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Experimental data of complex cluster radioactivitys14C–34Sid are systematically analyzed and investigated
with different models. The half-lives of cluster radioactivity are well reproduced by a new formula between
half-lives and decay energies and by a microscopic density-dependent cluster model with the renormalized
M3Y nucleon-nucleon interaction. The formula can be considered as a natural extension of both the Geiger-
Nuttall law and the Viola-Seaborg formula from simplea decay to complex cluster radioactivity where
different kinds of clusters are emitted. It is useful for experimentalists to analyze the data of cluster radioac-
tivity. A new linear relationship between the decay energy of cluster radioactivity and the number ofa particles
in the cluster is found where the increase of decay energy for an extraa particle is between 15 and 17 MeV.
The possible physics behind this new linear relationship is discussed.
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I. INTRODUCTION

Nuclear physics originated from the discovery of natural
radioactivity. A hundred years ago Becquerel discovered a
kind of unknown radiation from uranium. Rutherford identi-
fied this radiation asa decay and named other kinds of ra-
diation asb decay andg transitions. Nearly a century after
the discovery of radioactivity by Becquerel, Rose and Jones
observed a new kind of radioactivity,14C from 223Ra [1].
Later experiments by Galeset al. and by Priceet al. [2,3]
confirmed the existence of the new radioactivity. Other kinds
of heavier cluster radioactivity (such as
20O, 24Ne, 28Mg, 34Si) were also observed[4,5] and primary
studies of cluster radioactivity were carried out by some
groups[6–13]. Although data on cluster radioactivity from
14C to 34Si have been accumulated in recent years, systematic
analysis of the data has not been completed and a general
law among the data has not been established for complex
cluster radioactivity. In this article experimental data on clus-
ter radioactivity are systematically investigated with an ac-
curate and simple formula and with the microscopic density-
dependent cluster model(DDCM) where the realistic M3Y
nucleon-nucleon interaction is used. New physics behind
cluster radioactivity is explored and discussed.

This article is organized in the following way. In Sec. II
we approximately derive a new formula between half-life
and decay energy for complex cluster radioactivity. This for-
mula is a natural generalization of the famous Geiger-Nuttall
law and Viola-Seaborg formula from simplea decay to com-
plex cluster radioactivity. It can reproduce experimental half-
lives within a factor of 4. In Sec. III we use a microscopic
density-dependent cluster model to calculate the half-lives
where the effective potential between cluster and daughter
nucleus is a doubly folded integral between the renormalized
M3Y nucleon-nucleon interaction and the density distribu-
tions of daughter nucleus and cluster. The common points
and differences of different approaches are compared and
discussed. In Sec. IV we propose a new linear relationship
between the decay energy of cluster radioactivity and the

number ofa particles in a cluster and the possible physics
related to it is discussed. A summary is given in Sec. V.

II. NEW FORMULA BETWEEN THE HALF-LIVES AND
DECAY ENERGIES OF CLUSTER RADIOACTIVITY

The cluster radioactivity of heavy nuclei is described as a
quantum tunneling effect through a barrier where the process
is determined by the sum of an attractive nuclear potential, a
repulsive Coulomb potential, and a centrifugal potential. It is
assumed that the potential is a function of only the radial
coordinateR where R is the separation between the mass
center of the cluster and the mass center of the daughter
nucleus. Usually there are three classical turning points for
the above potential and they are denoted asR1, R2, andR3 in
order of increasing distance from the origin.R1 is close to the
origin (or coincides with the origin). The turning pointR3
lies in a region far from the origin where the attractive
nuclear potential is zero.R1, R2, andR3 are obtained by nu-
merical solutions of the equationVsRd=Q where Q is the
cluster decay energy. Without loss of generality the decay
width (or decay constant) can be written in the following
way [14–17]:

G = PcFcexpS− 2E
R2

R3

dR KsRdD s1d

wherePc is the preformation probability of the cluster in the
parent nucleus, andFc describes the motion of the cluster
between the first and second classical turning points. The
exponential factor is the Gamow factor. The wave number
KsRd is given by

KsRd = Îs2m/"2duQ − VsRdu s2d

whereVsRd is the total potential between cluster and daugh-
ter nucleus andm is the reduced mass of cluster and daughter
nucleus. The cluster-decay half-life is related to the width by
[14–17]
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T1/2 = " ln 2/G. s3d

In order to obtain an analytical expression for the half-life let
us complete the integral in Eq.(1). We make the same ap-
proximation as that fora decay[18–21]. It is assumed that
the long-range Coulomb potentials,Z1Z2/Rd dominates in
the rangeRùR2 and the decay energy is significantly lower
than the height of the barrier[18–21]. The Gamow factor is
approximatelyG=exps−c1Z1Z2Q

−1/2−c2d where c1 and c2

are constants[18–21]. Then the half-lives of cluster radioac-
tivity can be given by the following equation:

log10sT1/2d < c3 − log10sPcFcd + c4sZ1Z2Q
−1/2d s4d

where c3 and c4 are constants. Therefore an analytical ex-
pression for the half-life is approximately obtained. This is
similar to the derivation of the Geiger-Nuttall law fora de-
cay [18,19]. Now we assume that the preformation probabil-
ity of a cluster is an exponential function of the multiplica-
tion of charge numbersPc=10s−c5Z1Z2−c6d wherec5 andc6 are
constants. It is expected that the preformation probability of
a heavy cluster such as14C should be smaller than that of an
a cluster. The maximum probability of ana cluster in a
heavy nucleus from both experimental data and theoretical
calculations is 1[11,22,23]. We consider that the preforma-
tion probability of a heavy cluster such as14C should be
much less than 1 and the probability decreases quickly with
increase of the charge number of the cluster. The first leading
term in the analytical expression of log10T1/2 is the term
Z1Z2Q

−1/2 which is directly related to the Gamow factor.
Then we write the other terms as the sum of theZ1Z2 term
and a constant. This is equivalent to an averaging process of
a complex problem and this idea is widely used in nuclear
physics as in the model of a compound nucleus in reactions.
The term related to the preformation probability is also in-
cluded. Then the equation for the half-life can be written as

log10sT1/2d = aZ1Z2Q
−1/2 + cZ1Z2 + d + h s5d

where a, c, and d are the constants to be determined for
even-even cluster emitters andh represents a blocking factor
of an odd nucleon in odd-A nuclei. This is a new formula to
calculate the half-lives of cluster radioactivity. For even-even
nuclei there are only three parametersa, c, andd (h=0 for
even-even parent nuclei). For any calculations on half-lives
of cluster radioactivity with a phenomenological potential,
the number of input parameters is larger than three because
one needs at least three parameters to define a potential
(depth, diffuseness, and radius) and its variation for different
parent nuclei and for different clusters. One also needs at
least one parameter to define the preformation probability for
various types of cluster radioactivity. The new formula for
cluster radioactivity has the minimum inputs in physics. It
has a firm basis in physics as it can be approximately de-
rived. The meaning of each term is also very clear. We also
notice that there are simple formulas to calculate the half-
lives of cluster radioactivity[6,7]. All of these formulas
should be considered as an effective theory for the very com-
plicated process of cluster radioactivity because they are
based on different variations of Gamow’s theory.

Before presenting numerical results let us compare the
formula of complex cluster radioactivity with the famous
Geiger-Nuttall law and Viola-Seaborg formula ofa decay.
The Geiger-Nuttall law is log10T1/2=aQ−1/2+b wherea andb
are the given constants for even-even nuclei on an isotopic
chain. When we fix the formula of cluster radioactivity for
Z1=2, the new formula comes naturally back to the Geiger-
Nuttall law for an isotopic chain. The Viola-Seaborg formula
for a decay is[19]

log10sT1/2d = saZ+ bdQ−1/2 + cZ+ d + h s6d

where the four parametersa,b,c,d are determined bya de-
cay of even-even nuclei andh is the blocking factor for odd
nucleons. In our formula we only use three parameters to
describe the complex cluster decay of even-even nuclei from
14C to 32Si. In view of the similarity between the new for-
mula for cluster radioactivity and the Viola-Seaborg formula
the new formula can be considered as a natural generaliza-
tion of the Viola-Seaborg formula from simplea decay to
complex cluster radioactivity.

Now we determine the three parametersa,c, and d for
even-even emitters with the available data of cluster radio-
activity in Table I. The parametersa,c,d are obtained by a
linear least-squares fit to experimental half-lives of cluster
radioactivity for even-even emitters. The total square devia-
tion is

Seven-even= o
i=1

i=10

flog10T1/2sidsexptd − log10T1/2sidstheordg2.

s7d

Then the parameterh is obtained by a linear least-squares fit
of the experimental half-lives of cluster radioactivity for five
odd-A emitters. In this way the parametersa,c,d, andh are
determined and their values are as follows:

a = 1.517 99, c = − 0.053 387, d = − 92.911 42, h

= 1.402. s8d

The total square deviation of both even-even and odd-A nu-
clei is S=1.790 for 15 cluster emitters. The average square
deviation of each nucleus isS/15=0.12. In the above for-
mula the unit of decay energy is the MeV and that of the
half-life is the second. The numerical results are listed in
Table I and Fig. 1.

In Table I the first column denotes the mode of cluster
radioactivity. The second column shows the experimental de-
cay energies where the data are taken from the nuclear mass
table by Audi and Wapstra[5]. The third column is the loga-
rithm of experimental half-livesslog10T1/2d [5]. The numeri-
cal results from the formula of cluster radioactivity are listed
in column 4. The results from a microscopic DDCM are
listed in columns 5 and 6 where the angular momentum and
parity of the cluster are taken into account in numerical cal-
culations. We will discuss the model later. It is seen from
columns 3 and 4 that the half-lives from the formula agree
very well with the data. In many cases the deviation between
the data and calculated values is less than 0.5 and this means
that calculated half-lives from the formula agree with the
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data within a factor of 3. The biggest deviation occurs for
234U and it is 0.62(see Table I). This corresponds to a factor
of 4 between experimental half-life and calculated value.
Therefore the experimental half-lives of complex cluster ra-
dioactivity can be reproduced by the formula within a factor
of 4. The experimental half-lives of complex cluster radioac-
tivity can be reproduced very well by an accurate and simple
formula. This formula has a firm basis in physics as it can be
approximately derived. The signs and values of the constants
in the formula also agree with our expectation. After we

make a scale transformation of the parameters between the
formula for cluster radioactivity and the Viola-Seaborg for-
mula fora decay, we find that the difference of parameters in
the two formulas is small. So the meaning of the terms in the
two formulas is similar. The only difference between the two
formulas is that Viola and Seaborg introduced a parameterb
for a decay. This is because the half-lives ofa decay range
from a very short time(microseconds) to a very long time
(1019 yr). So a parameterb is possibly needed. For cluster
radioactivity s14C–34Sid the half-lives are very long due to

TABLE I. Half-lives of cluster radioactivity calculated from the formula log10sT1/2d=aZ1Z2Q
−1/2

+scZ1Z2+dd+h and from density-dependent cluster model with renormalized M3Y nucleon-nucleon interac-
tions. The total square deviation between the formula and the data isS=1.790 for 15 emitters. The total
square deviations from two sets of results in the DDCM areS=2.075 andS=1.793, respectively. The
maximum deviation for single cluster decay isulog10sT1/2dsexptd−log10sT1/2dstheordu=0.6 for the formula and
this corresponds to a factor of 4 for the absolute half-life of cluster radioactivity. The maximum deviation
between the results of the DDCM and data isulog10sT1/2dsexptd−log10sT1/2dstheordu=0.7 and it corresponds to
a factor of 5 for the absolute half-life.

Decay Q sMeVd log10T1/2
expt ssd log10T1/2

formula ssd log10T1/2
RM3Ys1d ssd log10T1/2

RM3Ys2d ssd

221Fr–207Tl+ 14C 31.29 14.52 14.43 14.82 14.86
221Ra–207Pb+14C 32.40 13.37 13.43 13.68 13.79
222Ra–208Pb+14C 33.05 11.10 10.73 11.08 11.19
223Ra–209Pb+14C 31.83 15.05 14.60 14.77 14.88
224Ra–210Pb+14C 30.54 15.90 15.97 15.91 16.02
226Ra–212Pb+14C 28.20 21.29 21.46 21.05 21.16
228Th–208Pb+20O 44.72 20.73 20.98 21.46 21.09

230Th–206Hg+24Ne 57.76 24.63 24.17 24.67 24.38
231Pa–207Tl+ 24Ne 60.41 22.89 23.44 23.09 22.91
232U–208Pb+24Ne 62.31 20.39 21.00 20.41 20.34
233U–209Pb+24Ne 60.49 24.84 24.76 24.30 24.24
234U–206Hg+28Mg 74.11 25.74 25.12 25.42 25.39
236Pu–208Pb+28Mg 79.67 21.65 21.90 20.94 21.20
238Pu–206Hg+32Si 91.19 25.30 25.33 25.80 26.04
242Cm–208Pb+34Si 96.51 23.11 23.19 23.28 23.04

FIG. 1. The small figure in the inset is the
Geiger-Nuttall law for the radioactivity of14C in
the even-even Ra isotopic chain. The large figure
plots the linear relationship between half-lives
slog10T1/2−cZ1Z2−d−hd and decay energies
sZ1Z2Q

−1/2d for complex cluster radioactivity.
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both very low preformation probability and low tunneling
probability of a large-mass cluster. Therefore the parameterb
is not needed at present. With more and more accumulation
of data on cluster radioactivity it will be interesting to see
whether this parameter should be introduced.

By the way we would like to point out that we can get the
formula for cluster radioactivity in another way. Let us focus
on the inset of Fig. 1 where the half-lives of14C radioactivity
for even-even Ra isotopesslog10T1/2d are plotted against de-
cay energiessQ−1/2d. It is found that there is a linear relation-
ship between the decay half-lives of14C and decay energies
(see the inset in Fig. 1). It can be described by the following
expression:

log10sT1/2d = aZ1Z2Q
−1/2 + cZ1Z2 + d. s9d

This indicates that there is also the Geiger-Nuttall law for
14C radioactivity in the Ra isotopic chain. It is assumed that
this equation can be extrapolated to other isotopic chains and
to other clusters. Then a general law for cluster radioactivity
can be obtained. Although the formula of cluster radioactiv-
ity is derived with some approximations, the good agreement
between the calculated values and experimental data clearly
shows the validity of the accurate and simple formula. This
is drawn in Fig. 1 where thex axis is Z1Z2Q

−1/2 and they
axis is the linear combination of a few parts of the formula of
complex cluster radioactivity. It is seen clearly that the ex-
perimental points lie approximately in a straight line. This is
very similar to the results ina decay.

III. DENSITY-DEPENDENT CLUSTER MODEL
OF CLUSTER RADIOACTIVITY

After discussing the formula for cluster radioactivity, we
present numerical results of half-lives from a microscopic
density-dependent cluster model[24]. In the DDCM the
cluster-core potential is the sum of the nuclear, Coulomb,
and centrifugal potentials,

VsRd = VNsRd + VCsRd + lsl + 1d"2/s2mR2d, s10d

whereR is the separation between cluster and core andl is
the angular momentum of the cluster.m is the reduced mass
of the cluster-core system. The nuclear potentialVNsRd be-
tween cluster and daughter nucleus is the double-folded in-
tegral of the renormalized M3Y nucleon-nucleon potential
[25–27] and the density distributions of cluster and daughter
nucleus,

VNsRd = lE dr 1dr 2r1sr 1dr2sr 2dgsE,usud s11d

wherel=0.55 is the renormalization factor[27]. r1 and r2
are the density distributions of cluster particle and core
(daughter nucleus) [26,27]. The quantityusu is the distance
between a nucleon in the core and a nucleon in the cluster.
s=R+r 2−r 1 [26,27]. The density distribution of cluster and
daughter nucleus has a standard Fermi formrisr id=r0i / h1
+expfsr i −cid /agj. Here i =1, 2 corresponds to cluster and
daughter nucleus. The value ofr0i is fixed by integrating the
density distribution equivalent to the mass number of the

nucleus. The constantsci =1.07Ai
1/3 fm and a=0.54 fm are

taken from textbooks[28–32]. The matter radius of heavy
nuclei with this choice isRrms<1.23A1/3 fm [28–32]. The
M3Y nucleon-nucleon interaction[25] is given by two direct
terms with different ranges, and by an exchange term with a
delta interaction[26,27],

gsE,usud = 7999
exps− 4sd

4s
− 2134

exps− 2.5sd
2.5s

− 276s1

− 0.005E1/A1ddssd. s12d

For the renormalization factor in the nuclear potential its
valuel=0.55 [27] is taken directly from the reaction model
where the scattering data ofa particles on nuclei are reason-
ably reproduced by a double-folded model with the renor-
malized M3Y interaction(RM3Y).

For the Coulomb potential between daughter nucleus and
cluster, a uniform charge distribution of nuclei is assumed
[28–32]. The Coulomb potential is[28–30]

VCsRd =5
Z1Z2e

2

2Rc
F3 −S R

Rc
D2G sRø Rcd,

Z1Z2e
2

R
sRù Rcd,6 s13d

where Rc=1.2Ad
1/3 fm and Ad is the mass number of the

daughter nucleus[28–31]. Z1 andZ2 are the charge numbers
of cluster and daughter nucleus, respectively.

Recently this model has reproduced the experimental
half-lives of a decay within a factor of a few times[24].
Here we generalize the model to complex cluster radioactiv-
ity without extra adjustment of the potential. Substituting this
potential into Eqs.(1) and(2), we obtain the classical turning
points and calculate the Gamow factor directly. The factorFc
is given by the expression[14,15,17]

FcE
R1

R2

dR
1

KsRd
cos2SE

R1

R

dR8KsR8d −
p

4D = 1. s14d

A detailed discussion of the factorFc can be found in Refs.
[14–17]. For the preformation probability of clusters, two
choices are used in the DDCM in order to see the sensitivity
of the results. One isPc=10−s0.4 A1−2d whereA1 is the mass
number of the cluster and the other isPc
=10−s0.011674Z1Z2−2.035446d. The numerical results of the above
choices are presented in the last two columns of Table I
[denoted as RM3Y(1) and RM3Y (2)]. For calculations of
odd-A nuclei the blocking effect of the preformation prob-
ability is taken into account by subtracting a constanth
=1.175 from the exponential expression ofPc. For even-even
nuclei a favored transition is assumed. For odd-A nuclei the
variation of angular momentum and parity between parent
and daughter nuclei has been included for cluster decay in
the DDCM where we assume parity conservation in cluster
radioactivity. By the way the preformation probability of14C
in the DDCM is close to that used by Rose and Jones[1]. It
is seen from the last two columns that the DDCM can repro-
duce experimental data well.
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The total square deviations in the DDCM areS=2.075
and S=1.793, respectively. Therefore the results of the
DDCM with two adjustable parameters in the preformation
probability are as good as the results from the formula of
cluster radioactivity. For the two sets of results in the DDCM
the second set of results is better than the first one. In order
to see the difference between the theoretical results and ex-
perimental data, we define the hindrance factor(HF), which
is the ratio of experimental half-lives and theoretical ones.
The hindrance factors for the second set of results are drawn
in Fig. 2 fHF=T1/2sexptd /T1/2stheordg. In general the experi-
mental data agree with the theoretical results within a factor
of 1–3. For one or two nuclei the agreement is within a factor
of 4–5.

In order to see the common points and differences be-
tween the DDCM and the formula we fit the theoretical re-
sults of the DDCM[RM3Y(2)] with the formula and obtain
the parameters a8=1.498 15,c8=−0.052 532,d8=
−91.549 17, andh8=1.402. These values are very close to
the previous valuesa,c,d, andh in the formula. This shows
again that the cluster radioactivity formula of half-lives has a
firm basis in physics. Important physics is included in the

formula. The good agreement between theoretical half-lives
and experimental data shows that the model and formula are
very reliable. In future one can also use the above values
a8 ,c8 ,d8 ,h8 to estimate the half-lives of cluster radioactivity
for unknown emitters as they are based on the DDCM. So
we provide two sets of parameters to estimate the half-lives
of unknown cluster radioactivity with the formula. It is ex-
pected that the ratios between experimental half-lives and
estimated values are within a factor of 5–10 for many cluster
emitters. An abnormally large deviation(such as 20–1000
times) between the estimated values and the future data will
suggest the existence of a new mechanism of cluster radio-
activity and it will be interesting to investigate the abnormal
behavior in detail.

In Table II, we predict the half-lives of some possible
cluster emitters by the formula for half-lives of cluster radio-
activity and by the DDCM with two sets of inputs. We con-
sider that they are suitable candidates for new cluster emit-
ters. This is useful for future experiments.

In Figs. 3–5 we plot the variation of the total cluster-core
potential for parent nuclei222Ra,232U, and242Cm where the
daughter nucleus is208Pb. It is seen from Figs. 3–5 that the

FIG. 2. The variation of the hindrance factor
fHF=Tsexptd /Tstheordg with mass number for
cluster radioactivity where theoretical results are
obtained by the DDCM[RM3Y(2)].

TABLE II. Predicted half-lives for the candidates for new cluster emitters by the formula and by the
DDCM with two sets of inputs.

Decay Q sMeVd log10T1/2
formula ssd log10T1/2

RM3Ys1d ssd log10T1/2
RM3Ys2d ssd

218Rn–208Pb+10Be 14.36 20.97 21.51 21.30
220Rn–206Hg+14C 28.54 17.85 18.34 18.31
222Rn–208Hg+14C 26.45 23.14 23.30 23.27
236U–212Pb+24Ne 55.95 29.72 30.38 30.32

237Np–207Tl+ 30Mg 74.82 27.18 28.16 27.47
240Pu–206Hg+34Si 91.03 25.49 26.76 26.20
241Am–207Tl+ 34Si 93.93 25.56 26.01 25.61
240Cm–208Pb+32Si 97.34 22.43 21.62 22.18
244Cm–210Pb+34Si 93.14 26.37 27.28 27.05

NEW PERSPECTIVE ON COMPLEX CLUSTER… PHYSICAL REVIEW C 70, 034304(2004)

034304-5



potential of the cluster is very deep for smallR. This is the
common behavior of the double-folded potential and it is
well known in nuclear reactions. There is a barrier in the
rangeR=8–20 fm. The width of the barrier decreases with
increase of the mass number of the cluster. The height of the
barrier relative to the decay energy is approximately between
25 and 40 MeV for cluster radioactivity.

IV. LINEAR RELATIONSHIP BETWEEN DECAY
ENERGIES OF CLUSTER RADIOACTIVITY AND THE

NUMBER OF a PARTICLES IN THE CLUSTER

Now let us see the variation of decay energy in Table I. It
is seen from Table I that the decay energies for the same kind
of cluster such as14C (or 24Ne) are approximately constant.
A linear relation between the decay energy and the number
of a particles in the cluster is found and drawn in Fig. 6
where the daughter nuclei are fixed as208Pb and206Hg, re-
spectively. The data for large clusters20O,24Ne,28Mg, and
32,34Si are used in the figure. This linear relation of cluster

radioactivity is very different from that ofa decay in heavy
nuclei. Here it is not completely sure that this linear relation-
ship is a new phenomenon for cluster radioactivity or is from
an accident agreement. A definite answer can be given with
the further accumulation of experimental data. The approxi-
mate relationship between the decay energy and the number
of a particles in the cluster isQ=QcsZ1−2d /2 whereQc is
between 15 and 17 MeV(the fit value ofQc for all nuclei in
Table I isQc=15.378 MeV). This is very similar to the satu-
ration of the nuclear force where the total binding energy of

a nucleus isBtot=B̄A with B̄=7.0–8.8 MeV. In exact mean-

ing this formula should be modified asB=B̄sA−1d for light
nuclei because the number of nucleons is at least two in
order to define the binding energy of the nuclei. So this is
very similar to the expression for the decay energy of cluster
radioactivity. The increase of the decay energy for an extraa
particle in cluster radioactivity is approximately a constant
Qc=15–17 MeV. This increase of the decay energy is much
larger than for thea decay energy of the nuclei in this mass
rangesQa=4–7 MeVd. This energy is less than the binding

FIG. 3. The variation of the total cluster-core
potential in the DDCM(denoted as RM3Y) with
radial coordinateR for 14C radioactivity of222Ra.
The dotted horizontal line in the figure is the
cluster decay energy.

FIG. 4. The variation of the total cluster-core
potential in the DDCM(denoted as RM3Y) with
radial coordinateR for 24Ne radioactivity of232U.
The dotted horizontal line in the figure is the
cluster decay energy.
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energy of ana particle sB=28.3 MeVd. We may guess that
severala particles and a few neutron pairs are correlated into
a huge cluster such as14C, 24Ne, 28Mg, and32,34Si near the
surface of heavy nuclei just before cluster decay. Deep dis-
cussions on this are beyond the scope of this article[33–42]
because the formation probability of clusters is still an open
problem in nuclear physics. It is well known in condensed
matter physics that there is the Josephson effect[43,44]. It is
stated that the collective Cooper pairs near the Fermi surface
of a superconductor naturally move without resistance
through a thin insulator to another superconductor with a low
Fermi surface[43,44]. The movement of collective Cooper
pairs in coherence leads to a macroscopic electric current
which is called a supercurrent in condensed matter physics
[43,44]. We may expect that the mechanism of cluster radio-
activity from nuclei is like the Josephson effect in a finite
system where a huge cluster such as24Ne moves through the
barrier without resistance. Of course the ground state of the
parent nuclei has definite spin and definite parity[29,45,46].
One can observe some new phenomena such as the variation

of spin and parity between parent and daughter nuclei in
cluster radioactivity. Up to date parity conservation has been
tested fora decay[29] but it has not been tested for cluster
radioactivity. It seems to us that parity should be conserved
for cluster radioactivity which starts from the ground state of
nuclei and is governed by strong interaction and electromag-
netic interaction[46]. The existence of the blocking effect of
odd nucleons in cluster radioactivity can be a primary indi-
cation of parity conservation in cluster radioactivity. How-
ever, any evidence of possible parity violation in atomic
spectra and in nuclear spectra is very interesting in physics
[47]. Therefore we strongly suggest that experimental physi-
cists check the conservation of parity for cluster radioactivity
because it is an exotic phenomenon between simplea decay
and very complex spontaneous fission.

V. CONCLUSIONS

In summary we systematically investigated the available
data of cluster radioactivity by both phenomenological and

FIG. 5. The variation of the total cluster-core
potential in the DDCM(denoted as RM3Y) with
radial coordinateR for 34Si radioactivity of
242Cm. The dotted horizontal line in the figure is
the cluster decay energy.

FIG. 6. The variation of the decay energy of
cluster radioactivity with the number ofa par-
ticles in the cluster where the data of large clus-
ters (20O,24Ne,28Mg, and32,34Si) are drawn.
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microscopic models. A new formula between the half-lives
and decay energies of cluster radioactivity is proposed. Ex-
perimental half-lives are well reproduced by this formula
which is a natural generalization of the Geiger-Nuttall law
and Viola-Seaborg formula from simplea decay to complex
cluster radioactivity. Experimental half-lives are also well
reproduced by the density-dependent cluster model where a
renormalized M3Y nucleon-nucleon interaction is used. The
DDCM supports the new formula for half-lives of cluster
radioactivity. It is further found that there is a new linear
relation between the decay energy of cluster radioactivity
and the number ofa particles in the cluster. The possible
physics of this is discussed.
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