the Arima-lachello model: in this case to
The values of the parametensy were obtained in Ref16]  fix the coupling constants one should again write the corre-
in such a way to yield the pairing Hamiltonian spectrum. Ofsponding path integral and compare the resulting bosonic
course the Hamiltonian thus obtained, being intrinsicallyaction with the effective one found extending the procedure
bosonic, patently violates the Pauli principle and thereforejeveloped in this paper to a fermionic Hamiltonian including
the conditionn<{) should be added posteriori when us-  forces of higher multipolarity.
ing Eqg. (81) in describing a system of fermions. Here, to
show how this condition naturally emerges instead in our

3\ 5
EM +E = 2ne- gn(Q -n+ Z) +g9 (80

framework, we obtain the parametérandv with our meth- IX. CONCLUSIONS
ods. To this purpose we write the path integral associated ) ) ) o
with Eqg. (81), namely, In this paper we have carried out an investigation con-

cerning the possibility of a systematic bosonization of a re-
. alistic nuclear Hamiltonian for the description of the low-
ZZJ [db dblexp(=9), (82 lying sector of the nuclear spectrum. Our study is admittedly
preliminary since it is limited to the pairing interaction,
where which is of course only a componegalthough an important
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oneg of an effective interaction pretending to be realistic. Hamiltonian (2), are larger tharM: hence they should be
However, having overcome the main difficulty we expected separately treated. For this scope clearly an analysis of the
namely, the one of going from an infinite to a finite system,excitations associated with the figidshould be performed.
we hope to be able to solve the bosonization problem in theén this connection it is worth recalling that in the scheme of
presence of other types of interactipf]. the BV transformation these modes are described in terms of
Our approach is based on the concept of symmetry breakyyasiparticles whose energies, as well known, are expressed
ing and on the related properties of the interaction among thg, terms of the gap\. In an infinite system\ is associated
bos_o_nic fields: indeed this fr_amework is th_e most suitable fotyitn the order parameter by setting a non zero vacuum ex-
deriving, rather than assuming, a model like the I1BM. ectation value for the paiiCoopey field and it signals the

f To IQevekIJop our scfhf[ahmel we f}?ve.bﬂ.steqtthﬁ patrg) i?rt]e_gr nset of the superconducting phase; in a finite system it mea-
ormaiism because of the ‘arge Tiexibility 1t allows both I g the strength of the mean fi¢tdferred to as the “pair

choosing and in dealing with the variables appropriate to thé ~ o ; . S )
problem. This has led us to deduce an asymptotic expansio(?held ) which, in the BV scheme, linearizes the pair interac

; a tion.
for the system’s spectrum in the paramewt=2/g(). i . . .
The Euclidean path integral clearly encompasses the Finally we should observe that in our analysis the impact

whole Fock space of the system. To deal with a specifi©" the excitation spectrum stemming f_rom the _re_moval of the
nucleus a given number of pairs must be sele¢tegroce- d_egeneracy of the I_evels where the_pa|rs are _S|tt|ng and of the
dure not to be confused, of course, with the projection of thdigher order terms in the saddle point expansion has not been
partic'e number When th|s is Vio'at)ad|n our approach a explored. Concerr“ng the first ISsue, if the SpaCIng betWeen
definite particle sector has been chosen using both the chenthe single-particle energy levels is small with respedttat
cal potential and the projection operator methods: the twgan easily be accounted for within the present perturbative
turn out to be completely equivalent. scheme. Indeed this approach has already been pursued in
Notably our expansion to first order reproduces with goodRef. [13]. Actually the Sn isotopes are well suited for such
accuracy the energy of the pair addition and removal modeperturbative treatment since here the distance between the
(or, in the language of the IBM, of theboson$. Moreover  single-particle energies of concern appears to be much
the requirement that, should be positive entails the inequal- smaller thanM.
ity n<() [see again EqQ57)], thus implementing the action  Concerning the second point, we can only say that it
of the Pauli principle. This is conceptually important for the would certainly be both interesting and important to examine
consistency of our scheme, which respects both the Pauli, more depth our asymptotic expansion.
principle and the particle number conservation. Worth notic-
ing is that this crucial feature is absent in the framework
developed in16,17, but correctly dealt with in many treat-

ments based on the mapping procedurd.

Our expansion cannot account for the seniority excita-
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