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The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investi-
gated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative
techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular
integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body
T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of
multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate
approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a
useful tool for studying few-body systems.
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I. INTRODUCTION

Few-body systems provide a useful tool for studying the
dynamics of hadronic systems. The combination of short-
ranged interactions and finite density means that the dynam-
ics of complex hadronic systems can be understood by study-
ing the dynamics of few-degree of freedom subsystems.
Few-body systems are simple enough to perform nearly
complete high-precision measurements and to performab
initio calculations that are exact to within the experimental
precision. This clean connection between theory and experi-
ment has led to an excellent understanding of two-body in-
teractions in low-energy nuclear physics, and a good under-
standing of the three-body interactions.

Our knowledge of low-energy hadronic dynamics is
largely due to the interplay between experimental and com-
putational advances. A complete understanding of even the
simplest few-hadron system requires measurements of a
complete set of spin observables which have small cross sec-
tions and require state of the art detectors. At the same time,
the model calculations with realistic interactions are limited
by computer speed and memory. In addition the equations
are either singular or have complicated boundary conditions
which require specialized numerical treatments.

One of the most interesting energy scales is the one where
the natural choice of few-body degrees of freedom changes
from nucleons and mesons to subnucleon degrees of free-
dom. The QCD string tension or nucleon size suggests that
the relevant scale for the onset of this transition is about a
GeV. A consistent dynamics of hadrons or subnuclear par-
ticles on this scale must be relativistic; a Galilean invariant
theory cannot simultaneously preserve momentum conserva-
tion in the lab and center of momentum frames if the initial
and final reaction products have different masses. Relativistic
dynamical models are most naturally formulated in momen-
tum space. This is due to the presence of momentum-
dependent Wigner and/or Melosh rotations as well as square
roots that appear in the relationship between energy and mo-
mentum.

Nonrelativistic few-body calculations formulated in con-
figuration space with local potentials have the advantage that
the matrices obtained after discretizing the dynamical equa-
tions are banded, thus reducing the size of the numerical
calculations. Equivalent momentum-space calculations lead
to dense matrices of comparable dimensions. In addition, the
embedding of the two-body interactions in the three-body
Hilbert space leads to nonlocalities. Realistic relativistic
three-body calculations are just beginning to be solved[1,2].
Numerical methods that can reduce the size of these calcu-
lations could make relativistic calculations of realistic sys-
tems more tractable.

In this paper we explore the use of wavelet basis functions
to reduce the size of momentum space scattering calcula-
tions. The resulting linear system can be accurately approxi-
mated by a linear system with a sparse kernel. It is our con-
tention that the use of this sparse kernel results in a reduction
in the size of the numerical calculation that is comparable to
the corresponding configuration space calculations. The ad-
vantage is that the wavelet methods can be applied in mo-
mentum space and are not limited to local interactions.

The long-term goal is to apply wavelet methods to solve
the relativistic three-body problem. In a previous paper[3],
we tested this method to solve the nonrelativistic Lippmann-
Schwinger equation with a Malfliet Tjon V potential. In this
test problem, thes-waveK matrix was computed. The wave-
let method led to a significant reduction in the size of the
problem. We found that 96% of the matrix elements of the
kernel of the integral equation could be eliminated leading to
an error of only a few parts in a million.

The success of wavelet method in Ref.[3] suggests that
the method should be tested on a more complicated problem.
In this paper, we test the wavelet method on the same prob-
lem without using partial waves. This leads to a singular
two-variable integral equation, which has the same number
of continuous variables as the three-body Faddeev equations
with partial waves. It is simpler than the full three-body cal-
culation, but is a much larger calculation than was needed in
Ref. [3]. In addition, computations that employ conventional
methods[4] are available for comparison. In solving this
problem it is necessary to address issues involving the stor-
age and computations with large matrices.*Electronic address: brian-kessler@uiowa.edu
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One well-known use of wavelets is in the data compres-
sion algorithm used in JPEG files[5]. Our motivation for
applying wavelet methods to scattering problems is based on
the observation that both a digital photograph and a dis-
cretized kernel of an integral equation are two-dimensional
arrays of numbers. If wavelets can reduce the size of a digital
image, they should have a similar effect on the size of the
kernel of an integral equation.

Given the utility of wavelets in digital data processing, it
is natural to ask why they have not been used extensively in
numerical computations in scattering. One possible reason is
because there is a nontrivial learning curve that must be
overcome for a successful application to singular integral
equations. A relevant feature is that the basis functions have
a fractal structure; they are solutions to a linear renormaliza-
tion group equation and thus have structure on all scales.
Numerical techniques that exploit the local smoothness of
functions do not work effectively with functions that have
structure on all scales.

In Ref. [3], we concluded that these limitations could be
overcome by exploiting the renormalization group transfor-
mation properties of the basis functions in numerical compu-
tations. These equations were used to compute moments of
the basis functions with polynomials. These moments were
used to construct efficient quadrature methods for evaluating
overlap integrals. In addition, these moments could be com-
bined with the renormalization-group equations to perform
accurate calculations of the types of singular integrals that
appear in scattering problems. A key conclusion of Ref.[3]
was that wavelet methods provide an accurate and effective
method for solving the scattering equations. In addition, the
expected reduction in the size of the numerical problem
could be achieved with minimal loss of precision.

There are many kinds of wavelets. In Ref.[3] we found
that the Daubechies-3[6] wavelets proved to be the most
useful for our calculations. Numerical methods based on
wavelets utilize the existence of two orthogonal bases for a
model space. The two bases are related by an orthogonal
transformation. The first basis, called the father function ba-
sis, samples the data by averaging on small scales. It is the
numerical equivalent of a raw digital photograph. The or-
thogonal transformation is generated by filtering the coeffi-
cients of the father function basis into equal numbers of
high- and low-frequency parts. The high-frequency parts are
associated with another type of basis function known as the
mother function. The same filter is again applied only to the
remaining low frequency parts, which are divided into high-
and low-frequency parts. This is repeated until there is only
one low-frequency coefficient. This orthogonal transforma-
tion and its inverse can be generated with the same type of
efficiency as a fast Fourier transform. The new basis is called
the wavelet basis.

For the Daubechies-3 wavelets, both sets of basis func-
tions have compact support. The support of the father func-
tion basis functions is small and is determined by the reso-
lution of the model space. The support of the wavelet basis
functions is compact, but occurs on all scales between the
finest resolution and the coarsest resolution.

The father function for the Daubechies-3 wavelets has the
property that a finite linear combination of such functions

can locally pointwise represent a polynomial of degree 2.
Integrals over these polynomials and the scaling basis func-
tions can be done exactly and efficiently using a one-point
quadrature.

The mother functions have the property that they are or-
thogonal to polynomials of degree 2. This means that the
expansion coefficient for a given mother basis function is
zero if the function can be well approximated by a polyno-
mial on the support of the basis function. It is for this reason
that most of the kernel matrix elements in this representation
are small. Setting these small coefficients to zero is the key
approximation that leads to sparse matrices.

Some of the properties that make the Daubechies wavelets
interesting for numerical computations are

• the basis functions have compact support,
• the basis functions are orthonormal,
• the basis functions can pointwise represent polynomials

of degree 2,
• the wavelet transform automatically identifies the im-

portant basis functions,
• there is a simple one-point quadrature rule that is exact

for local polynomials of degree 2,
• there are accurate methods for computing the singular

integrals of scattering theory,
• the basis functions never have to be computed.
The above list indicates that wavelet bases have many

advantages in common with spline bases, which have proven
to be very useful in large few-body calculations. Both the
spline and wavelet basis functions have compact support,
which allows them to efficiently model local structures, both
provide pointwise representations of low-degree polynomi-
als, both can be easily integrated using simple quadrature
rules, and both can be accurately integrated over the scatter-
ing singularity. One feature that distinguishes the wavelet
method from the spline method is that the wavelet transform
automatically identifies the important basis functions that
need to be retained. With splines, the regions that have a lot
of structure and require extra splines need to be identified by
hand. This is a nontrivial problem in large calculations. The
automatic nature of this step is an important advantage of the
wavelet method in large calculations. In addition, unlike the
spline basis functions, the wavelet basis functions are or-
thogonal, and the one-point quadrature only requires the
evaluation of the driving term or kernel at a single point to
compute matrix elements. This leads to numerical approxi-
mations that combine the efficiency of the collocation
method with the stability of the Galerkin method.

In the next section we give an overview of the properties
of wavelets that are used in our numerical computations. Our
model problem is defined in Sec. III. The methods of Sec. II
are used in Sec. IV to reduce the scattering integral equation
in Sec. III to an approximate linear system. The transforma-
tion to a sparse-matrix linear system and the methods used to
solve the linear equations are discussed in Sec. V. The con-
siderations discussed in this section are important for realis-
tic applications. The results of the model calculations are
discussed and compared to the results of partial-wave calcu-
lations in Sec. VI. Our conclusions are summarized in Sec.
VII. The complex biconjugate gradient algorithm that was
used to solve the resulting system of linear equations is out-
lined in the Appendix.
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II. WAVELET PROPERTIES

In our work, we use Daubechies’ original bases of com-
pactly supported wavelets[6]. In addition to their simplicity,
these functions possess many useful properties for numeric
calculations, which are discussed at the end of this section.

A. General wavelet analysis

There are two primal basis functions called the father,f,
and mother,c. The primal father function is defined as the
solution of the homogeneous scaling equation

fsxd = Î2 o
l=0

2K−1

hlfs2x − ld, s1d

with normalization

E fsxddx= 1. s2d

The primal mother function is defined in terms of the father
by a similar scaling equation,

csxd = Î2 o
l=0

2K−1

glfs2x − ld, s3d

where

gl = s− 1dlh2K−1−l . s4d

The parameterK is the order of the Daubechies wavelet and
the hl are a unique set of numerical coefficients that satisfy
certain relations[6] such as orthogonality of basis functions.
We employ wavelets of orderK=3, henceforth called
Daubechies-3 wavelets. The numerical values of thehl are
given in Table I.

Equation(1) is the most important in all of wavelet analy-
sis, as all the properties of a wavelet basis are determined by
the so-called filter coefficientshl. A simple property that fol-
lows from thehl is that the father and mother function both
have compact support on the intervals0,2K−1d. All other
basis functions are related to the primal father and mother by
means of dyadic(power of 2) scale transformations and unit
translations,

f j ,ksxd ª 2−j /2fs2jx − kd,

c j ,ksxd ª 2−j /2cs2jx − kd. s5d

To solve the two-dimensional integral equation for theT
matrix we need to construct a two-dimensional basis in terms

of wavelet functions. The simplest method is to construct a
direct-product basis of the one-dimensional functions,

fm,lsxdfn,ksyd, fm,lsxdcn,ksyd,

cm,lsxdfn,ksyd, and cm,lsxdcn,ksyd. s6d

The primal versions of these four basis function types for the
Daubechies-3 wavelets are shown in Fig. 1. The complex
pointwise structure of the basis functions tends to obscure
their ability to accurately and efficiently represent smooth
functions. Fortunately, the pointwise structure never appears
in calculations, since all calculations are made in terms of the
simple scaling equation(1).

B. Equivalent representations and wavelet transforms

If one includes wavelets of all scales, then one can obtain
a basis forL2sRd. In practice however, one chooses a fine
approximation scaleJ and constructs an approximation basis
with respect to this scale. At any scale, there are two equiva-
lent bases in terms of wavelet functions. The first basis con-
sists of translates of the father function on the finest scaleJ.
The second basis consists of the father functions on the
coarsest scalej =0 and mother functions on all intermediate
scales j =0, . . . ,J−1. So, for any function we have two
equivalent approximations given by

fsxd = o
l

alfJ,lsxd = o
l

al8f0,lsxd + o
j=0

J−1

o
l

dj ,lc j ,lsxd. s7d

In two dimensions, the two equivalent representations are
given by the direct product of the one-dimensional represen-
tations, which gives us the four types of basis functions in
Eq. (6). It turns out that the first representation is typically
dense while the second can often be truncated to a sparse
representation by eliminating expansion coefficients with a
magnitude below some certain threshold. This is because the

TABLE I. Scaling coefficients for Daubechies-3 wavelets.

h0 s1+Î10+Î5+2Î10d /16Î2

h1 s5+Î10+3Î5+2Î10d /16Î2

h2 s10−2Î10+2Î5+2Î10d /16Î2

h3 s10−2Î10−2Î5+2Î10d /16Î2

h4 s5+Î10−3Î5+2Î10d /16Î2

h5 s1+Î10−Î5+2Î10d /16Î2

FIG. 1. (Color online) Direct product basis of Daubechies-3
wavelets.
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father functions can exactly represent polynomials of degree
K−1 while the mother functions are orthogonal to such poly-
nomials[6]. Specifically,

E xkcsxddx= 0, 0ø k ø K − 1. s8d

Thus for any function that is well-represented by low degree
polynomials on the scaleJ, most of the coefficientsdj ,l in the
second representation will be small. These small coefficients
can be eliminated with a local error ofOsed, wheree is the
threshold of the truncation. A fast orthogonal transformation
known as the discrete wavelet transform[7] links the two
bases given above. This allows us to compute projections in
the first basis where the single scale and single type of basis
function make the approximations accurate and efficient.
Then we can apply the discrete wavelet transform to quickly
produce the sparse basis, which is useful for solving linear
systems.

C. Application of the scaling equation

Now, we briefly discuss some of the useful results that
follow from the scaling equation(1). For a more detailed
treatment see Refs.[3,8]. First we consider the moments of
the father function defined by

kxkl ªE xkfsxddx. s9d

Applying the scaling equation(1) to Eq. (9) gives

kxkl =
1

2ko
l

hl

Î2
o
m=0

k S k

m
Dlk−mkxml. s10d

This recursion relation, along with the normalization con-
dition, kx0lª1, can be used to compute all of the moments
of the father function in terms of the filter coefficientshl.
These moments can be used to construct quadrature rules,
which are used to approximate the projection of an arbitrary
function fsxd onto a wavelet basis. We employ the simplest
such quadrature, the one-point quadrature[9]. This quadra-
ture is based on the identitykx2l=kxl2 and results in a local
error of O(f s3dsxd).

It is also important in applications to consider the case
where the interval of integration is finite. Specifically, we
consider integrals over left-hand and right-hand end points of
the form [10]

kxklm
+
ª E

0

`

fsx − mdxkdx,

kxklm
−
ª E

−`

0

fsx − mdxkdx, s11d

and

Dmn
+

ª E
0

`

fsx − mdfsx − nddx,

Dmn
−

ª E
−`

0

fsx − mdfsx − nddx. s12d

Applying the scaling equation(1) to these integrals gives
linear relations such as

kxklm
+ = 2−k−1/2 o

l=0

2K−1

hlkxkl2m+l
+ s13d

and

Dm,n
+ = o

r=0

2K−1

o
s=0

2K−1

hrhsD2m+r,2n+s
+ . s14d

These linear systems can be solved for the cases ofm,n=
−1,−2, . . . ,−s2K−2d using the previously computed mo-
ments forkxklm

+ and the orthogonality relations forDm,n
+ .

In Ref. [3], we introduced a method for computing singu-
lar integrals of the form

Sk ªE fsx − kd
x + i0+ dx, s15d

where 0+ is a positive infinitesimal quantity. Applying the
scaling equation(1) gives the degenerate linear relations

Sk = Î2 o
l=0

2K−1

hlS2k−l . s16d

These can be supplemented with a normalization condition

− ip =E
−a

a dx

x + i0+ = o
n
E

−a

a

fsx − nd
dx

x + i0+ = o
n

Sn:a,

s17d

which follows from the identity 1=onfsx−nd. Finally, we
need the nonsingular integrals which can be obtained using
the recursion relation(16) and the convergent expansion for
largen given by

Sn:a =E
−a

a fsx − nd
x + i0+ dx=

1

n
E

−a−n

a−n fsyd
1 + y/n

dy

=
1

n
o
k=0

` S− 1

n
DkE

−a−n

a−n

fsydykdy, s18d

where the final integrals can be calculated using the methods
for Eqs.(9) and(11). The values of the singular integrals are
given in Table II.

For a more thorough and detailed discussion of these cal-
culations and additional properties of wavelets see Refs.
[3,8].

III. TWO-BODY T MATRIX IN MOMENTUM SPACE

The two-bodyT matrix is given by the solution to the
Lippmann-Schwinger equation
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T = V + VG0T, s19d

whereV is the two-body potential andG0=sE+ ie−H0d−1 is
the free two-body propagator. In momentum space, this
equation becomes

Tsp8,p,x8d =
1

2p
vsp8,p,x8,1d − mE

0

`

dp9p92E
−1

1

dx9

3vsp8,p9,x8,x9d
1

p92 − p0
2 − ie

Tsp9,p,x9d,

s20d

wherem is the mass of the particles,p0 is the on-shell mo-
mentum,x8= p̂8 ·p̂, x9= p̂9 ·p̂, andv is the two-body potential
with the azimuthal angle dependence integrated out. For our
calculations, we use a Malfliet-Tjon III potential[11] with
attractive and repulsive parts. In this case, the azimuthal in-
tegration can be carried out analytically giving

vsp8,p,x8,xd =
1

p
F lR

Îsp82 + p2 − 2p8px8x + mRd2 − 4p82p2s1 − x82ds1 − x2d

−
lA

Îsp82 + p2 − 2p8px8x + mAd2 − 4p82p2s1 − x82ds1 − x2dG . s21d

The parameters for this potential are:lA
=626.8932 MeV fm, mA=1.55 fm−1, lR=1438.723
MeV fm, mR=3.11 fm−1, which correspond to those used in
Ref. [4]. We use a nucleon mass such that 1/m
=41.47 MeV fm2.

In our work, we consider solutions for the half off-shellT
matrix, Tsp8 ,p0,x8d. Traditionally, theT matrix is decom-
posed in a partial wave basis using

Tsp8,p0,x8d = o
l=0

`
2l + 1

4p
Tlsp8dPlsx8d, s22d

where thePl are Legendre polynomials. Each amplitude
Tlsp8d must be solved for individually. For high energies, a
significant number of amplitudes may need to be included to
ensure convergence[4].

The magnitude squared of the on-shellT matrix is propor-
tional to the differential cross section. Furthermore, the on-
shell partial wave amplitudesTlsp0d can be parametrized as

Tlsp0d = −
2

p

1

mp0
eidlsp0d sin„dlsp0d…, s23d

where thedlsp0d are experimentally determined phase shifts.
These phase shifts are used to fit realistic nucleon-nucleon
potentials and should be accurately reproduced by any viable
solution method.

IV. WAVELET REPRESENTATION

To solve Eq.(20) we need to transform the half interval
f0,`d corresponding to the momentum variable into a finite
interval f−a,bg. For computational convenience we also

transform the intervalf−1,1g associated with the angular
variable into the regionf−c,dg. For the first transformation
we use the following map:

pskd ª p0
b

a

a + k

b − k
, kspd ª

absp − p0d
ap+ p0b

, s24d

which maps the scattering singularity atp9=p0 to the origin.
Then we have

dp= p0
b

a

sb + ad
sb − kd2dk s25d

and

1

p − p0
=

asb − kd
sa + bdp0

1

k
. s26d

The second mapping is the simple linear transformation

xsud ª
2u − d + c

d + c
, usxd ª

sd + cdx + sd − cd
2

, s27d

which gives

dx=
2

d + c
du. s28d

We now apply these maps to Eq.(20) to obtain an equiva-
lent integral equation on the rectangular regionf−a,bg
3f−c,dg. For notational convenience we define

TABLE II. Integrals over singularity.

S−1 −0.1717835441734 −i 4.041140804162

S−2 −1.7516314066967 +i 1.212142562305

S−3 −0.3025942645356 −i 0.299291822651

S−4 −0.3076858066180 −i 0.013302589081
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fsp8,x8d ª Tsp8,p0,x8d,

gsp8,x8d ª
1

p
vsp8,p0,x8,1d, s29d

and for the nonsingular part of the kernel

Lsp8,p9,x8,x9d ª m
vsp8,p9,x8,x9dp92

p9 + p0
. s30d

Now, we let

f̃sk8,u8d ª f„psk8d,xsu8d…,

g̃sk8,u8d ª g„psk8d,xsu8d…, s31d

and

L̃sk8,k9,u8,u9d ª L„psk8d,psk9d,xsu8d,xsu9d…
2

d + c

b

b − k9
.

s32d

The last factor in this equation comes from applying Eqs.
(25), (26), and(28), which gives

1

p9 − p0
dp9dx9 =

1

k9

2

d + c

b

b − k9
dk9du9. s33d

Finally, substituting Eqs.(31) and (32) into Eq. (20) gives

f̃sk8,u8d = g̃sk8,u8d −E
−a

b

dk9E
−c

d

du9
L̃sk8,k9,u8,u9d

k9
f̃sk9,u9d.

s34d

Now, we project this equation onto the wavelet basis
which results in a Galerkin-type procedure. In general, one
can choose a separate fine scale in each variable. For nota-
tional simplicity, we will consider the case whereJk=Ju=J.

In this case, we approximatef̃ using

f̃sk8,u8d < o
m,n

f̃m,nfJ,msk8dfJ,nsu8d. s35d

Substituting this in Eq. (34) and multiplying by
fJ,m8sk8dfJ,n8su8d and integrating overk8 and u8 gives the
linear equation

o
m,n

Nm8,n8;m,nf̃m,n = g̃m8,n8 − o
m,n
E

−a

b

dk8E
−c

d

du8

3E
−a

b

dk9E
−c

d

du9fJ,m8sk8dfJ,n8su8d

3
L̃sk8,k9,u8,u9d

k9
fJ,msk9dfJ,nsu9d f̃m,n,

s36d

where

g̃m8,n8 ª E
−a

b

dk8E
−c

d

du8g̃sk8,u8dfJ,m8sk8dfJ,n8su8d s37d

and

Nm8,n8;m,n ª E
−a

b

dk8E
−c

d

du8fJ,m8sk8d

3fJ,n8su8dfJ,msk8dfJ,nsu8d. s38d

We can evaluateg̃m8,n8 using the one-point quadrature[10]
discussed earlier and an end-point quadrature based on the
partial moments[3]. Nm8,n8;m,n is simply the direct product of
block diagonal matrices consisting of identity blocks and
blocks of the formD± given in Eq.(12). The final term in Eq.
(36) can be evaluated using the subtraction

L̃m8,n8;m,n ª E
−a

b

dk8E
−c

d

du8E
−a

b

dk9E
−c

d

du9fJ,m8sk8dfJ,n8su8d

3
L̃sk8,k9,u8,u9d

k9
fJ,msk9dfJ,nsu9d

=E
−a

b

dk8E
−c

d

du8E
−a

b

dk9E
−c

d

du9fJ,m8sk8dfJ,n8su8d

3
L̃sk8,k9,u8,u9d − L̃sk8,0,u8,u9d

k9
fJ,msk9dfJ,nsu9d

+E
−a

b

dk8E
−c

d

du8E
−c

d

du9fJ,m8sk8dfJ,n8su8d

3L̃sk8,0,u8,u9dfJ,nsu9dE
−a

b fJ,msk9d
k9

dk9. s39d

The first term in this equation is nonsingular and can be
approximated using the quadrature methods previously dis-
cussed. Likewise, thek8 ,u9 ,u8 integrations in the second
term can be carried out in the same manner. The final inte-
gration overk9 can be accomplished using the method fol-
lowing Eq. (16).

Thus, the problem is reduced to solving a linear system of
the form

o
m,n

sNm8,n8;m,n + L̃m8,n8;m,nd f̃m,n = g̃m8,n8. s40d

Once we have solved this equation forf̃m,n we can substitute
this approximate solution back into the right-hand side of the
original equation to obtain a refined solution.

V. WAVELET TRANSFORM AND SPARSE SOLUTION

The eigenvalues ofD+ accumulate at 0 while those ofD−

accumulate at 1 asK increases[12]. This makes the matrix
N, and consequently the right-hand side of Eq.(40), numeri-
cally ill behaved. To circumvent this difficulty we can pre-
condition the system by invertingN, which is easily accom-
plished by inverting the two blocksD+ andD− and using the
direct product structure ofN. If we define
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h = Nf̃ , s41d

then Eq.(40) becomes

sI + LN −1dh = g̃. s42d

If we define

A = sI + LN −1d, s43d

then Eq.(42) is a simply linear system of the form

Ah = g̃. s44d

This is a large dense linear system. However, as shown in
Eq. (7), there are two equivalent representations that are
linked by a fast orthogonal transformation. In two variables,
the matrix representation of this transformation is simply the
direct product of the one-dimensional transformation matri-
ces that are given in many standard references[7]. If we
denote this matrix asW then we can transform Eq.(44) as

sWAW TdWh = Wg̃. s45d

Now we make the definitions

Â = WAW T, ĥ = Wh, ĝ = Wg̃. s46d

Then as mentioned in reference to Eq.(7) we can truncate

the matrix Â by eliminating all elements with a magnitude
below some certain thresholde, where the error introduced is

proportional toe. The matrix Â can be stored in a sparse
format such as compressed column format(CCS) [13],
which permits both efficient storage and matrix multiplica-
tion. These savings help eliminate computationally costly
writing and reading from the hard disk when solving the
linear system.

To solve the sparse system we use the complex biconju-
gate gradient method[7,14] which we present for general
complex matrices in the Appendix. This method is a simple
and effective iterative method for general sparse matrices. In
addition, this method, like all iterative techniques, is readily
amenable to parallel processing of the matrix multiplication.
Once the solution to Eq.(45) is found, it is a simple matter to

recoverf̃ by applying the inverse transformWT and the in-
verse matrixN−1. In particular,

f̃ = N−1WTĥ. s47d

VI. RESULTS AND ANALYSIS

We made calculations using the Daubechies-3 wavelets at
scales up toJ=5 in each variable. The total number of wave-
let basis functions in each variable was taken to be 2M, where
M =J+2. If we takea=c=1, thenb andd are determined by

b = 2−Jkf2Mk − s2K − 2dg − a,

d = 2−Juf2Mu − s2K − 2dg − c. s48d

Using these parameters calculations were performed at
lab energies of 300 and 800 MeV to test the efficacy of the

method in different energy regimes. Figure 2 shows the real
and imaginary parts of the half off-shellT matrix as a func-
tion of momentump8 and the scattering anglex8=cossud at a
scattering energy of 800 MeV. Daubechies-3 wavelets were
used withMk=Mu=5.

It can be seen that the real part of theT matrix is rela-
tively smooth, while the imaginary part does have some
structure. The fact that theT matrix is smooth with isolated
structure suggests that wavelet methods should be able to
efficiently compress the matrixÂ. Figure 3 shows the on-
shell T matrix as a function of anglex8=cossud at a scatter-
ing energy of 300 MeV. These calculations were made using
Daubechies-3 wavelets withMk=Mu=5.

From these graphs the general smoothness of the on-shell
amplitude is apparent. We can also see the forward peaking
of the scattering amplitude that is expected at higher ener-
gies.

From a numerical standpoint, the first aspect of the calcu-
lation to consider is the general convergence of the method
as the number of basis functions is increased. Tables III and
IV illustrate the convergence of the method as the number of
basis functions is increased. The quoted values are for on-
shell scattering at an angle of 90° using Daubechies-3 wave-
lets with no truncation. From Table III, we see that the ma-
jority of improvement occurs asMk is increased. This can be
attributed to the fact that the integral overk9 in the kernel is
singular and thus requires more basis functions to accurately
represent the dependence on this variable.

All of these calculations were made by solving the linear
system(42). It is instructive to consider the behavior if one

FIG. 2. (Color online) Half off-shell T matrix at 800 MeV.

FIG. 3. On-shellT matrix at 300 MeV.
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attempts to solve Eq.(40) using iterative methods without
directly invertingN first. Table V compares the error in the

residual,en=ir̂ ni=iĝ−Âĥni, as a function of the number of
iterations. As the number of iterationsn is increased the pre-
conditioned method converges very rapidly, while the non-
preconditioned method fails to converge adequately.

Now we turn our attention to the compression of the
sparse matrix and its subsequent effect on the calculation.
Figure 4 displays such a representation for scattering at
800 MeV using Daubechies-3 wavelets withMk=4, Mu=3.

The plot shows the location of the nonzero elements ofÂ
after it has been truncated at the threshold levele=10−5. This
threshold produces a matrix with 19% of the elements of the

full matrix. The ordering scheme forÂ used in the plot
places the elements associated with finer scales at higher
indices. The degree of sparsity increases considerably as the
scale increases, which demonstrates that less and less ele-
ments are needed at finer scales.

A key advantage of wavelets is that this reduction in the
number of nonzero matrix elements significantly reduces the
time required to solve the linear system. For the biconjugate
gradient method, each iteration requires two matrix multipli-
cations, which take a time proportional to the number of
nonzero elements in the matrix. Thus a reduction in the num-

ber of nonzero elements reduces the solution time by a cor-
responding amount. The other major source of computational
effort is setting up and storing the various matrices used in
the problem. For the range of test cases we considered, the
solution of the sparse linear systems only took 5–10 % of
the total computational time. Other methods, such as those
based on splines, will have comparable setup time, but
longer solution time for the corresponding dense linear sys-
tem.

In Table VI, the effect of truncating the matrixÂ on the
convergence of the solution is illustrated for various thresh-
old levels with a lab energy of 800 MeV. This calculation
was performed using the Daubechies-3 wavelets withMk
=Mu=6. Comparing these results with those in Table III, we
see that even keeping just one percent of the matrix elements
we are able to reproduce theT matrix to the same precision
as the accuracy of the untruncated matrix.

Finally, we consider the accuracy of the phase shifts de-
termined by our momentum vector approach. To calculate
the phase shifts we project ourT matrix onto the partial
waves using

TABLE IV. Convergence as a function of total number of basis
functions: 800 MeV.

Mk Mu Re(Tsp0,p0,0d) Im(Tsp0,p0,0d)

4 4 0.456127838 0.126626540

4 5 0.454750689 0.126515462

5 4 0.456227507 0.113862313

5 5 0.455006434 0.113967425

5 6 0.454697067 0.113367584

6 5 0.455242066 0.111684819

6 6 0.454931562 0.111107815

6 7 0.454884387 0.111005571

7 6 0.454978565 0.110889988

7 7 0.454931334 0.110788571

TABLE V. Convergence of the biconjugate gradient method.

n en (nonpreconditioned) en (preconditioned)

10 3.25310−4 1.98310−3

20 4.21310−4 3.07310−5

30 7.23310−5 2.03310−6

40 9.94310−4 9.10310−10

50 1.01310−4 8.09310−13

FIG. 4. Location of the nonzero of elements ofÂ.

TABLE III. Convergence as a function of total number of basis
functions: 300 MeV.

Mk Mu Re(Tsp0,p0,0)) Im(Tsp0,p0,0d)

4 4 0.484065410 0.292438234

4 5 0.483906981 0.293504057

5 4 0.491111143 0.286418162

5 5 0.490972783 0.287464852

5 6 0.490891484 0.287452418

6 5 0.491773044 0.286276262

6 6 0.491691220 0.286263888

6 7 0.491678773 0.286256958

7 6 0.491772680 0.286123199

7 7 0.491760404 0.286116271

KESSLER, PAYNE, AND POLYZOU PHYSICAL REVIEW C70, 034003(2004)

034003-8



Tlsp8d = 2pE
−1

1

Plsx8dTsp8,p0,x8ddx8. s49d

We compute the integrals using 20 Gauss-Legendre points
[15]. From theTl it is straightforward to calculate the phase
shifts using Eq.(23). Table VII displays these phase shifts
(calculated forELab=800 MeV using Daubechies-3 wavelets
with Mk=Mu=7 and truncating all but 2% of the coeffi-

cients) compared with phase shifts calculated using standard
partial wave techniques. The agreement between the two
methods is very good for all the phase shifts.

VII. CONCLUSIONS

We have shown that it is possible to use wavelets to cal-
culate the two-body scattering matrix in terms of momentum
vectors without resorting to partial waves. We were able to
accurately reproduce the phase shifts of the Malfliet-Tjon
potential. These calculations lead to sparse matrices, which
can be efficiently inverted using standard iterative methods.
Application of a simple preconditioning matrix was shown to
be necessary to achieve convergence of the iterative meth-
ods. Traditional methods for solving scattering equations in
momentum space typically produce dense matrices that re-
quire a large amount of storage and are time consuming to
invert. These are promising results because relativistic scat-
tering equations are naturally formulated in momentum
space. Also, the scattering boundary conditions are most eas-
ily treated in momentum space. Wavelet methods can help
treat both of these problems.

One of the main advantages of wavelet methods over
methods such as splines is that the wavelet transform pre-
sents a method that automatically determines what basis
functions are necessary for a given accuracy. Unfortunately,
this also leads to one of the main drawbacks of this method.
In our procedure, a large dense matrixA needs to be pro-
duced first and then this is transformed to a sparse matrix.
Most of the computational time is spent constructing and
transforming this matrix into a sparse format. The subse-
quent solution of the sparse linear system takes relatively
little computational effort.

For this specific problem, wavelet methods based on mo-
mentum vectors may not be necessary. The maximum num-
ber of partial waves that needs to be included to achieve
convergence,lmax=14 [4], is simply too small to gain a com-
putational benefit from using wavelets in the angular vari-
able. To achieve a computational benefit we should use less
basis functions in the angular variable than the maximum
number of partial waves. In the three-body problem or at
much higher energies, the number of partial waves that need
to be included increases considerably and computational
benefits may be gained from employing a momentum vector
approach.
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APPENDIX: COMPLEX BICONJUGATE GRADIENT
METHOD

The biconjugate gradient method[7,14] is an iterative
technique for solving large matrix equations of the form

Ax = b.

The advantage of this method for large sparse matrices is that
it only involves matrix multiplication byA and its adjoint,

TABLE VI. Effect of truncation on the on-shellT matrix at
800 MeV for scattering at 180°, 90°, and 0° corresponding to
Tsp0,p0,−1d, Tsp0,p0,0d, andTsp0,p0, +1d.

e % Re(Tsp0,p0,−1d) Im(Tsp0,p0,−1d).

0 100 0.249235 −0.0777091

10−8 23 0.249235 −0.0777093

10−7 14 0.249234 −0.0777116

10−6 8 0.249217 −0.0777525

10−5 1 0.248296 −0.0770660

e % ResTsp0,p0,0dd ImsTsp0,p0,0dd

0 100 0.454932 0.111108

10−8 23 0.454932 0.111108

10−7 14 0.454932 0.111108

10−6 8 0.454941 0.111117

10−5 1 0.454966 0.111154

e % ResTsp0,p0, +1dd ImsTsp0,p0, +1dd

0 100 −6.16347 −1.31548

10−8 23 −6.16347 −1.31548

10−7 14 −6.16347 −1.31548

10−6 8 −6.16346 −1.31548

10−5 1 −6.16327 −1.31559

TABLE VII. Comparison of 800-MeV phase shifts with stan-
dard methods.

l dlsp0d (standard) dlsp0d (wavelet)

0 −0.2535 −0.2534

1 0.2950 0.2949

2 0.3635 0.3634

3 0.2747 0.2746

4 0.1755 0.1755

5 0.1053 0.1052

6 0.06169 0.06168

7 0.03591 0.03591

8 0.02089 0.02089

9 0.01217 0.01217

10 0.007110 0.007109

11 0.004164 0.004163

12 0.002445 0.002444

13 0.001439 0.001437
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both of which can be accomplished efficiently in a sparse
storage format such as CCS[13]. The algorithm generates a
sequence of approximate solutions,xk with residual r k=b
−Axk. One iterates until the norm of the residual is less than
some predetermined value.

This method is traditionally formulated for real matrices,
but the extension to complex matrices is straightforward. Be-
low we present the algorithm for general complex matrices.
For our calculations, we start with the initial approximate
solution

x0 = b

with the residual

r 0 = b − Ax0.

For the initial values of the bi-residualr̄ 0, the direction vec-
tor p0, and bi-directionp̄0 we use

r̄ 0 = b − A†x0,

p1 = r 0,

p̄1 = r̄ 0.

Then we use the recurrence relations

ak =
r̄ k−1

† r k−1

p̄k
†Apk

,

xk = xk−1 + akpk,

r k = r k−1 − akApk,

r̄ k = r k−1 − ak
*A†p̄k,

bk =
r̄ k

†r k

r̄ k−1
† r k−1

,

pk+1 = r k + bkpk,

p̄k+1 = r̄ k + bk
* p̄k

to generate an improved approximation. This is repeated un-
til the desired accuracy is obtained. We measure the accuracy
by the,2sCd norm of the residual.
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