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Application of wavelets to singular integral scattering equations
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The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investi-
gated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative
techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular
integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body
T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of
multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate
approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a
useful tool for studying few-body systems.
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[. INTRODUCTION Nonrelativistic few-body calculations formulated in con-

Few-body systems provide a useful tool for studying thefiguration space with local potentials have the advantage that
dynamics of hadronic systems. The combination of shortiN€ matrices obtained after discretizing the dynamical equa-
ions are banded, thus reducing the size of the numerical

ranged interactions and finite density means that the dynarﬁ ; . ;

ics of complex hadronic systems can be understood by study:alculations. Equivalent momentum-space calculations lead

ing the dynamics of few-degree of freedom subsystems© dense matrices of comparable dimensions. In addition, the

Few-body systems are simple enough to perform nearigmPedding of the two-body interactions in the three-body

complete high-precision measurements and to perfatm ilbert space leads to nonlocalities. Realistic relativistic
three-body calculations are just beginning to be sofded|.

initio calculations that are exact to within the experimental ical hods th q he si £th |
precision. This clean connection between theory and experFlu,merlca methods that can reduce the size of these calcu-
ations could make relativistic calculations of realistic sys-

ment has led to an excellent understanding of two-body in: bl
teractions in low-energy nuclear physics, and a good undef€ms more tractable. . .
In this paper we explore the use of wavelet basis functions

standing of the three-body interactions. to red the size of momentum tterin lcul
Our knowledge of low-energy hadronic dynamics is'o 'cduce the size of momentum space scattering caicula-
tions. The resulting linear system can be accurately approxi-

largely due to the interplay between experimental and COMmated by a linear system with a sparse kernel. It is our con-

p.utatlonal advances. A complete u_nderstandmg of even th1\%ntion that the use of this sparse kernel results in a reduction
simplest few—hadr_on system requires measurements of il the size of the numerical calculation that is comparable to
complete set of spin observables which have small cross Sefe ¢orresponding configuration space calculations. The ad-
tions and require state of the art detectors. At the same t'm%ntage is that the wavelet methods can be applied in mo-
the model calculations with realistic interactions are limitedmpentum space and are not limited to local interactions.
by computer speed and memory. In addition the equations The |ong-term goal is to apply wavelet methods to solve
are either singular or have complicated boundary conditionghe relativistic three-body problem. In a previous pajgir
which require specialized numerical treatments. we tested this method to solve the nonrelativistic Lippmann-
One of the most interesting energy scales is the one whergchwinger equation with a Malfliet Tjon V potential. In this
the natural choice of few-body degrees of freedom changegst problem, the-waveK matrix was computed. The wave-
from nucleons and mesons to subnucleon degrees of fregst method led to a significant reduction in the size of the
dom. The QCD string tension or nucleon size suggests thgroblem. We found that 96% of the matrix elements of the
the relevant scale for the onset of this transition is about &ernel of the integral equation could be eliminated leading to
GeV. A consistent dynamics of hadrons or subnuclear pargn error of only a few parts in a million.
ticles on this scale must be relativistic; a Galilean invariant The success of wavelet method in RES] suggests that
theory cannot simultaneously preserve momentum conservghe method should be tested on a more complicated problem.
tion in the lab and center of momentum frames if the |n|t|a||n this paper, we test the wavelet method on the same prob_
and final reaction products have different masses. Relativistiam without using partial waves. This leads to a singular
dynamical models are most naturally formulated in momen+tyo-variable integral equation, which has the same number
tum space. This is due to the presence of momentumgf continuous variables as the three-body Faddeev equations
dependent Wigner and/or Melosh rotations as well as squakgijth partial waves. It is simpler than the full three-body cal-
roots that appear in the relationship between energy and m@uyjation, but is a much larger calculation than was needed in
mentum. Ref. [3]. In addition, computations that employ conventional
methods[4] are available for comparison. In solving this
problem it is necessary to address issues involving the stor-
*Electronic address: brian-kessler@uiowa.edu age and computations with large matrices.
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One well-known use of wavelets is in the data compres<can locally pointwise represent a polynomial of degree 2.
sion algorithm used in JPEG filg§]. Our motivation for Integrals over these polynomials and the scaling basis func-
applying wavelet methods to scattering problems is based otions can be done exactly and efficiently using a one-point
the observation that both a digital photograph and a disquadrature.
cretized kernel of an integral equation are two-dimensional The mother functions have the property that they are or-
arrays of numbers. If wavelets can reduce the size of a digitahogonal to polynomials of degree 2. This means that the
image, they should have a similar effect on the size of theexpansion coefficient for a given mother basis function is
kernel of an integral equation. zero if the function can be well approximated by a polyno-

Given the utility of wavelets in digital data processing, it mial on the support of the basis function. It is for this reason
is natural to ask why they have not been used extensively ithat most of the kernel matrix elements in this representation
numerical computations in scattering. One possible reason &re small. Setting these small coefficients to zero is the key
because there is a nontrivial learning curve that must bapproximation that leads to sparse matrices.
overcome for a successful application to singular integral Some of the properties that make the Daubechies wavelets
equations. A relevant feature is that the basis functions haviateresting for numerical computations are
a fractal structure; they are solutions to a linear renormaliza- < the basis functions have compact support,
tion group equation and thus have structure on all scales. ¢ the basis functions are orthonormal,

Numerical techniques that exploit the local smoothness of ¢ the basis functions can pointwise represent polynomials

functions do not work effectively with functions that have of degree 2,
structure on all scales. » the wavelet transform automatically identifies the im-
In Ref. [3], we concluded that these limitations could be portant basis functions,

overcome by exploiting the renormalization group transfor- * there is a simple one-point quadrature rule that is exact
mation properties of the basis functions in numerical compu-  for local polynomials of degree 2,

tations. These equations were used to compute moments of * there are accurate methods for computing the singular
the basis functions with polynomials. These moments were  integrals of scattering theory,

used to construct efficient quadrature methods for evaluating °_the basis functions never have to be computed.

overlap integrals. In addition, these moments could be com- _1he above list indicates that wavelet bases have many
bined with the renormalization-group equations to perform2dvantages in common with spline bases, which have proven

accurate calculations of the types of singular integrals thaé%lﬁ]ee Vfr% L\j\f‘;\jg:e'{] t:grsgi]se ffﬁr\:vc_tli)gr?g r?:\llceueg?nnpséc?ostgptphoert
3\,2\263:5\;”\,5;\?&};”rrfjefhrgglser?iv%:?n C;Cnccdlrjjt'gnag; E?f};ctithiCh allows them to efficiently model local structures, both
P rovide pointwise representations of low-degree polynomi-

method for SO'V".‘Q the scattering equations. In.addition, th Is, both can be easily integrated using simple quadrature
expected reduction in the size of the numerical problentjes and both can be accurately integrated over the scatter-
could be achieved with minimal loss of precision. ing singularity. One feature that distinguishes the wavelet
There are many kinds of wavelets. In Rg8] we found  method from the spline method is that the wavelet transform
that the Daubechies-@] wavelets proved to be the most gytomatically identifies the important basis functions that
useful for our calculations. Numerical methods based orheed to be retained. With splines, the regions that have a lot
wavelets utilize the existence of two orthogonal bases for @f structure and require extra splines need to be identified by
model space. The two bases are related by an orthogonhhnd. This is a nontrivial problem in large calculations. The
transformation. The first basis, called the father function baautomatic nature of this step is an important advantage of the
sis, samples the data by averaging on small scales. It is th@avelet method in large calculations. In addition, unlike the
numerical equivalent of a raw digital photograph. The or-spline basis functions, the wavelet basis functions are or-
thogonal transformation is generated by filtering the coeffithogonal, and the one-point quadrature only requires the
cients of the father function basis into equal numbers ofevaluation of the driving term or kernel at a single point to
high- and low-frequency parts. The high-frequency parts areompute matrix elements. This leads to numerical approxi-
associated with another type of basis function known as thenations that combine the efficiency of the collocation
mother function. The same filter is again applied only to themethod with the stability of the Galerkin method.
remaining low frequency parts, which are divided into high- In the next section we give an overview of the properties
and low-frequency parts. This is repeated until there is onlyof wavelets that are used in our numerical computations. Our
one low-frequency coefficient. This orthogonal transforma-model problem is defined in Sec. lll. The methods of Sec. Il
tion and its inverse can be generated with the same type @fre used in Sec. IV to reduce the scattering integral equation
efficiency as a fast Fourier transform. The new basis is calleth Sec. 1ll to an approximate linear system. The transforma-
the wavelet basis. tion to a sparse-matrix linear system and the methods used to
For the Daubechies-3 wavelets, both sets of basis funcsolve the linear equations are discussed in Sec. V. The con-
tions have compact support. The support of the father funcsiderations discussed in this section are important for realis-
tion basis functions is small and is determined by the resotic applications. The results of the model calculations are
lution of the model space. The support of the wavelet basigliscussed and compared to the results of partial-wave calcu-
functions is compact, but occurs on all scales between thkations in Sec. VI. Our conclusions are summarized in Sec.
finest resolution and the coarsest resolution. VII. The complex biconjugate gradient algorithm that was
The father function for the Daubechies-3 wavelets has theised to solve the resulting system of linear equations is out-
property that a finite linear combination of such functionslined in the Appendix.
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TABLE |. Scaling coefficients for Daubechies-3 wavelets.

ho (1+y10+\5+2/10)/1612
hy (5+110+3\5+2/10)/1612
h, (10-2y10+2/5+2/10)/162
hs (10-2/10-2/5+2110)/162
h, (5+10-3/5+2/10)/162
hs (1+10-\5+2/10)/1612

Il. WAVELET PROPERTIES

In our work, we use Daubechies’ original bases of com- -1
pactly supported wavelef§]. In addition to their simplicity, 5
these functions possess many useful properties for numeri —~"5
calculations, which are discussed at the end of this section.

A. General wavelet analysis
FIG. 1. (Color onling Direct product basis of Daubechies-3

There are two primal basis functions called the fatlger,
wavelets.

and mothery. The primal father function is defined as the

solution of the homogeneous scaling equation _ _ _
of wavelet functions. The simplest method is to construct a

2K-1
direct-product basis of the one-dimensional functions,
$) =23 hp(2x-1), (1) P
1=0 Dmi(X) DY), Pmi (X (Y,
with normalization
Y1 (X dn(y),  and i (X) i i(y) - (6)
J p(x)dx=1. (2)  The primal versions of these four basis function types for the

Daubechies-3 wavelets are shown in Fig. 1. The complex
The primal mother function is defined in terms of the fatherpointwise structure of the basis functions tends to obscure

by a similar scaling equation, their ability to accurately and efficiently represent smooth
oK1 functions. Fortunately, the pointwise structure never appears
5 in calculations, since all calculations are made in terms of the
X) =2 2x -1 . L .
Y9 = v g‘, 9 ) ©) simple scaling equatio(i).

where
B. Equivalent representations and wavelet transforms

9= (= D'ho-g.- (4) , .
) ) If one includes wavelets of all scales, then one can obtain
The parameteK is the order of the Daubechies wavelet andy pasis forL2(R). In practice however, one chooses a fine

the hy are a unique set of numerical coefficients that satisfy,pnroximation scalé and constructs an approximation basis
certain relationg6] such as orthogonality of basis functions. it respect to this scale. At any scale, there are two equiva-
We employ wavelets of ordeK=3, henceforth called |ent pases in terms of wavelet functions. The first basis con-
Daubechies-3 wavelets. The numerical values offthare  gists of translates of the father function on the finest sgale
given in Table I. The second basis consists of the father functions on the

_ Equation(1) is the most important in all of wavelet analy- coarsest scalg=0 and mother functions on all intermediate
sis, as all the properties of a wavelet basis are determined alesj=0,... J-1. So, for any function we have two

the so-called filter coefficients. A simple property that fol- equivalent approximations given by
lows from theh is that the father and mother function both
have compact support on the intervl, 2K -1). All other 1

basis functions are related to the primal father and mother by ~ f(X) = X Ay (x) = 2 af o () + E > dyg (). (7)
means of dyadi¢power of 3 scale transformations and unit : ' 1=0 1

translations, In two dimensions, the two equivalent representations are
(X) 1= 27122~ K), given by th_e dlre;ct product of the one-dlmen5|_onal represen-
$1) d ) tations, which gives us the four types of basis functions in
b () = 2_1/2¢(sz_ K) (5) Eq. (6). It turns out that the first representation is typically
jKX) = :

dense while the second can often be truncated to a sparse
To solve the two-dimensional integral equation for the representation by eliminating expansion coefficients with a
matrix we need to construct a two-dimensional basis in termsagnitude below some certain threshold. This is because the
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father functions can exactly represent polynomials of degree . ‘
K -1 while the mother functions are orthogonal to such poly- Apns= J d(x—m)(x - n)dx,
nomials[6]. Specifically, 0

0
f Xy(x)dx=0, O<k=<K-1. (8) Amn= J d(X=m) p(x = n)dx. (12)

pplying the scaling equatioifl) to these integrals gives

Thus for any function that is well-represented by low degree. }
inear relations such as

polynomials on the scalg most of the coefficientd;, in the

second representation will be small. These small coefficients 2K-1
can be eliminated with a local error Gf(e), wheree is the (k= 27K 12D (s (13
threshold of the truncation. A fast orthogonal transformation 1=0

known as the discrete wavelet transfofifj links the two
bases given above. This allows us to compute projections in

the first basis where the single scale and single type of basis K12k
function make the approximations accurate and efficient. A;m > > h hA2m+r 2n+s: (14)
Then we can apply the discrete wavelet transform to quickly =0 =0
produce the sparse basis, which is useful for solving lineafrpese |inear systems can be solved for the cases,of
systems. -1,-2,...,ft2K-2) using the previously computed mo-
ments for(x);, and the orthogonality relations fa;, .
C. Application of the scaling equation In Ref. [3], we introduced a method for computing singu-

lar integrals of the form
Now, we briefly discuss some of the useful results that

follow from the scaling equatioril). For a more detailed qs X— k)
treatment see Ref$3,8]. First we consider the moments of S= X+ |O+ X,
the father function defined by

(15

where 0 is a positive infinitesimal quantity. Applying the

scaling equatioril) gives the degenerate linear relations

(XK 2= f X*p(x)dx. 9 oKt
S=\2 2 hSya. (16)

1=0

Applying the scaling equatio(l) to Eg. (9) gives
These can be supplemented with a normalization condition

ky — k>|k—m m 10 a
(X = E (m (x™. (10 —iw:f X+IO+_2 ¢( -n) X+ O+_EnSw:aa

" 20

This recursion relation, along with the normalization con- 17)
dition, (x%:=1, can be used to compute all of the moments
of the father function in terms of the filter coefficierts ~ which follows from the identity 1=,¢4(x—n). Finally, we
These moments can be used to construct quadrature rulgsged the nonsingular integrals which can be obtained using
which are used to approximate the projection of an arbitrarghe recursion relationl6) and the convergent expansion for
function f(x) onto a wavelet basis. We employ the simplestlargen given by
such quadrature, the one-point quadrati@e This quadra-

a—n
ture is based on the identitx?)=(x)? and results in a local Sya= * Px- T) dx= }f Py
error of O(f®(x)). o Ja x+i0 —an 1+Y/n
It is also important in applications to consider the case K ra-n
where the interval of integration is finite. Specifically, we = _E< ) H(y)y*dy, (18)
consider integrals over left-hand and right-hand end points of Ni=o -a-n

the form[10 . .
[10] where the final integrals can be calculated using the methods

o for Egs.(9) and(11). The values of the singular integrals are
<Xk>;q = f d(x — m)xkdx, given in Table II.
0 For a more thorough and detailed discussion of these cal-
culations and additional properties of wavelets see Refs.

0 [3.8].
ky= ._ _ k
Xm= J_x G(x=m)xdx, (11) lll. TWO-BODY T MATRIX IN MOMENTUM SPACE

The two-bodyT matrix is given by the solution to the
and Lippmann-Schwinger equation
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TABLE Il. Integrals over singularity.

1 * !
T(p’,p,X’)=2—v(p’.p,><’,1)—mj dd’p”zf dx’
n

S, -0.1717835441734 i-4.041140804162 0 -1
S, -1.7516314066967 i+1.212142562305 o 1 S
S, -0.3025942645356 -0.299291822651 Xu(p’,p X X )puz “ - _TPpX7),
Sy —-0.3076858066180 i-0.013302589081 (20)
wherem is the mass of the particlepy is the on-shell mo-
T=V+VG,T, (199 mentumx'=p’-p, X’=p”-p, andv is the two-body potential

with the azimuthal angle dependence integrated out. For our
whereV is the two-body potential an@,=(E+ie-Hp)*is  calculations, we use a Malfliet-Tjon Il potentifll] with
the free two-body propagator. In momentum space, thiattractive and repulsive parts. In this case, the azimuthal in-

equation becomes tegration can be carried out analytically giving
|
’ ’ 1 )\R
v(p’,p,X',X) = —
(PP W[ V(p'2+ p? = 20 px'x + pR)? ~ 4p'?pA(1 - X'H)(1 - x?)
A
T2 2 !~y 2 122 12 2 :| (21)
V(' + p==2p'px'X+ a)= — 4p" P (1 —x")(1 - x)

The parameters for this potential are:\,  transform the interva[-1,1] associated with the angular
=626.8932 MeV fm, ua=1.55 fnid, A\r=1438.723 variable into the regiofi—c,d]. For the first transformation
MeV fm, ur=3.11 fnil, which correspond to those used in we use the following map:

Ref. [4]. We use a nucleon mass such thatml/
=41.47 MeV fnf. ba+k _ab(p-py)

a
In our work, we consider solutions for the half off-sh&ll p(K) == po-—, k(p) = ,
ap+ pob

ab-k’ (24)

matrix, T(p’,po,X’). Traditionally, theT matrix is decom-

posed in a partial wave basis using which maps the scattering singularity @t=p, to the origin.

Z o1+ Then we have
T(p',poX') = 2 ——Ti(pP(X), (22
=0 7 b (b+a)

dp= poam (25)

where theP, are Legendre polynomials. Each amplitude
T,(p’) must be solved for individually. For high energies, a
significant number of amplitudes may need to be included t@nd
ensure convergendd].

The magnitude squared of the on-shethatrix is propor- 1 alb-k) 1
tional to the differential cross section. Furthermore, the on- D-p = (a+b)p K
shell partial wave amplitude(py) can be parametrized as 0 0

(26)

2 1 The second mapping is the simple linear transformation
Ti(po) = - Py APo) sin(8(po)) , (23)

2u—-d+c (d+c)x+(d-c)
where thed,(py) are experimentally determined phase shifts. x(u) = dvc u(x) := > (27
These phase shifts are used to fit realistic nucleon-nucleon
poter_mals and should be accurately reproduced by any viablg:-, gives
solution method.

2
dx=——

du. (28)
IV. WAVELET REPRESENTATION d+c

To solve EQ.(20) we need to transform the half interval ~ We now apply these maps to EQO) to obtain an equiva-
[0,%) corresponding to the momentum variable into a finitelent integral equation on the rectangular regipra,b]

interval [—a,b]. For computational convenience we also X[-c,d]. For notational convenience we define
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f(p,:X,) = T(pI!pOIX,):

1
g(p’,x’) = ;v(p’,po,X’,l), (29)
and for the nonsingular part of the kernel
U(p’,p”,X’,X”)p”z
L(p! P/ X X = (30)
PP pP”+Po
Now, we let
(k' ,u') = f(p(k'), x(u")),
9(k’,u") = g(p(k’),x(u")), (31
and
L(k’ K',u",u”) := L(p(k"),p(K"),x(u"),x(u"”) )—L
PP d+cb-K'
(32

The last factor in this equation comes from applying Egs.

(25), (26), and(28), which gives

1 1.2 b
g AP = kA 33
P X s cb-w 33

Finally, substituting Eqs(31) and(32) into Eq.(20) gives

L(k’ K'u',u”)~

f(kl u ) g(k/ u ) f dK/f du/ f(k!/ /I)

(34)

Now, we project this equation onto the wavelet ba5|s
which results in a Galerkin-type procedure. In general, ong
can choose a separate fine scale in each variable. For nott

tional simplicity, we will consider the case whedg=J,=J.
In this case, we apprommafeusmg

=~ > Frn@am(K) by n(U’). (35)

Substituting this in Eq. (34 and multiplying by
d3m(K') by, (U') and integrating ovek’ and u’ gives the
linear equation

ENm’n mnm gm’n’ E dk,f du’
mnY -a
Xf dk"f du’ ¢y (K') by (L")
-a -c
L(k, k” u u") . .
K’ ¢J m(k )(/J)J n(u )fmn,
(36)
where

PHYSICAL REVIEW (70, 034003(2004)

b d
gm',n’ :=J dk,J du"g(k,:u,)¢J,m’(k,)¢J,n'(u,) (37)

and

b d
Nm/'n/;m’n = f dk’f du,(ﬁ‘]vm/(k’)
—a —-C

Xy (W) ym(K)pyn(u’). (39

We can evaluat@),, ,» using the one-point quadratuf&Q]
discussed earlier and an end-point quadrature based on the
partial moment$3]. Ny .mn is simply the direct product of
block diagonal matrices consisting of identity blocks and
blocks of the formA* given in Eq.(12). The final term in Eq.

(36) can be evaluated using the subtraction

5 b d b d
— f dk f du’ f dK’ j AL by (K') by (W)
—a —C —a —-C

L k/ k// "
()

fdk’f duf dK’J du’ by (K') by (U7)

X[(k,,k”,u,,uﬁ) —E(k,,O,U’,U”)
K’
b d d
+f dk’J du’f AU’ gy (K') by (U")
- - -c

XL(K',0,u’,U") g o) f ¢Jm(k”)dl<.

&3m(K") b n(U”)

(39

The first term in this equation is nonsingular and can be
approximated using the quadrature methods previously dis-
cussed. Likewise, th&’,u”,u’ integrations in the second
erm can be carried out in the same manner. The final inte-
gration overk” can be accomplished using the method fol-
lowing Eq.(16).

Thus, the problem is reduced to solving a linear system of
the form

E (Nm’,n’;m,n +Em’,n’;m,nﬁm,n :gm’,n’ . (40)

mn

Once we have solved this equation ?Q{n we can substitute
this approximate solution back into the right-hand side of the
original equation to obtain a refined solution.

V. WAVELET TRANSFORM AND SPARSE SOLUTION

The eigenvalues ah* accumulate at O while those &f
accumulate at 1 aK increaseg12]. This makes the matrix
N, and consequently the right-hand side of Ef)), numeri-
cally ill behaved. To circumvent this difficulty we can pre-
condition the system by invertiny, which is easily accom-
plished by inverting the two block&™ andA™ and using the
direct product structure dfl. If we define
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h=Nf, (41) Re(T) Im(T)
then Eq.(40) becomes
(1+LN"Hh=7. (42)
If we define
A=(1+LN™, (43)
then Eq.(42) is a simply linear system of the form

Ah =3. (44)

This is a large dense linear system. However, as shown ir
Eq. (7), there are two equivalent representations that are
linked by a fast orthogonal transformation. In two variables, FIG. 2. (Color onling Half off-shell T matrix at 800 MeV.

the matrix representation of this transformation is simply the o ) )

direct product of the one-dimensional transformation matri-€thod in different energy regimes. Figure 2 shows the real
ces that are given in many standard referend@s If we and imaginary parts of the half off-sh&llmatrix as a func-

denote this matrix a8V then we can transform Eg44) as tion of momenturrp’ and the scattering ar)gié:cos(a) ata
scattering energy of 800 MeV. Daubechies-3 wavelets were

(WAW "Wh = Wg. (45) used withM, =M =5.
o It can be seen that the real part of thematrix is rela-
Now we make the definitions tively smooth, while the imaginary part does have some
A - . . structure. The fact that th& matrix is smooth with isolated
A=WAW', h=Wh, g=Wg. (46)  structure suggests that wavelet methods should be able to

Then as mentioned in reference to Ef).we can truncate efficiently compress the matriA. Figure 3 shows the on-

the matrixA by eliminating all elements with a magnitude §heIIT matr|>f< ggoal\;lu':/mll?r? of an?lielzt_:os{a) ata sc::tjtter- .
below some certain threshotgdwhere the error introduced is "9 €nergy o ev. These calculations were made using

. A _ Daubechies-3 wavelets witd,=M,=5.
proportional toe. The matrixA can be stored in a sparse

From these graphs the general smoothness of the on-shell
format such as compressed column form@CS [13],  gmpiitude is apparent. We can also see the forward peaking

which permits both efficient storage and matrix multiplica- ¢ the scattering amplitude that is expected at higher ener-

tion. These savings help eliminate computationally costlyyies.

writing and reading from the hard disk when solving the ™ rrom g numerical standpoint, the first aspect of the calcu-

linear system. . lation to consider is the general convergence of the method
To solve the sparse system we use the complex biconjusg the number of basis functions is increased. Tables Il and

gate gradient methofl7,14 which we present for general |y jjystrate the convergence of the method as the number of

complex matrices in the Appendix. This method is a simpley5sis functions is increased. The quoted values are for on-
and effective iterative method for general sparse matrices. 1gpg| scattering at an angle of 90° using Daubechies-3 wave-

addition, this method, like all iterative techniques, is readily|qots with no truncation. From Table Ill. we see that the ma-
gmen?rkl)le tol [?[graltlelé)rzce_ss]l(ng OJ t_ft]g matrix T‘ump:lcatt'on'jorit_y of improvement occurs alél, is increased. This can be
nce the solution to Eq45) is found, itis a simple matter to ayyihyted to the fact that the integral owérin the kernel is

recoverf by applying the inverse transforiv™ and the in- singular and thus requires more basis functions to accurately

verse matrixN~1. In particular, represent the dependence on this variable.
R All of these calculations were made by solving the linear
f=N"W"h. (47)  system(42). It is instructive to consider the behavior if one
Re(T) Im(T)
VI. RESULTS AND ANALYSIS 2 1
0.5
We made calculations using the Daubechies-3 wavelets a 0
scales up td=5 in each variable. The total number of wave- _, ¢
let basis functions in each variable was taken to bevghere 05
M=J+2. If we takea=c=1, thenb andd are determined by -4 ,
b=27W2M- (2K - 2)] - a, -6 s
d=22M— (2K -2)]-c. (48) ST y-— 0.5 1 D 0 05 1

o
Using these parameters calculations were performed at
lab energies of 300 and 800 MeV to test the efficacy of the FIG. 3. On-shellT matrix at 300 MeV.
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TABLE lll. Convergence as a function of total number of basis  TABLE V. Convergence of the biconjugate gradient method.
functions: 300 MeV.

n €, (nonpreconditioned e, (preconditionegl

My My Re(T(po, Po, 0)) Im(T(po, Po,0)) 10 3.25¢ 104 198x 10°3

4 4 0.484065410 0.292438234 20 4.21x 1074 3.07X 1075

4 5 0.483906981 0.293504057 30 7.23x 10°° 2.03x10°°

5 4 0.49111143 0.286418162 40 0.94x 1074 9.10x 10710

5 5 0.490972783 0.287464852 50 1.01x 1074 8.09x 10713

5 6 0.490891484 0.287452418

6 5 0.491773044 0.286276262

6 6 0.491691220 0.286263888

6 7 0.491678773 0.286256958 ber of nonzero elements reduces the solution time by a cor-
7 6 0.491772680 0.286123199 responding amount. The other major source of computational
7 7 0.491760404 0.286116271 effort is setting up and storing the various matrices used in

the problem. For the range of test cases we considered, the
solution of the sparse linear systems only took 5—-10 % of

attempts to solve Eq40) using iterative methods without the total computational time. Other methods, such as those
directly invertingN first. Table V compares the error in the pased on splines, will have comparable setup time, but
residual,e,=||f |=[|g—Ah,, as a function of the number of longer solution time for the corresponding dense linear sys-

iterations. As the number of iterationds increased the pre- tem.

conditioned method converges very rapidly, while the non-

preconditioned method fails to converge adequately.

Now we turn our attention to the compression of the

In Table VI, the effect of truncating the matrik on the
convergence of the solution is illustrated for various thresh-
old levels with a lab energy of 800 MeV. This calculation

sparse matrix and its subsequent effect on the calculatior, ¢ performed using the Daubechies-3 wavelets With
Figure 4 displays such a representation for scattering aly —g Comparing these results with those in Table I1l, we

800 MeV using Daubechies-3 wavelets with.=4, M,=3.

see that even keeping just one percent of the matrix elements

The plot shows the location of the nonzero element#\of we are able to reproduce tiematrix to the same precision

after it has been truncated at the threshold lewel0°. This

as the accuracy of the untruncated matrix.

threshold produces a matrix with 19% of the elements of the Finally, we consider the accuracy of the phase shifts de-

full matrix. The ordering scheme foA used in the plot termined by our momentum vector approach. To calculate
places the elements associated with finer scales at high#te phase shifts we project odr matrix onto the partial
indices. The degree of sparsity increases considerably as théaves using

scale increases, which demonstrates that less and less ele-

ments are needed at finer scales.

A key advantage of wavelets is that this reduction in the
number of nonzero matrix elements significantly reduces the
time required to solve the linear system. For the biconjugate
gradient method, each iteration requires two matrix multipli-
cations, which take a time proportional to the number of

0

nonzero elements in the matrix. Thus a reduction in the num- 323 ﬁ
TABLE IV. Convergence as a function of total number of basis :
functions: 800 MeV. . E .'Z'-Z
S A
My My Re(T(Po, Po, 0) Im(T(po, Po, 0)) Ty S .
u* Fu g .
4 4 0.456127838 0.126626540 - )
4 5 0.454750689 0.126515462 - R
5 4 0.456227507 0.113862313 B ™
5 5 0.455006434 0.113967425 %r L.
5 6 0.454697067 0.113367584 : -
6 5 0.455242066 0.111684819 112 T
6 6 0.454931562 011107815 - ! . %
6 7 0.454884387 0.111005571 1280- 1-6 " ;'2 4Ia 6'4 slo 9'6 11'2 . .1.;3
7 6 0.454978565 0.110889988 i
7 7 0.454931334 0.110788571

FIG. 4. Location of the nonzero of elements/f
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TABLE VI. Effect of truncation on the on-shell matrix at  cient§ compared with phase shifts calculated using standard
800 MeV for scattering at 180°, 90°, and 0° corresponding topartial wave techniques. The agreement between the two

T(Po, Po,=1), T(Po,Po,0), andT(po, Po, +1). methods is very good for all the phase shifts.
€ % Re(T(po, Po, ~1)) IM(T(po, Po, ~1). VIl. CONCLUSIONS
0 100 0.249235 —0.0777091 We have shown that it is possible to use wavelets to cal-
10°® 23 0.249235 -0.0777093 culate the two-body scattering matrix in terms of momentum
1077 14 0.249234 -0.0777116 vectors without resorting to partial waves. We were able to
10°6 8 0.249217 -0.0777525 accurately reproduce the phase shifts of the Malfliet-Tjon
10°5 1 0.248296 ~0.0770660 potential. These calculations lead to sparse matrices, which
can be efficiently inverted using standard iterative methods.
€ % ReET(pg, Po,0)) Im(T(pg, Po,0)) Application of a simple preconditioning matrix was shown to
be necessary to achieve convergence of the iterative meth-
0 100 0.454932 011108 ods. Traditional methods for solving scattering equations in
10°® 23 0.454932 11108 momentum space typically produce dense matrices that re-
1077 14 0.454932 111108 quire a large amount of storage and are time consuming to
10°® 8 0.454941 11117 invert. These are promising results because relativistic scat-
107 1 0.454966 11154 tering equations are naturally formulated in momentum
space. Also, the scattering boundary conditions are most eas-
€ % Re(T(po. Po. +1)) IM(T(po, Po, +1)) ily treated in momentum space. Wavelet methods can help
0 100 _6.16347 _1.31548 treat both of these'problems.
108 23 616347 _131548 One of the main _advantages of wavelet methods over
methods such as splines is that the wavelet transform pre-
107 14 -6.16347 ~1.31548 sents a method that automatically determines what basis
10°° 8 —6.16346 -1.31548 functions are necessary for a given accuracy. Unfortunately,
10°° 1 -6.16327 -1.31559 this also leads to one of the main drawbacks of this method.
In our procedure, a large dense matfixneeds to be pro-
duced first and then this is transformed to a sparse matrix.
1 Most of the computational time is spent constructing and
T,(p’):quf1P|(x’)T(p’,po,x’)dx’. (49 transforming this matrix into a sparse format. The subse-

quent solution of the sparse linear system takes relatively
ittle computational effort.

We compute the integrals using 20 Gauss-Legendre poinﬁ ) o
For this specific problem, wavelet methods based on mo-

[15]. From theT, it is straightforward to calculate the phase >
shifts using Eq(23). Table VII displays these phase shifts mentum vectors may not be necessary. The maximum num-

(calculated forE, ;=800 MeV using Daubechies-3 wavelets ber of partial waves thqt n_eeds to be includeq to achieve
with M,=M,=7 and truncating all but 2% of the coeffi- CONVErgencel,a,=14[4], is simply too small to gain a com-
putational benefit from using wavelets in the angular vari-

able. To achieve a computational benefit we should use less
basis functions in the angular variable than the maximum
number of partial waves. In the three-body problem or at
much higher energies, the number of partial waves that need

TABLE VII. Comparison of 800-MeV phase shifts with stan-
dard methods.

! 4(po) (standarg %(po) (waveley to be included increases considerably and computational
0 -0.2535 -0.2534 benefits may be gained from employing a momentum vector
1 0.2950 0.2949 approach.

2 0.3635 0.3634

3 0.2747 0.2746 ACKNOWLEDGMENTS
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7 0.03591 0.03591 APPENDIX: COMPLEX BICONJUGATE GRADIENT

8 0.02089 0.02089 METHOD

9 0.01217 0.01217 The biconjugate gradient methdd,14] is an iterative

10 0.007110 0.007109 technique for solving large matrix equations of the form

11 0.004164 0.004163 Ax=D.

12 0.002445 0.002444

13 0.001439 0.001437 The advantage of this method for large sparse matrices is that

it only involves matrix multiplication byA and its adjoint,
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both of which can be accomplished efficiently in a sparse P1=To.
storage format such as CQ@$3]. The algorithm generates a _
sequence of approximate solutions, with residualr,=b  1hen we use the recurrence relations
- Ax,. One iterates until the norm of the residual is less than

; _ Tkl
some predetermined value. o=,
This method is traditionally formulated for real matrices, PIAPK
but the extension to complex matrices is straightforward. Be-
low we present the algorithm for general complex matrices. X = Xy-1+ Py
For our calculations, we start with the initial approximate
solution Me="ri1— a APy,
Xo=bh = Ay
with the residual T
k' k
Bk = —t '
ro=h - Ax,. Me-1lk-1
For the initial values of the bi-residuaj, the direction vec- Pi+1 =T+ BiPi,

tor po, and bi-directionp, we use - B
Pr+1= T+ BiPx

T —p_At
fo=b-A, to generate an improved approximation. This is repeated un-
til the desired accuracy is obtained. We measure the accuracy
pL=ro, by the €2(C) norm of the residual.
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