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A suitable numerical approach based on Sturmian functions is employed to solve the pionium problem for
both local and nonlocal potentials. The approach accounts for both the short-ranged strong interaction and the
long-ranged Coulomb force and provides accurately the wave function and binding energy of pionium. It is
found that the ground-state pionium wave function in realistic pion-pion strong interactions might be consid-
erably different from the hydrogen-like one at a small distance.
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Pionium is a hadronic atom ofp+ and p− mixed with a
small part of thep0p0 component. It is bound mainly by the
Coulomb force, but affected by strong interaction at a small
distance. Pionium decays predominantly intop0p0 via a
strong interaction, which probes the low-energy interactions
of the pions. It has been believed that pionium might be
employed to test more accurately the predictions of chiral
perturbation theory, which is an effective theory of QCD at
law energies. The investigation of pionium has recently be-
come of particular interest due to the pionium experiment
DIRAC that aims to measure the pionium lifetime with 10%
accuracy[1,2].

In order to be able to extract precise pion-pion scattering
length data, the relation between lifetime and scattering
lengths has to be known reliably and with high accuracy. The
nonrelativistic formula of the pionium lifetime in the lowest
order of electromagnetic interactions was first evaluated by
Deseret al. [3] and later reanalyzed by others[4]. It reads as

G0 =
2

9

64p p

M3 ucs0du2ua0 − a2u2, s1d

whereM is the mass of thepp system,p is the center-of-
mass momentum of thep0 in the pionium system,cs0d is the
pionium S-wave function at the originsr =0d, anda0 anda2

are the S-wavepp scattering lengths for isospinI =0 and 2,
respectively. In the approximation of the pionium wave func-
tion c in Eq. (1) to the hydrogen-like wave function, one
derives the chiral perturbation result at leading order[4],

G =
2

9
a3pua0 − a2u2, s2d

wherea is the fine structure constant.
An evaluation of the relativistic, strong interaction, and

higher-order electromagnetic corrections to the nonrelativis-
tic formula in Eq.(1) has recently been done in the frame-
works of quantum field theory and chiral perturbation theory.
These works have led to similar estimates, of the order of
6%, of these corrections[5–8]. The strong interaction of the
pion-pion system with respect to the bound state wave equa-
tion has been treated perturbatively though the methods em-
ployed in these works are quite different.

However, it is arguable to treat the pion-pion strong inter-
action as a small perturbation as well as to approximate in
the lowest order the pionium wave function to the hydrogen-
like one at a small distance. In the work we tackle this issue
by evaluating accurately the pionium wave functions in real-
istic pion-pion strong interactions.

A correct treatment of pionium must include the coupling
of the p+p− and p0p0 configurations. The dynamical equa-
tions of the(p+p−, p0p0) system take the form

sE − Hp+p−
0 dcp+p− = sVc + V11dcp+p− + V12cp0p0, s3d

sE − Hp0p0
0 dcp0p0 = V22cp0p0 + V21cp+p−, s4d

whereE is the energy of the(p+p−, p0p0) system,Hp+p−
0 and

Hp0p0
0 are, respectively, the free energies of thep± and p0,

VC is the Coulomb interaction betweenp+ and p−, andVij
are the strong interactions of the system. The strong interac-
tions take, for example, for pionium in S waves the form in
the isospin basis,
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whereV0 andV2 are, respectively, the isospin 0 and 2 strong
interactions of thepp system. In principle, one could solve
Eq. (5) through expanding the pionium wave functionscp+p−

andcp0p0 in any complete set of orthonormal functions. The
complete set of harmonic oscillator wave functions is widely
applied to bound state problems since they have analytical
froms both in coordinate and momentum spaces. Bound state
problems with only the strong interaction or only the Cou-
lomb force can be well solved in the regime of harmonic
oscillator wave functions, by choosing the oscillator length
being of order 1 fm or 100 fm, respectively. However, the
harmonic oscillator wave function approach fails to describe
hadronic atoms that are dominated by the long-ranged Cou-
lomb force and influenced by the short-ranged strong inter-
action. The reason is that two very different oscillator lengths
are involved to account for the short-ranged strong interac-
tion and the long-ranged Coulomb force.
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The pionium problem is more difficult than the more
popular protonium problem in term of evaluating the wave
functions since the Bohr radius of pionium is much larger
than the one of protonium. The protonium has been success-
fully investigated[9] in a numerical approach based on Stur-
mian functions[10]. The numerical method is much more
powerful, accurate and much easier to use than all other
methods applied to this problem in history. It can be applied

to solve theN̄N bound state problem for local and nonlocal
potentials, accounting for both the strong short-range nuclear
interaction and the long-range Coulomb force and provides
directly the wave function and binding energy of protonium

and N̄N deep bound states[9].
For future work the so-called inverse iteration method

[11] might be employed to study the pionium problem. The
method has been proven economic and powerful in studying
other eigenvalue problems.

Because almost all bound-state hydrogentic wave func-
tions are close to zero energy, the innermost zero of the func-
tions are insensitive to the principal quantum number. This
accounts for the fact that the bound hydrogen functions do
not form a complete set; the continuum is needed to analyze
the region between the origin and the limiting first zero. Un-
like hydrogen functions, the first node of the Sturmian func-
tions continues to move closer to the origin with increasing
the principal numbern. This is the key point why a short-
ranged nuclear force can easily be taken into account for
hadronic atoms by using complete sets of the Sturmian func-
tions.

In this work we tackle the pionium problem in the Stur-
mian function method in two model interactions.

Model A: The interactions of thepp system are derived
in the meson-exchange model[12]. The low and medium
energy data of the pion-pion and pion-Kaon scattering pro-
cesses are well reproduced in the model. The interaction is in
momentum space, energy dependent, and nonlocal.

Model B: The potentialsVI of thepp system are the ones
employed for calculating the electromagnetic corrections in
low-energy pion-nucleon scattering[13,14] and for studying
the influence of the hadronic interaction on pionium wave
functions [15]. The potentials are independent of both the
energyE of the system and pion masses, and reproduce very
well the phase shifts given by two-loop chiral perturbation
theory [16].

To guarantee the accuracy of numerical method employed
here, we have followed in our numerical calculations the
procedures as follows.

(1) Employ a hadronic potential to the pionium problem.
The interaction should be strong enough to provide at least
one deep bound state for thepp system. Solve the pionium
problem in any numerical method(for example expanding
the pionium wave function in the complete basis of the har-

monic oscillator functions or Sturmian functions) to obtain
the binding energy and wave function of the deep bound
states of thepp system.

(2) Solve the pure Coulomb pionium problem in the com-
plete basis of Sturmian functions, with the length parameter
b as large as possible, to numerically reproduce the analyti-
cal hydrogen-like wave functions in high accuracy.

(3) Solve the pionium problem in(1) in the complete
basis of Sturmian functions employed in(2). The binding
energy and wave function in(1) must be accurately repro-
duced in the present basis, or one has to employ a larger
basis with largerb in (2).

A basis worked out by following the steps mentioned
above enables one to accurately evaluate the binding energy
and wave function of pionium. In the work of[9], the Stur-
mian function method has been compared with the tradition-
ally used method, namely the Numerov approach[17], ap-

plied to the N̄N atomic problem in the Kohno-Weise
potential[18]. The binding energies, widths, and wave func-
tions at short distance presented in Ref.[17] for the states
1S0,

3P0,
3S1 and 3SD1 are well reproduced in the Sturmian

function approach.
For a comparison we have resolved the simplified pi-

onium problem in Ref.[19] where thep0p0 component is
ignored and the strong interaction is simply a Yakawa form.
It is quite an easy job to solve such a simplified pionium
problem in the Sturmian function method. The relative cor-
rection to the binding energy of the pionium ground state due
to strong interaction is derived in our work as

TABLE I. Energy shifts of the 1s pionium state, compared to the pure Coulomb interaction level. A
negativeDE means the energy level is pulled down by the strong interaction.

Model A Model B (Case I) Model B (Case II) Model B (Case III)

DE seVd −0.1455 −3.8872 −3.0718 −3.2484

FIG. 1. Ratios of the 1s pionium state wave to the 1s
hydrogen-like wave function in our calculation(solid line) and the
work [19] (long-dashed line).
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h =
E − E0

E0
= 0.0021543718, s6d

whereE and E0 are, respectively, the ground state binding
energies of the pionium and thepp system with only the
Coulomb interaction. The pionium 1s energy level is
slightly shifted lower compared to the pure Coulomb inter-
action. The approach employed here is so powerful that the
binding energy of the pionium ground state can be evaluated
to an accuracy of better than 10−8. The relative correction
derived in the work[19] is h=0.0020256[20]. We would say
that the method employed in the work[19] needs to be im-
proved since an accuracy of 10−4 guaranteed in[19] is not
good enough for the pionium problem. But, as realized by
the authors[19], the calculation of the pionium wave func-
tions is not a simple problem. Shown in Fig. 1 are the ratios
cp+p−srd /ccsrd, derived, respectively, in our calculation and

the work of [19], of the 1s pionium state wave function to
the 1s hydrogen-like wave function. The pionium ground
state wave function in our work is a little bit bigger than that
in the work [19] at short distances, which is consistent with
that our binding energy of the pionium ground state is larger.

Listed in Table I are the energy shifts of the pionium
ground state, due to the strong interactions in both Model A
and Model B, form the pure Coulomb-interactionpp sys-
tem. The accuracy of the numerical evaluation here is better
than 10−8. The energy level is pulled lower, hence the strong
interactions are attractive for thepp system in both Model A
and Model B. However, the hadronic interactions are not
strong enough to form a deep bound state. This may mislead
one to think that the wave function of thepp system without
a deep bound state can be well approximated with the
hydrogen-like wave function.

To show the relativistic effect on the system and the im-
portance of the coupling of thep+p− and p0p0 configura-
tions, we have considered three cases in Model B, that is,
treating the system relativistically (the relativistic
Schrödinger equation is solved), with and without including
the coupling of thep+p− andp0p0 configurations; and treat-
ing the system nonrelativistically(the normal Schrödinger
equation is solved), with including the coupling of thep+p−

andp0p0 configurations. It is found in Table I that both the
relativistic effect and the coupling of thep+p− and p0p0

configurations are not negligible. This is also shown by the
wave functions below. For Model A we consider only the
relativistic case with thep0p0 coupling included since the
effective potential derived in the meson-exchange theory is
relativistic.

Shown in Fig. 2 are the 1s radial wave functions for the
p+p− component of pionium in both Model A and Model B.
For a comparison the 1s hydrogen-like wave function is also
plotted in Fig. 2(a). In Fig. 2(b) are the wave functions de-
rived in the three cases of Model B. It is clear that the ground
state pionium wave functions are considerably different from
the hydrogen-like one at small distances in any model em-
ployed here. One may derive from Fig. 2(a) the ratio of the
squared pionium wave function to the squared hydrogen-like
wave function at the originsr =0d,

ucp+p−s0du2

uccs0du2
= H1.22, Model A;

1.62, Model B.
s7d

The interactions in Model A and Model B are realistic, the
low-energy data of the pion-pion scattering processes are
well reproduced in these models. Therefore, the results here
are around the truth.

We conclude that it might not be reasonable to treat the
pion-pion strong interaction as a small perturbation as well
as to approximate in the lowest order the pionium wave
function to the hydrogen-like one at a small distance.

FIG. 2. Squared 1s radial wave functions forp+p− component
of the pionium, long-dashed line in(a) for Model A, solid lines in
both(a) and(b) for the first case of Model B(relativistic, withp0p0

configuration), long-dashed line in(b) for the second case of Model
B (relativistic, withoutp0p0 configuration), and the dashed-dotted
line in (b) for the third case of Model B(nonrelativistic, with a
p0p0 configuration). The pure Coulomb interaction wave function
is plotted as the dashed-dotted line in(a). All the wave functions
have been multiplied by a factor 108.
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