
Relativistic treatment of pion wave functions in the annihilation p̄p\p−p+

B. El-Bennich* and W. M. Kloet
Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-8019, USA

(Received 16 March 2004; published 15 September 2004)

Quark model intrinsic wave functions of highly energetic pions in the reactionp̄p→p−p+ are subjected to
a relativistic treatment. The annihilation is described in a constituent quark model withA2 andR2 flavor-flux
topology, and the annihilated quark-antiquark pairs are in3P0 and 3S1 states. We study the effects of pure
Lorentz transformations on the antiquark and quark spatial wave functions and their respective spinors in the
pion. The modified quark geometry of the pion has considerable impact on the angular dependence of the
annihilation mechanisms.
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I. INTRODUCTION

The LEAR experiments[1] on p̄p→p−p+ and p̄p
→K−K+, which yielded a large and very accurate dataset for
differential cross sectionsds /dV and analyzing powersA0n
from 360 to 1550 MeV/c, have until very recently[2] re-
sisted a satisfying comparison with theoretical models. In
particular, the observableA0n exhibits a characteristic
double-dip structure which is hard to reproduce. Another
prominent feature of theA0n data is a shift of the asymmetry
from predominantly negative values at lower momenta to-
ward positive values at higher momenta. As already men-
tioned in [2,3], this indicates the presence of several partial
waves while most model calculations[4–9] lead to ampli-
tudes dominated by total angular momentumJ=0 andJ=1.
The reason for this feature of all models is a rather short
range annihilation mechanism, driven either by baryonic ex-
change in thet channel[4–6,9] or by overlap of quark and
antiquark wave functions of the proton and antiproton as in
[7,8]. We should mention however that there is another in-
teresting possibility of coupling, for example,J=2,3 initial

N̄N states toL=0 intermediateN̄D ,D̄N, or D̄D states, which
then can decay into mesons by a short range annihilation
mechanism. This approach was investigated for total annihi-
lation cross sections in[10,11] but not pursued for differen-
tial cross sections.

One way to improve models would hence be to increase
the annihilation range. In Ref.[2], this problem is addressed
within the framework of a constituent quark model. For a
summary of thep̄p annihilation in a quark model, see the
review by Doveret al. [12]. In paper[2], the radii of the
proton, antiproton, and pion were readjusted so they coincide
with the ones obtained from measurements of the respective
electric form factors[13,14] rather than with the consider-
ably smaller constituentqqq and q̄q quark core radii. The
latter radii, which ignore the hadronicq̄q cloud, were used in
earlier attempts to reproduce the LEAR observables[7,8]. In
the model calculations, this increase in radius is directly re-
lated to the Gaussian description of the intrinsic quark wave
functions. In the overlap integral over the quark coordinates,

the wider Gaussian wave functions provide in turn a larger
overlap of the quarks and antiquarks and therefore a larger
range of the annihilation mechanism. In fact, the radii in Ref.
[2] were obtained in a fit tods /dV andA0n data mentioned
above and are about 7% larger than the charge radii derived
from the electric form factors. This effect, along with a fine-
tuned final-state interaction of thep−p+ pair, improves the
reproduction of the observablesds /dV andA0n, and in par-
ticular of the double-dip structure of the latter one, consider-
ably.

As was pointed out in Ref.[2], there is another reason to
believe that the geometry of the final pions is relevant to
higher partial wavesJ.1d contributions to the total ampli-
tude. At the center-of-mass(c.m.) energiesÎs considered in
the LEAR experimentp̄p→p−p+, final pions are produced
with kinetic energies much larger than the pion rest mass.
For example, for an antiproton beam withplab=800 MeV/c
the total c.m. energy isEc.m.=Îs.2020 MeV. This translates
into a relativistic factorg=Ec.m./2mpc2=7.2. In the quark
model, the pions are described by Gaussian spheres in the
rest frame of each pion. Yet, the transition amplitudes and
implicitly the observables of thep̄p→p−p+ reaction are cal-
culated in the c.m. frame. In the c.m. frame the outgoing
pions, due to their large kinetic energy, will be shaped like
pancakes. This will alter the angular dependence of the an-
nihilation mechanism.

This modification of the pions, due to Lorentz trans-
formed Gaussian wave functions, was investigated previ-
ously by Maruyamaet al. [15] in the annihilation ofp̄p at-
oms at rest into two mesons. The authors of Ref.[15] found
that the two-pion production is enhanced upon including
Lorentz contraction effects. However, only branching ratios
were discussed, and the impact of these Lorentz contractions
on the angular dependence of the annihilationp̄p→p−p+ at
positive energies remained unknown.

In this paper, we will show that the pion deformation
affects the overlap of intrinsic pion, proton, and antiproton
wave functions. It was in this spirit that in Ref.[2] the width
of the Gaussian wave function was increased not merely to
reproduce the measured charge radii, but also to mock up an
altered overlap of the quarks and antiquarks implied by rela-
tivistic considerations. In the following, we will carry out the
Lorentz transformation which is a twofold task: the pions are*Electronic address: bennich@physics.rutgers.edu
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q̄q pairs described by the usual spinors of the free Dirac
equation times a radial Gaussian function to account for their
confinement within the pion. Hence, the Lorentz transforma-
tion is effected on both spin and Gaussian components of the
wave functions. Using the relevant Feynman diagrams, we
analyze the relativistic effects on the amplitudes and com-
pare them with previous results[7]. In the following we refer
to two-pion final states only, however all results derived in
this paper are also valid for the reactionp̄p→K−K+.

II. LORENTZ TRANSFORMED PION INTRINSIC WAVE
FUNCTIONS

The reactionp̄p→p−p+ is described in the c.m. frame
Sc.m.. Therefore, given the large kinetic energy of the final-
state pions, we must Lorentz transform each pion intrinsic
wave functions from the pion rest frameSp to the c.m. frame
Sc.m.. As mentioned before, this will affect the Gaussian ra-
dial part of the wave function which will be distorted along
the boost direction into an ellipsoid. We begin with an
r-space realization of the pion wave functioncpsr 1,r 5d and
first concentrate on its spatial component. In the pion rest-
framecpsr 1,r 5d has the form

cpsr 1,r 5d = NpexpH–
b

2 o
i=1,5

sr i − Rpd2J
3 xpsspin,isospin,colord. s1d

Following the labeling of the first pion in Fig. 1, herer 1 and
r 5 are the quark and antiquark coordinates, respectively. The
coordinate of the pion isRp. All quark and antiquark masses
are assumed to be equal. For the second pion the quark and
antiquark coordinates would ber 2 and r 4.

The proton and antiproton are described in their respec-
tive rest frames by similar Gaussian functions

cpsr 1,r 2,r 3d = NpexpH−
a

2o
i=1

3

sr i − Rpd2J
3 xpsspin,isospin,colord, s2d

where r i are the quark(antiquark) coordinates andRp the
nucleon (antinucleon) coordinate. Because of the much

smaller kinetic energy and larger mass of the nucleon and
antinucleon, their intrinsic distortions inSc.m. are ignored.

Returning to the pion, the antiquark and quark coordinates
r in Sp are related to coordinatesr8 in Sc.m. according to the
inverse Lorentz transformationfl−1; l−1sbdg

r8 = l−1r . s3d

We split the quark and antiquark coordinates into compo-
nents parallel and perpendicular to the boost direction
b=v /c, which is related to the relativistic boost factorg
=s1−b2d−1/2=Ec.m./2mpc2. Hence, the parallel component of
the separationr 1−r 5 between an antiquark-quark pair in the
pion rest frame is related to the one in the c.m. frame with
coordinatesr 18 and r 58 by

sr 1 − r 5di
2 = g2sr 18 − r 58di

2. s4d

Here, we have used the equal time conditiont18= t58 in the c.m.
frameSc.m.. These transformations can be applied straightfor-
wardly to the spatial part of the pion wave functions. Insert-
ing the Lorentz contraction of Eq.(4) in Eq. (1), the pion
wave function suppressing spin, isospin, and color depen-
dence becomes

cpsl−1r 1,l
−1r 5d = ÑpexpH−

b

2 o
i=1,5

3fsr i − Rpd'
2 + g2sr i − Rpdi

2gJ , s5d

where b is in this case the size parameter andRp= 1
2sr 1

+r 5d is the pion coordinate. The new normalization factor

Ñp=ÎgNp comes from the condition that Eq.(5) be normal-
ized to unity in the c.m. In Eq.(5), the spatial distortion of
the pions in the c.m. of the reactionp̄p→p−p+ alluded to in
the Introduction is shown explicitly.

In p space the wave function is

cpsl−1p1,l
−1p5d = Ñps4p/bd3/2/g

3 exp −H 1

2b
o
i=1,5

FSpi −
1

2
PpD

'

2

+
1

g2Spi −
1

2
PpD

i

2GJ
=

Np

g1/2S4p

b
D3/2

expH−
1

4b
Fsp1 − p5d2

+ S 1

g2 − 1Dsfp1 − p5g · P̂pd2GJ . s6d

The momentap1 and p5 are the quark and antiquark mo-
menta, whilePp=p1+p5 is the pion momentum which is
parallel to the boost direction. With these Lorentz trans-
formed wave functions, we are now in the position to evalu-
ate the 3S1 and 3P0 amplitudes taking into account the
boosted pions. We will consider two types of commonly used
diagrams, therearrangement R2 and annihilation A2 dia-
grams as depicted in Fig. 1.

FIG. 1. (a) Rearrangement diagramR2 and(b) annihilation dia-
gramA2. The numbers with bars denote antiquarks, those without
bars the quarks, while the dashed lines represent the exchange of
either the effective “vacuum”3P0 or “gluon” 3S1 state.
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III. EFFECTS OF DEFORMED PIONS ON THE
ANNIHILATION AMPLITUDES

With the Lorentz transformed pion intrinsic wave func-
tions, we can recalculate theT matrix elements of Refs.[7,8]
for the annihilation reactionp̄p→p−p+. Here, we will do
this first for theR2 diagrams(which we used exclusively in
a previous paper[2]). The transition operatorsTs3P0d and

Ts3S1d are obtained from integrating out the quark and anti-
quark momenta. The momenta ofp, p̄, p−, and p+ will be
calledPp, Pp̄, Pp−, andPp+, respectively. For theR2 diagram
of Fig. 1(a), the transition operators for the3P0 as well as the
3S1 case are obtained, using the quark and antiquark labeling
in diagram Fig. 1(a) and pion, antiproton, and proton wave
functions of Eq.(6) and the Fourier transform of Eq.(2),
from the following integral:

T̂R2s3P0,
3S1d = NE dp1dp2dp3dp4dp5dp6dp18dp28dp48dp58dsp18 + p58 − Pp−ddsp28 + p48 − Pp+ddsp1 + p2 + p3 − Ppd

3dsp4 + p5 + p6 − Pp̄ddsp6 + p3 + p1 − p18ddsp28 − p2ddsp48 − p4ddsp58 − p5d

3 expH−
1

4b
Fsp18 − p58d

2 + sp28 − p48d
2 + S 1

g2 − 1Dhfsp28 − p48d · P̂pg2 + fsp18 − p58d · P̂pg2jGJ
3 expH−

1

2a
So

i=1

3 Spi −
1

3
PpD2

+ o
i=4

6 Spi −
1

3
Pp̄D2DJV̂R2s3P0,

3S1d , s7d

where the overall normalizationN contains factors due to the
relativistic factorg, the normalization factorsNp, Np, Np̄, the
pion size parameterb, and the proton(antiproton) size pa-
rametera.

The two mechanisms differ only in the operatorsV̂R2s3P0d
and V̂R2s3S1d stemming from the respective annihilation
mechanisms

V̂R2s3P0d = lR2Ps63 · sp6 − p3d, s8d

V̂R2s3S1d = lR2Sf− 2s63 ·p1 + iss181 3 s63d · sp1 − p18dg.

s9d

Here lR2P and lR2S are strength parameters of the twoR2
mechanisms.

The exponential parts in Eq.(7) originate in thep-space
component of the boosted pion wave functions of Eq.(6) and
the baryonic(nonboosted) wave functions of Eq.(2). The
spin-momentum dependency in Eqs.(8) and(9) comes from
the computation of theR2 diagrams using the Dirac spinors.
The indices on the Pauli matrices denote the spinor subspace
in which they act. For instance, the antiquark-quark pairq̄6q3
is annihilated and momentump3+p6 is transferred from this
vertex to quarkq1.

After Fourier transform intor space, Eq.(7) becomes for
the 3P0 mechanism

T̂R2s3P0d = iNfAVs ·R8 + BVs ·R + CVss · R̂8dR cosug

3 exphAR82 + BR2 + CRR8cosu + DR2cos2uj.

s10d

The various coefficients will be given below. Since the3S1

mechanism in Eq.(9) contains two terms, we split their con-
tributions conveniently into alongitudinal and atransversal
part. It will be seen that they give rise to different selection
rules. The transition operator is thus

T̂R2s3S1d = NfALis ·R8 + BLis ·R + CLis · R̂8R cosu

+ ATs ·R8 + BTs ·R + CTss · R̂8dR cosug

3 exphAR82 + BR2 + CRR8cosu + DR2cos2uj.

s11d

The relative p−p+ and antiproton-proton coordinates are
R8=Rp−−Rp+ and R=Rp̄−Rp, respectively. The angleu is
between the relativep−p+ coordinateR8 and antiproton-
proton coordinateR in the c.m. system. Compared with the
results of Ref.[7], one observes the appearance of additional
terms in both transition operators, namely, theD term in the
exponent and theCV, CL, and CT terms. These new terms
introduce manifest angular dependence. More precisely, the
boosted pion wave functions lead to additional angular de-
pendence in the form of quadratic cosine terms in the expo-
nentials and linear cosine terms in the coefficients of the spin
operators. Note that aside from the explicit nonlocality, the

transition operatorsT̂R2s3P0d and T̂R2s3S1d are now energy
dependent via the Lorentz boost factorg. This g dependence
is nontrivial, and affects the angular dependence of the tran-
sition operators in the sense that the various terms mentioned
above behave differently for increasing values ofg. Also, the
magnitude of these terms differs immensely depending on
whetherg is smallsg.1–2d or largesg.5–8d. For largeg
theD term dominates the exponential part and, for example,
CV@AV,BV andCL@AL ,BL; however,CT,AT, andBT are of
the same order of magnitude.
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The above results for the transition operators are valid for
the diagram in Fig. 1(a). Summing over all possible permu-
tations of Fig. 1(a), where for examplep3+p6 is transferred
to quarkq2 or one of the antiquarksq̄4,q̄5, yields the same
symmetry properties as in Ref.[7], as expected. In particular,
the vacuumcoefficientsAV, BV, and CV add up such that

T̂R2s3P0d contributes only to lpp=0,2,4, . . . and l p̄p

=1,3,5, . . . and hence acts in p̄p states with Jp

=0+,2+,4+, . . . waves. The longitudinal part of the transition

amplitude T̂R2s3S1d, with the coefficientsAL, BL, and CL,
bears the same symmetry properties and therefore acts in the
same waves as the “vacuum” mechanism. The transversal
component withAT, BT, andCT, on the other hand, contrib-
utes tolpp=1,3,5, . . . andl p̄p=0,2,4, . . . andacts therefore
in p̄p states withJp=1−,3−,5−, . . . waves.

The complete form of theR2 transition operators for the
vacuum3P0 amplitude when summing over all permutations
is

T̂R2
tots3P0d = iNfAVs ·R8sinhsCR ·R8d

+ BVs ·R coshsCR ·R8d

+ CVss · R̂8dR cosu coshsCR ·R8dg

3 exphAR82 + BR2 + DR2cos2uj. s12d

The total 3S1 amplitude for the longitudinal component is
given by

T̂R2
tots3S1

Ld = iNfALs ·R8sinhsC R ·R8d

+ BLs ·R coshsC R ·R8d

+ CLss · R̂8dR cosu coshsC R ·R8dg

3 exphAR82 + BR2 + DR2cos2uj s13d

and

T̂R2
tots3S1

Td = NfATs ·R8coshsC R ·R8d

+ BTs ·R sinhsC R ·R8d

+ CTss · R̂8dR cosu sinhsC R ·R8dg

3 exphAR82 + BR2 + DR2cos2uj s14d

for the transversal component.
The explicit expressions for the coefficients of Eqs.

(12)–(14) are

A = −
as5a + 4bg2d
2s4a + 3bg2d

, s15ad

B = −
3s7a2 + 18abg2 + 9b2g4d

8s4a + 3bg2d
− D, s15bd

C = −
3asa + bg2d
2s4a + 3bg2d

, s15cd

D = −
9bsg2 − 1d

8
H1 +

a2

s5a + 4bds5a + 4bg2dJ ,

s15dd

AV =
asa + bg2d
4a + 3bg2 , s16ad

BV =
3sa + bg2ds5a + 3bg2d

2s4a + 3bg2d
− CV, s16bd

CV =
3bsg2 − 1d

2
H1 +

a2

s5a + 4bds5a + 4bg2dJ , s16cd

AL = − AV, s17ad

BL =
9sa + bg2d2

2s4a + 3bg2d
− CL, s17bd

CL =
3bsg2 − 1d

2
H1 −

a2

s5a + 4bds5a + 4bg2dJ , s17cd

AT = − 2AV, s18ad

BT =
3asa + bg2d
4a + 3bg2 − CT, s18bd

CT = −
3ba2sg2 − 1d

s5a + 4bds5a + 4bg2d
. s18cd

In the nonrelativistic limitg→1, the results of Ref.[7]
are recovered as expected. In particular, the coefficientsD,
CV, CL, andCT vanish in this limit.

Secondly, we consider theA2 diagrams, where the quarks
and antiquarks are integrated out similarly to Eq.(7) but
where the different flavor-flux topology implies a different
momentum transfer. Effectively, this results in one delta
function less than for theR2 diagram. This will affect the
angular dependence and selection rules as will be seen
shortly.

We take into account two types ofA2 diagrams—one in
which bothq̄6q3 and q̄5q2 pairs in Fig. 1(b) annihilate into a
3S1 state, while in the other diagram theq̄6q3 pair annihilates
into the “vacuum”3P0 state and theq̄5q2 pair annihilates into
the “gluon” 3S1 state followed by the creation of aq̄58q28
pair. We do not take into account the double3P0 annihilation
since the resulting operator is of the orderOfsp /md3g. The
integrals for the two cases are
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T̂A2S 3P0
3S1

,
3S1
3S1

D = NE dp1dp2dp3dp4dp5dp6dp18dp28dp48dp58dsp18 + p58 − Pp−ddsp28 + p48 − Pp+ddsp1 + p2 + p3 − Ppd

3dsp4 + p5 + p6 − Pp̄ddsp6 + p3 + p1 − p18ddsp28 + p58 − p2 − p5ddsp48 − p4d

3 expH−
1

4b
Fsp18 − p58d

2 + sp28 − p48d
2 + S 1

g2 − 1Dhfsp28 − p48d · P̂pg2 + fsp18 − p58d · P̂pg2jGJ
3 expH−

1

2a
So

i=1

3 Spi −
1

3
PpD2

+ o
i=4

6 Spi −
1

3
Pp̄D2DJV̂A2S 3P0

3S1

,
3S1
3S1

D . s19d

The two cases differ only in the operatorsV̂A2 according to
the type of annihilation mechanisms used:

V̂A2S 3P0
3S1

D = lA2Pfs63 · sp6 − p3dgfs52 · s2858g, s20d

V̂A2S 3S1
3S1

D = lA2Sf− 2 s63 ·p1 + iss181 3 s63d · sp1 − p18dg

3fs52 · s2858g. s21d

The square brackets above indicate the two exchanges
present in theA2 diagram in Fig. 1(b). The notation is the
same as for theR2 diagrams. The strength parameters forA2
mechanisms arelA2P andlA2S.

Following Fig. 1(b), momentum is transferred from the
annihilatedq̄6q3 pair to quarkq1 (but can also be transferred
to q̄4) and from theq̄5q2 pair to the created pairq̄58q28. In r
space theA2 transition operators for the mixed3P0 and 3S1
vertices are

T̂A2S 3P0
3S1

D = Nfs ·¹R8 + sAV + BVdis ·Rg 3 ds3R/2

− R8dexphsB + DdR2j s22d

and for two3S1 annihilation vertices

T̂A2S 3S1
3S1

D = Nfs ·¹R8 + sAL + BLdis ·R + sAT + BTds ·Rg

3 ds3R/2 − R8dexphsB + DdR2j. s23d

For convenience the relativistic termsBV, BL, BT in the spin
coefficients andD in the exponent are written separately
from the corresponding nonrelativistic termsAV, AL, AT, and
B. All are listed explicitly below.

It is a striking feature of theA2 amplitudes that they de-
pend solely on the relative proton-antiprotonR vector but
not on the relative orientation ofR andR8. This result is an
implicit consequence of Fourier transforming theA2 ampli-
tudes to r space, which yields a delta functionds3R /2
−R8d. One does obtain additional terms due to the relativistic
corrections in the pion wave functions, yet these are simpler
than for theR2 diagrams, and they do not introduce extra
angular dependence. Again certain terms, namely,D, BV, BL,
andBT, are energy dependent via the boost factorg. In par-

ticular, the exponential factorD is very large(for g.7 it is
about 15 times larger thanB) and acts like a short-range
angle-independent cutoff.

Since theA2 diagrams were not discussed in previous
work [7], we take the opportunity to analyze their symmetry
properties. Taking into account spin-flavor and color matrix
elements, the amplitudes in Eqs.(22) and (23) are identical
for the permutation of theA2 diagram[Fig. 1(b)] in which a
3P0 or 3S1 state resulting from theq̄6q3 annihilation is ex-
changed withq̄4 rather than withq1. This means that the

complete form ofT̂A2
tot. remains as in Eqs.(22) and (23) and

that T̂A2s3P0/ 3S1d and T̂A2s3S1/ 3S1d are odd in R and R8.
Because of the delta functionds3R /2−R8d all A2 operators,
regardless of the annihilation mechanisms employed, act in
slppÞ l p̄pd Jp=0+,1−,2+,3−,4+,5−, . . . waves.

We end this section with the expressions for the coeffi-
cients of the transition amplitudes(22) and (23):

B = −
3s28a2 + 36ab + 9b2d

8s4a + 3bd
, s24ad

D = − 9bsg2 − 1dH1 +
4a2

s4a + 3bds4a + 3bg2dJ ,

s24bd

AV =
3s12a2 + 14ab + 3b2d

2s4a + 3bd
, s25ad

BV =
3bsg2 − 1d

2
H1 +

4a2

s4a + 3bds4a + 3bg2dJ , s25bd

AL =
3s2a + bd

2
, s26ad

BL =
3bsg2 − 1d

2
, s26bd

AT = −
6asa + bd
4a + 3b

, s27ad
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BT = −
6a2bsg2 − 1d

s4a + 3bds4a + 3bg2d
. s27bd

Clearly,D, BV, BL, andBT vanish in the nonrelativistic limit
g→1.

IV. GEOMETRIC INTERPRETATION

It is important to understand the geometric implications of
deformed pion wave functions as required by relativity and
their relation to thep̄p annihilation range. In Sec. I we recall
that in a previous(nonrelativistic) attempt to explain the
LEAR data onp̄p→p−p+ [2], an increase of proton, antipro-
ton, and pion radii effectively augments the range of the

transition operatorsT̂R2 andT̂A2. It is therefore surprising that
one can obtain any improvement from the Lorentz contrac-
tion of pions. After all, we shrink the intrinsic pion wave
function in the boost direction, which amounts to less over-
lap of the quark and antiquark wave functions. The graphic
description in Fig. 2 visualizes this. The two intrinsic pion
wave functions are plotted at a fixed distanceuR8u from each
other and the centers of the(also Gaussian) proton and anti-
proton intrinsic wave functions are separated by a distance
uRu. One sees that, when the pion wave functions are Lorentz
contracted in the c.m., the overlap of pions, proton, and an-
tiproton (and of a transition operator depending on the anni-
hilation mechanism, which we omit here for simplicity) de-
creases considerably and so does their contribution to the
annihilation amplitude. Since the total probability is con-
served, the Gaussian wave functions of the pions are peaked
higher in the lower graph.

As discussed in Sec. III, theR2 transition operators ac-
quire new terms which introduce additional angular depen-
dence. The effect of theD term in Eqs.(10) and (11), for
example, is strongly angle dependent—forR parallel or an-

tiparallel toR8, theR range ofT̂R2 is drastically reduced due
to large D values, whereas forR'R8 this cutoff effect is
absent. This angular dependence is schematically depicted in
Fig. 3, whereR8 andR have fixed magnitudes. ForR'R8
in the top panels one sees that even though the pions are
Lorentz contracted, each pion still overlaps with thep̄p pair
as in the nonrelativistic case. This overlap vanishes at small
anglesu (see lower panels in Fig. 3) and atu=0su=pd when
R8 is (anti)parallel toR. This illustrates that the angle depen-
dence of the overlap in the relativistic and nonrelativistic
cases are quite different. That the least overlap occurs for

R i R8 is expressed in the transition operatorsT̂R2 by the
DR2cos2u term in the exponent of Eqs.(12)–(14). The over-
lap is minimal at these angles as are the resulting amplitudes

T̂R2.
The angular momentum content of the scattering matrix

elementsTJ is obtained by sandwiching the transition opera-
tors between the initial-statep̄p and the final-statep−p+

wave functions,

TJ =E dRdR8Fpp
J sR8dT̂R2/A2sR,R8dCp̄p

J=l±1sRd, s28d

whereFpp
J sR8d andCp̄p

J=l±1sRd still contain the usual angular
dependence in the form of appropriate spherical harmonics.

Therefore, additional angle-dependent terms inT̂R2/A2sR ,R8d
enhance the contribution of higher angular momentaJ. The
resulting increase of contributions to higher partial wavesJ
ù1 is the main reason for a better description of the experi-
mental data. We will give numerical evidence for this in
another communication[20]. A partial wave analysis of the
integral in Eq.(28) will show that the richer angular depen-

FIG. 2. The first graph shows a two-dimensional projection of
the spherical intrinsic pion wave functions(solid lines) given by Eq.
(1) and (anti)proton wave functions(dashed lines) of Eq. (2). The
distance between the peaks of the solid-line Gaussians represents
the relative pion coordinateR8=Rp−−Rp+ whereas the distance be-
tween the peaks of the dashed-line Gaussians is the relativep̄p
coordinateR=Rp̄−Rp. The distances remain the same in both
graphs. However, in the second graph the boosted intrinsic pion
wave function, given by Eq.(5) with g=7, is contracted in the boost
direction.

FIG. 3. Sketch of the overlap in the reactionp̄p→p−p+ in the
c.m. system at two different anglesuc.m. between the incomingp̄p
and the outgoingpp pairs. In the left column, the pions are Lorentz
contracted, while in the right column they are described by spheri-
cal wave functions. One sees that the angular dependence of the
overlaps at the same distancesR8 and R strongly differs in the
relativistic and nonrelativistic cases.
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dence of theR2 transition operators considerably increases
contributions to partial wavesJ=2 and higher.

V. LORENTZ TRANSFORMATION OF (ANTI)QUARK
SPINORS

So far, we have solely treated the Gaussian part of the
pion intrinsic wave functions. Ans-wave pion wave function
in momentum space, omitting flavor and color components,
is given by

cpspi,p jd = Nps4p/bd3/2dspi + p j − Ppd

3 uspidvsp jdexpF−
1

2b
o
a=i,j

Spa −
1

2
PpD2G .

s29d

The momentapi andp j denote the antiquark and quark, re-
spectively,Pp is the pion momentum,b is the parameter that
determines the size of the pion, anduspid andvsp jd are the
usual quark and antiquark Dirac spinors for particles with
spin s= 1

2,

usp,msd = 1
ÎE + m

s ·p
ÎE + m

2xms
, s30ad

vsp,msd = 1 s ·p
ÎE + m

ÎE + m
2x−ms

s− d1/2−ms, s30bd

or in terms of helicity spinors

usp,ld = 1
ÎE + m

2pl

ÎE + m
2xlsp̂d, s31ad

vsp,ld = 1 − 2pl

ÎE + m

ÎE + m
2x−lsp̂ds− d1/2−l. s31bd

Our approach differs from that of Maruyamaet al. [15],
who use an approximation of the 1s quark wave function in
the MIT bag inr space as introduced in Refs.[16,17]. In Ref.
[15] the quark wave function is

cqsr id = fR0
3p3/2s1 + 3z2/2dg−1/2 3 exph− r i

2/2R0
2j1 1

iz
s · r i

R0
2x,

s32d

whereR0 is the size parameter, which can be related to the
bag radius. The parameterz determines the probability that
the quark is in thelower component of the Dirac spinor, and
is referred to as the small relativistic component of the wave
function. The value ofz in the bag model has been estimated
to be 0.36 for zero quark mass. The authors of Ref.[15] also

Lorentz transformed the Gaussian part of the wave function
in Eq. (32) into the c.m. but did not apply this transformation
to the spinor. In their analysis, Maruyamaet al. found that
the small relativistic components have little influence on the
predictions of relative ratios ofp̄p annihilation amplitudes
into mesons. The effect of including the Lorentz contraction,
on the other hand, is to enhance the production of two pions.

In Sec. III, the momentum space transition operators in
Eqs.(10), (11), (22), and(23) were calculated making use of
just the Gaussian part of the wave function of Eq.(29). In the
present section we investigate how Lorentz boosts of quark
spinors in the pion wave function of Eq.(29) affect these
calculations.

Again, in the pion rest frameSp the quark four-
momentum isp, while in the c.m. frameSc.m. of the reaction
p̄p→p−p+ the quark four-momentum isp8. They are related
by the inverse Lorentz transformationl−1; l−1sbd as follows:

p8 = l−1p. s33d

Here,b=v /c is a vector along the pion momentumPp.
Helicity states in frameSp are denoted byup ,llSp

while
in the c.m. frameSc.m. they areup8 ,l8lSc.m.

. The two sets of
states are related by

up8,l8lSc.m.
= Usl−1dup,llSp

, s34d

whereUsl−1d is a unitary operator effecting the inverse Lor-
entz transformation. It can be shown for any Lorentz trans-
formation l that the operation ofUsld on the stateup ,ll is
equivalent to a rotationrsl ,pd in spin space. For a detailed
derivation of Lorentz transformations of helicity states, see,
for instance, Ref.[18]. The rotationsrsl ,pd that yield the
c.m. statesup ,llSc.m.

are the Wick helicity rotations. With the
appropriate s2s+1d-dimensional matrix representation
Dll8

s frsl ,pdg wheres= 1
2 is the spin of the(anti)quark, one

can rewrite Eq.(34) as

up,llSp
→
l−1

up8,l8lSc.m.
= Dml8

s frsl,pdgul−1p,mlSp
. s35d

A sum over m is implied. The quark wave functions are
obtained from

k0ucsxdup,ll =
1

Î2p
usp,lde−ipx, s36d

where csxd is the quark Dirac field. The correspondence
up ,ll↔usp ,ld between the physical state and its wave func-
tion realization yields the desired Lorentz transformation of
the Dirac spinor

usp8,l8dSc.m.
= Dll8

s srdusl−1p,ldSp
, s37ad

and similar arguments lead to

vsp8,l8dSc.m.
= Dll8

s sr−1dvsl−1p,ldSp
. s37bd

For the general case of a boost of the axeslsbd, with b
=sb ,ub ,fbd, the matricesDll8

s are
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Dll8
s = eihsl8−lddll8

s suwd, s38d

whereh is a function of the anglesub andfb and the Wick
angleuw [18] is given by

cosuw =
g

p8
sp + bE cosdd. s39d

Here,E=Îp2+m2 is the energy of one(anti)quark as in Eqs.
(30a) and (30b), g=Ec.m./2mp, p= upu, p8= ul−1pu, and 0ød
øp is the angle betweenp andb, defined by

cosd =
b ·p

bp
=

Pp ·p

Ppp
. s40d

For Lorentz boostslzsbd, for which thez axis is alongPp

in the c.m. system andub=fb=h=0, the expression in Eq.
(38) simplifies to

Dll8
s = dll8

s suwd. s41d

Sinces= 1
2, only two matrix elements are required[19]:

d1/2,1/2
1/2 suwd = cos

uw

2
=Î1

2
+

1

2
cosuw

=Î1

2
+

g

2p8
sp + bE cosdd, s42ad

d−1/2,1/2
1/2 suwd = sin

uw

2
=Î1

2
−

1

2
cosuw

=Î1

2
−

g

2p8
sp + bE cosdd. s42bd

This means that the quark helicity spinors inSc.m. are ex-
pressed in terms of Dirac spinors inSp as

usp8,l8d = 1
ÎE + m

ul−1pu
ÎE + m

2x1/2sp̂8dd1/2,l8
1/2 suwd

+ 1
ÎE + m

− ul−1pu
ÎE + m

2x−1/2sp̂8dd−1/2,l8
1/2 suwd s43ad

and similarly for the antiquark spinors,

vsp8,l8d = 1− ul−1pu
ÎE + m

ÎE + m
2x−1/2sp̂8ddl8,1/2

1/2 suwd

− 1 ul−1pu
ÎE + m

ÎE + m
2x1/2sp̂8ddl8,−1/2

1/2 suwd. s43bd

To obtain the above expression for antiquark spinors the
property dll8s−uwd=dl8lsuwd has been used. Note that the
spinors now depend onTlab via the relativistic factorg
present in Eqs.(42a) and (42b) as well as in the Lorentz
boostl−1.

VI. RELATIVISTIC SPINOR CORRECTIONS TO R2 AND
A2 DIAGRAMS

Having shown in Sec. III how the Lorentz transformation
of the spatial part of the intrinsic pion wave function alters
the annihilation operators, we will now discuss the effect on
the operators due to modifications in the spinors of the final
quarks i =18 ,28 and antiquarksi =48 ,58. The A2 and R2
spin-matrix elements read schematically

MS= o
hlij=−1/2

+1/2

kfs18s58gsp=0u ^ kfs28s48gsp=0u

3 V̂R2/A2ufs1s2s3gsp=1/2l ^ ufs4s5s6gsp̄=1/2l, s44d

whereV̂R2/A2 is either one of the four operators introduced in
Eqs.(8), (9), (20), and(21). As before, we neglect relativistic
corrections to thep̄p wave functions; hence, only the final
quark and antiquark helicity states are Lorentz transformed.

Note that the operatorsV̂R2/A2 mentioned above are in the
c.m. frame, where they act between initial- and final-state
spin wave functions.

In the derivation of the transition operators in Eqs.(8),
(9), (20), and(21), only leading order terms inp were kept.
Here the same strategy is followed: we make use of Eqs.
(43a) and (43b) but we do apply these boosts to the Pauli
spinors in the pions, each consisting of a quarki and anti-
quark j with spin statesusimil andusjmjl (with corresponding
helicitiesli andl j) andmi Þmj = ±1/2:

usp = mp
z = 0l =

1
Î2

susimil ^ usjmjl − usimjl ^ usjmild.

The Pauli spinors in the c.m. frame are expressed in terms of
the Pauli spinors inSp by

xl8sp̂8d = d1/2,l8
1/2 suwdx1/2sp̂8d + d−1/2,l8

1/2 suwdx−1/2sp̂8d

s45ad

for particles and

xl8sp̂8d = dl8,1/2
1/2 suwdx1/2sp̂8d + dl8,−1/2

1/2 suwdx−1/2sp̂8d

s45bd

for antiparticles.

The Pauli matricess in the transition operatorsV̂R2/A2 act
on the boosted spinorsxl

i , with i =18 ,28 ,48 ,58. The spin-

matrix elements pertinent to theV̂R2/A2 operators are thus
modified since the rotation matrix elementsd±1/2,1/2

1/2 suwd in
Eqs.(42a) and(42b) come into play. We make use of the fact
that in the c.m. frame the transverse components of the quark
momenta are much smaller than the component along the
boost direction(from now on we refer only to the quark but
the discussion is identical for the antiquark). We can thus
approximate

ul−1sbdpu = Îp'
2 + g2spi + bEd2 . gsp · P̂p + bEd, s46d

which we write asp8.gsp cosd+bEd. This approximation
is valid except for a small region where cosd=−bE/p. With
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this, the following approximation for the matrix elements
d±1/2,1/2

1/2 suwd holds:

d±1/2,1/2
1/2 suwd .Î1

2
±

1

2

p + bE cosd

p cosd + bE
. s47d

The numerator and denominator in Eq.(47) are very similar
and the matrix elementsd±1/2,1/2

1/2 suwd are functions ofb rather
than ofg.

To illustrate the role of the cosd term in Eq. (47), we
consider two cases cosd= ±1, i.e., for which the quark mo-
mentum is parallel or antiparallel to the boost directionb.
Recall that for cosd= ±1, of course,p, vanishes, in which
case Eqs.(46) and (47) are exact.

The following relationships exist between helicity and
momentum orientation of a quark in the c.m. frame:

If cos d = + 1H d1/2,1/2
1/2 suwd = 1,

d−1/2,1/2
1/2 suwd = 0.

s48d

In other words, if the quark momentum in the pion rest frame
is aligned with the boost direction, then helicity is conserved
under the boost. In this case there is no Wick rotation and
uw=0. Of course the momentump8 and boost vectorb will
also be parallel in the c.m. frame.

However, if momentum in the pion rest frame is antipar-
allel to the boost directionb then helicity in the c.m. frame
can flip, as seen from Eq.(49) and nowuw=p.

If cos d = − 1H d1/2,1/2
1/2 suwd = 0,

d−1/2,1/2
1/2 suwd = 1.

s49d

The relativistic effect described in Eqs.(48) and(49) can
be interpreted as follows. Assume a quark inside the pion
with a given helicity and its momentum oriented antiparallel
to the boost directionb. For very large boosts, an observer in
the c.m. system perceives a reversed quark momentum. As
the spin direction is not changed, this implies a flipping of
the helicity in the c.m. frame, which confirms that for
cosd=−1 the matrix elementd1/2,1/2

1/2 suwd is zero whereas
d−1/2,1/2

1/2 suwd is 1 as seen in Eq.(49). On the other hand, if the
quark momentum in the pion frame is parallel withb, then
helicity will not flip, as the quark momentum in the c.m. is
still seen in the boost direction andd−1/2,1/2

1/2 suwd must be zero
in agreement with Eq.(48). Hence, helicities can flip from
one reference frame to the other depending on the initial
orientation of the quark momentum with respect to the boost
direction.

For intermediate angles −1øcosdø +1, Eqs.(45a) and
(45b) describe the degree of helicity flip due to the change of
reference frame. Since the rotation matrices are proportional
to b, the relativistic effects from the spinors tend to be much
smaller than those from the spatial components discussed
previously in Sec. III.

VII. CONCLUSION

In this paper, the effects of Lorentz transformations on
intrinsic pion wave functions in the reactionp̄p→p−p+ are
investigated. This is done within the framework of a con-
stituent quark model used previously[2,7,8] to describe
ds /dV and A0n data of this reaction. The Lorentz transfor-
mations are effected on both the spatial part as well as the
quark spinor components in the intrinsic pion wave func-
tions. We find that the coordinate-space wave function is
strongly contracted along the boost direction, and that the
spatial part of the annihilation amplitudes depends ong and
g2. The spinors are modified by Wick rotations and the rela-
tivistic effects due to spin are therefore proportional tob
rather than to the boost factorg.

In addition to the nonplanar quark rearrangement dia-
gramsR2, we also compute the transition operators originat-
ing from the planarA2 diagrams for pure3S1 as well as a
mixture of 3S1 and3P0 annihilation mechanisms.

The nonrelativistic annihilation operator for the nonplanar
R2 diagrams was given in Ref.[7]. In this paper, we obtain
new terms in the operator that affect its range and introduce
additional angular dependence. The dependence on the c.m.
energyÎs is now manifest via the relativistic boost factorg.
Most of the new relativistic factors are considerably larger
than the nonrelativistic ones. Therefore, the geometry of the
annihilation amplitudes is drastically modified. Nonetheless,
the selection rules described in Ref.[7] are preserved. The
A2 amplitudes are simpler than theR2 amplitudes, and they
depend only on the relative distance of the proton and anti-
proton.

We will show [20] that the modifications in the annihila-
tion amplitudes, due to relativistic considerations, strongly
improve the description of the cross section and analyzing
power as measured at LEAR[1]. Therefore with a relativistic
treatment one obtains a description of the reactionp̄p
→p−p+ similar to or better than with thead hocincrease of
the particle radii which was the approach in Ref.[7].
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