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Relativistic treatment of pion wave functions in the annihilation pp— 7=~ #*

B. El-BennicH and W. M. Kloet
Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-8019, USA
(Received 16 March 2004; published 15 September 004

Quark model intrinsic wave functions of highly energetic pions in the reaqipn = 7+ are subjected to
a relativistic treatment. The annihilation is described in a constituent quark modeA%iémdR2 flavor-flux
topology, and the annihilated quark-antiquark pairs aréH@ and Q’Sl states. We study the effects of pure
Lorentz transformations on the antiquark and quark spatial wave functions and their respective spinors in the
pion. The modified quark geometry of the pion has considerable impact on the angular dependence of the
annihilation mechanisms.
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[. INTRODUCTION the wider Gaussian wave functions provide in turn a larger
overlap of the quarks and antiquarks and therefore a larger
range of the annihilation mechanism. In fact, the radii in Ref.
Ir[2] were obtained in a fit talo/dQ) and Ay, data mentioned
above and are about 7% larger than the charge radii derived
. T ; . : from the electric form factors. This effect, along with a fine-
sisted a satisfying comparison with theoretical models. lr}uned final-state interaction of the™s* pair, improves the

particular, the observabled,, exhibits a characteristic i ! )
double-dip structure which is hard to reproduce. Anotherreproducnon of the observablels/d() and Ay, and in par

prominent feature of théy, data is a shift of the asymmetry g(gljlar of the double-dip structure of the latter one, consider-
from predominantly negative values at lower momenta to- Xs was pointed out in Ref2], there is another reason to
ward positive values at higher momenta. As already men; P .

tioned in[2,3], this indicates the presence of several partialbfalleve tha_t the geometry of t_he _fmal pions 1S relevan_t to
: : -~ higher partial wavegJ>1) contributions to the total ampli-
waves while most model calculatiorid—9] lead to ampli- -

tudes dominated by total angular momentds0 andJ=1. tude. At the center-of-mags.m. energiesys considered in

. — A .
The reason for this feature of all models is a rather shor[he LEAR experimenpp— 7", final pions are produced

range annihilation mechanism, driven either by baryonic exWIth kinetic energies much larger than the pion rest mass.

change in the channel[4—6,9 or by overlap of quark and Fhor exalmple, for an gntipiopz beam WMb:ﬁOO Me\l//c
antiquark wave functions of the proton and antiproton as ifn€ total ¢.m. energy i§; , = ys=2020 MeV. This translates

e 2 o
[7,8]. We should mention however that there is another iniNtO & relativistic factory=E./2m,c"=7.2. In the quark

teresting possibility of coupling, for exampld=2, 3 initial model, the pions are described by Gaussian spheres in the

. . - _ rest frame of each pion. Yet, the transition amplitudes and
NN states td. =0 intermediateNA, AN, or AA states, which implicitly the observables of thep— 7~ =" reaction are cal-

then can decay into mesons bY a shprt range annih”at.iqeulated in the c.m. frame. In the c.m. frame the outgoing
mechanism. This approach was investigated for total ann'h'bions, due to their large kinetic energy, will be shaped like

lation cross sections 10,11 but not pursued for differen- o aves This will alter the angular dependence of the an-

tial cross sectlo_ns. . nihilation mechanism.
One way to improve models would hence be to incréase 't mogdification of the pions, due to Lorentz trans-

the annihilation range. In Reff2], this problem is addressed formed Gaussian wave functions, was investigated previ-

within the framework of a constituent quark model. For 8ously by Maruyamaet al. [15] in the annihilation ofpp at-
summary of thepp annihilation in a quark mode_ll, see the oms at rest into two mesons. The authors of R&5] found
review by poveret al. [1,2]' In paper[?], the radii of th.e . that the two-pion production is enhanced upon including
Borentz contraction effects. However, only branching ratios
Mfere discussed, and the impact of these Lorentz contractions
on the angular dependence of the annihilaipn— 7~ =" at
positive energies remained unknown.

In this paper, we will show that the pion deformation

h del calculati his | in radius is directl affects the overlap of intrinsic pion, proton, and antiproton
the model calculations, this increase in radius is directly rey;,ye fynctions. It was in this spirit that in R¢2] the width

Iated.to the Gaussian de;cription of the intrinsic quarlf Wav&t the Gaussian wave function was increased not merely to
functions. In the overlap integral over the quark Coord'natesreproduce the measured charge radii, but also to mock up an
altered overlap of the quarks and antiquarks implied by rela-
tivistic considerations. In the following, we will carry out the
*Electronic address: bennich@physics.rutgers.edu Lorentz transformation which is a twofold task: the pions are

The LEAR experiments[1] on pp—# @ and pp
— K“K*, which yielded a large and very accurate dataset fo
differential cross sectiondo/d() and analyzing power8y,
from 360 to 1550 MeV¢, have until very recentl\2] re-

with the ones obtained from measurements of the respecti
electric form factorg13,14 rather than with the consider-
ably smaller constituentjqq and qq quark core radii. The
latter radii, which ignore the hadrongg) cloud, were used in
earlier attempts to reproduce the LEAR observabpfleg]. In
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smaller kinetic energy and larger mass of the nucleon and
antinucleon, their intrinsic distortions . ,, are ignored.

Returning to the pion, the antiquark and quark coordinates
rin S, are related to coordinates$ in S.,, according to the
inverse Lorentz transformatidh™t=1"%(8)]

r'=1""r. (3)

We split the quark and antiquark coordinates into compo-
nents parallel and perpendicular to the boost direction
a) b) B=vl/c, which is related to the relativistic boost facter
=(1-p%)Y2=E, ,,/2m,c% Hence, the parallel component of

FIG. 1. (a) Rearrangement diagraR2 and(b) annihilation dia- h f Tt bet ti K K pair in th
gramA2. The numbers with bars denote antiquarks, those withouE 'e Separatiom, —rs belween an antiquark-quark pair in the

bars the quarks, while the dashed lines represent the exchange RBien r_ESt fra,me IS r,elated to the one in the c.m. frame with
either the effective “vacuum®P,, or “gluon” 3S; state. coordinates ; andrg by

. , , , (ri=ro)f = Yri-ro)f. (4)

qq pairs described by the usual spinors of the free Dirac

equation times a radial Gaussian function to account for theiHere, we have used the equal time conditiprt; in the c.m.
confinement within the pion. Hence, the Lorentz transformaframeS; ,. These transformations can be applied straightfor-
tion is effected on both spin and Gaussian components of th&ardly to the spatial part of the pion wave functions. Insert-
wave functions. Using the relevant Feynman diagrams, wég the Lorentz contraction of Eq4) in Eg. (1), the pion
analyze the relativistic effects on the amplitudes and comwave function suppressing spin, isospin, and color depen-
pare them with previous resul]. In the following we refer ~dence becomes

to two-pion final states only, however all results derived in
this paper are also valid for the reactipp— K™K". (17 1, 17%r5) = N_exp| - [_32
, 2i=1,5
II. LORENTZ TRANSFORMED PION INTRINSIC WAVE X[(r; - Rw)i + y2(ri - Rw)f , (5
FUNCTIONS

The reactionﬁp.—> Tt is desc'ribe'd in the c.m. frame where 8 is in this case the size parameter aﬁq:%(rl
Scm. Therefore, given the large kinetic energy of the final-+r) is the pion coordinate. The new normalization factor
state pions, we must Lorentz transform each pion intrinsic&I =N, comes from the condition that Ep) be normal-
wave functions from the pion rest frangs to the c.m. frame ized to unity in the c.m. In Eq(5), the spatial distortion of

o e s o, D Pons I e . f e eacig— 7= llded o
P 9 the Introduction is shown explicitly.

the boost direction into an ellipsoid. We begin with an P
r-space realization of the pion wave functigg(r,,rs) and In p space the wave function is
first concentrate on its spatial component. In the pion rest- "lo. 1"00) = N_(47/8)32
frame ¢,(r;,rs) has the form Ul 7P1.1Pe) = N (4 )"y

X exp iz {(p = )2
wﬂ'(rlvrS) = NTreX _EE (ri - Rw)z 218i=l,5 I 2 i 1
2ic15 )
. . . l l
X xL(spin,isospin, color. (1) + ?<Pi - Epw) }}
I
Following the labeling of the first pion in Fig. 1, herg and 32
rg are the quark and antiquark coordinates, respectively. The = ﬁ(“_“) e p{— i[(pl — ps)?
coordinate of the pion iR .. All quark and antiquark masses Y2\ B 4B
are assumed to be equal. For the second pion the quark and 1 R
antiquark coordinates would g andr ,. + (— - 1)([p1 - Ps) - Pw)z} . (6)
The proton and antiproton are described in their respec- 'a
tive rest frames by similar Gaussian functions The momentap, and ps are the quark and antiquark mo-
3 menta, whileP_=p;+ps is the pion momentum which is
(I 1,1 2,7 3) = Npexp _52 (ri_Rp)Z parallel to the boost direction. With these Lorentz trans-
250 formed wave functions, we are now in the position to evalu-

ate the3S, and 3P, amplitudes taking into account the
boosted pions. We will consider two types of commonly used
wherer; are the quarkantiquark coordinates andr,, the  diagrams, therearrangement R and annihilation A2 dia-
nucleon (antinucleon coordinate. Because of the much grams as depicted in Fig. 1.

X xp(spin,isospin,color, (2
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RELATIVISTIC TREATMENT OF PION WAVE. ..

lll. EFFECTS OF DEFORMED PIONS ON THE
ANNIHILATION AMPLITUDES

With the Lorentz transformed pion intrinsic wave func-

tions, we can recalculate tAematrix elements of Ref$7,8]
for the annihilation reactiopp— = #*. Here, we will do
this first for theR2 diagramgwhich we used exclusively in
a previous papef2]). The transition operator§(3P0) and

PHYSICAL REVIEW C 70, 034001(2004)

T(SSl) are obtained from integrating out the quark and anti-
guark momenta. The momenta pf p, =, and 7+ will be
calledPy, Pg, P,-, andP .+, respectively. For th& diagram

of Fig. 1(a), the transition operators for tﬁé’o as well as the

331 case are obtained, using the quark and antiquark labeling
in diagram Fig. {a) and pion, antiproton, and proton wave
functions of Eq.(6) and the Fourier transform of E@2),
from the following integral:

%R2(3PO!3SL) =NJ dp1dp,dp3dp,dpsdpsdps dp, dp4dps S(P1r + Ps: = P o) (P2 + Par = Po+) 8(p1+ P2+ p3— Pp)

X 8(pa+ Ps+Pe— Pp)d(Ps+ P3+ P1—P1) (P2 — P2 8(Par —

1

X eXp{- @|:(p1’ ~ps)?+ (py = par)?+ (
1

X exp) - 5(2

i=1

where the overall normalizatiok” contains factors due to the
relativistic factory, the normalization factord;, N,, N, the
pion size parameteB, and the protor{antiprotor) size pa-
rametera.

The two mechanisms differ only in the operat&g@@Po)
and Vg,(®S,) stemming from the respective annihilation

mechanisms

\A/Rz(spo) = Nrop0s3° (Ps — P3), (8)

\A/RZ(sSl) =Nred ~ 20763 P1+i(0111 X 063 - (P~ P1r)].
9

Here Agop @nd \gos are strength parameters of the 2
mechanisms.

The exponential parts in E@7) originate in thep-space
component of the boosted pion wave functions of @gand
the baryonic(nonboosteg wave functions of Eq(2). The
spin-momentum dependency in E¢R) and(9) comes from
the computation of th&2 diagrams using the Dirac spinors.

1 )2 2 1 \2) -
(pi - épp) + % (pi - épﬁ) Vra(?Po, %)),

P4) 8(Ps’ — Ps)

)i; - 1){[(p2, ~pa) PP+ [(py —ps) - fmZ}H

(7

mechanism in Eq9) contains two terms, we split their con-
tributions conveniently into &ongitudinal and atransversal
part. It will be seen that they give rise to different selection
rules. The transition operator is thus

Tro(®S) =MALio R +Blioc-R+Cio-R'Rcosd

+Ao-R' +Bro-R+Cio-R)R cosd]
X exp{AR'?+ BR? + CRR cos 6 + DR?cos 6}
(11

The relative 7~ #* and antiproton-proton coordinates are
R'=R,-—R;+ andR=Rz—R,, respectively. The anglé is
between the relativer #* coordinateR’ and antiproton-
proton coordinatdR in the c.m. system. Compared with the
results of Ref[7], one observes the appearance of additional
terms in both transition operators, namely, théerm in the
exponent and th&€,, C,, and C; terms. These new terms
introduce manifest angular dependence. More precisely, the
boosted pion wave functions lead to additional angular de-
pendence in the form of quadratic cosine terms in the expo-

The indices on the Pauli matrices denote the spinor subspaggntials and linear cosine terms in the coefficients of the spin

in which they act. For instance, the antiquark-quark pgig
is annihilated and momentupy+pg is transferred from this
vertex to quarkg;.

After Fourier transform inta space, Eq(7) becomes for
the *P, mechanism

:|'R2(3Po) =iMAyo R’ +Byo-R+Cy(a-R')R cos ]
X exp{AR'? + BR? + CRR cos 6 + DR?cos'6}.
(10)

The various coefficients will be given below. Since fig

operators. Note that aside from the explicit nonlocality, the

transition operatordg,(°Py) and Tg,(®S;) are now energy
dependent via the Lorentz boost factorThis y dependence

is nontrivial, and affects the angular dependence of the tran-
sition operators in the sense that the various terms mentioned
above behave differently for increasing valuesyoflso, the
magnitude of these terms differs immensely depending on
whethery is small(y=1-2) or large(y=5-8). For largey

the D term dominates the exponential part and, for example,
Cy>Ay,By andC_ > A ,B,; however,Ct,At, andBy are of

the same order of magnitude.
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The above results for the transition operators are valid for 98(¥*-1) o?
the diagram in Fig. ). Summing over all possible permu- D=- 8 1+ (5a+ 48)(5a + 467 |
tations of Fig. 1a), where for exampl@;+pg is transferred
to quarkg, or one of the antiquarkg,,gs, yields the same (15d
symmetry properties as in Rgf], as expected. In particular,
the vacuumcoefficientsA,, By, and C,, add up such that
Teo(3Po) contributes only tol._.=0,2,4 dl- _ala+By)
R2 0 y (0] mr— b T an pp VT o (16a)
=1,3,5,... and hence acts inpp states with J7 4o+ 3By
=0*,2",4*,... waves. The longitudinal part of the transition
amplitude Tr,(°S;), with the coefficientsA_, B., and Cy,
bears the same symmetry properties and therefore acts in the B, = 3(a+ By))(5a+36Y) _ c.. (16b)
same waves as the “vacuum” mechanism. The transversal 2(4a + 3By
component withA, By, andCy, on the other hand, contrib-
utes tol .,=1,3,5,... andy=0,2,4,... andacts therefore
in pp states withJ’=1",3",57,... waves. co= 38(¥-1) s a? 16
The complete form of th&2 transition operators for the v 2 (5a+4B)(5a+ 4872 |’ (160
va<:uum3P0 amplitude when summing over all permutations
is
~ AL == AV! (17a)
T9(3P,) =iMAye - R’sinh(CR -R’)
+Byo R cosHCR -R’)
v ) B = 9(a+ ByP)? _c (17b)
+Cy(o-R")Rcosd cosiHCR -R’)] LT 2(4a+38y2)
X exp{AR’? + BR? + DR?cos 6}. (12
The total®S; amplitude for the longitudinal component is C = 38(¥-1) 1- o? (170
given by - 2 (Ba+4B)(5a+4B¥) |’
T9(®s) =iMA o -R'SinC R -R’)
+B o -R cosHC R -R’) Ar==2Ay, (183
+C (o - IQ’)R cosf cosHC R -R')]
X exp{AR’? + BR? + DR?cos 6} (13 Salat By) _ C (18b)
T 4a+ 3,872 T
and
- 20,2 _
Tre(*S]) = MAro - R'cost{C R -R') oz B ZD (189
. (5a+4p)(5a + 4B¥?)
+Bro-RsinCR-R’)
. In the nonrelativistic limity— 1, the results of Ref[7]
+Cr(o-R’)Rcosgsinf(CR-R')] are recovered as expected. In particular, the coefficiBnts
X exp{AR’2 + BR2 + DR?co<0} (14) Cy, C., andCy vanish in this limit.

for the transversal component.

The explicit expressions for the coefficients of Egs.

(12~(14) are

__ al5a+4y)
T 24+ 38D’ (153
__3(7a”+18aBy* + 9%
B= 8(4a + 3879 D. (155
__3ala*By)
c= 2(4a+ 3By’ (159

Secondly, we consider th&2 diagrams, where the quarks
and antiquarks are integrated out similarly to Ed@) but
where the different flavor-flux topology implies a different
momentum transfer. Effectively, this results in one delta
function less than for th&2 diagram. This will affect the
angular dependence and selection rules as will be seen
shortly.

We take into account two types #2 diagrams—one in
which bothgggs andgsg, pairs in Fig. 1b) annihilate into a
381 state, while in the other diagram thggs pair annihilates
into the “vacuum”SPo state and thesg, pair annihilates into
the “gluon” 381 state followed by the creation of @/qy
pair. We do not take into account the douBigy annihilation
since the resulting operator is of the ord@f(p/m)%]. The
integrals for the two cases are

034001-4
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F (—3P°

A2\ 3
S,

s

3

’

X 8(pa+ Ps+ Pe— Pp)dps+ P+ P1—P1)

p{ 1
X exp) ——

|:(p1’ = Ps)?+ (P = par)?+ (

PHYSICAL REVIEW C 70, 034001(2004)

) =N f dp,dp,dp3dp,dpsdpsdpy dp2 dp, dps S(pyr + Ps = Po-) (P2 + par = Po+) 8(py + P2+ p3— Pp)

(P2 + Psr = P2~ Ps) APar = Pa)

1){[(102, —pa) P2 +[(py —ps) - 157]2}”

4B 'a
1 1 \2 1 \3\ (. (%P @
X ex —Z{(z(pi—épp) +§<Pi‘§Pﬁ) )}VAZ(s_Sf’ %) (19)

The two cases differ only in the operatO;’ﬁz according to
the type of annihilation mechanisms used:

R 3
U

3
VA2(3_Z) =Na2d = 2 063 P11 +i(011 X 063) - (P1— P1r)]

I:’O
s

) =Nazpl 063" (Ps— P3) [ 052 025/ ],  (20)

X[osy- 03r5/]. (21

The square brackets above indicate the two exchang
present in theA2 diagram in Fig. {b). The notation is the
same as for th&2 diagrams. The strength parametersAar
mechanisms ar&,,p and\ pos.

Following Fig. Xb), momentum is transferred from the
annihilatedgggs pair to quarkg; (but can also be transferred
to g,) and from thegsg, pair to the created pabs/qy. In r
space theA2 transition operators for the mixé@o and3Sl
vertices are

%AZ(
-R")exp{(B+D)R?}

and for two®S; annihilation vertices
3

Tl

3

°p
3_81) =Mo - Vg + (A, +By)io-R] X 83R/2

(22)

):-/\/[(T'VR’ +(AL+B)io-R+(Ar+By)oR]

X 8(3R/2 -R")exp{(B + D)R?}. (23)

For convenience the relativistic terr8g, B, B in the spin
coefficients andD in the exponent are written separately
from the corresponding nonrelativistic terg, A, A1, and

B. All are listed explicitly below.

It is a striking feature of thé\2 amplitudes that they de-
pend solely on the relative proton-antiprotBhvector but
not on the relative orientation & andR’. This result is an
implicit consequence of Fourier transforming tA2 ampli-
tudes tor space, which yields a delta functiof(3R/2

—-R’). One does obtain additional terms due to the relativistic

e

ticular, the exponential factdd is very large(for y=7 it is
about 15 times larger thaB) and acts like a short-range
angle-independent cutoff.

Since theA2 diagrams were not discussed in previous
work [7], we take the opportunity to analyze their symmetry
properties. Taking into account spin-flavor and color matrix
elements, the amplitudes in Eq22) and(23) are identical
for the permutation of thé2 diagram[Fig. 1(b)] in which a
3p, or °S, state resulting from thejgs annihilation is ex-
changed withg, rather than withg;. This means that the

cSompIete form ofT'% remains as in Eqg22) and (23) and

that Ta(3Py/3S)) and Ta(®S,/%S)) are odd in R and R’.
Because of the delta functiaf(3R/2-R’) all A2 operators,
regardless of the annihilation mechanisms employed, act in
(Ipn#l5p) J7=0%,17,2%,37,4%,57,... waves.

We end this section with the expressions for the coeffi-
cients of the transition amplitud€g2) and (23):

corrections in the pion wave functions, yet these are simpler

than for theR2 diagrams, and they do not introduce extra
angular dependence. Again certain terms, naniglB,, B,
andBr, are energy dependent via the boost fagton par-

__3(284°+ 3628+ 9p?)
- 8(4a + 3p) ’ (243
4a?
D=9 = D\ G ar 35 |
(24b)
_ 3(12a% + 14apB + 3%
Av= 2(4a+3p) ’ (259
_3B(¥2-1) 407
Bv= 2 {l " (4a + 3B)(4a + 387 } (250
32«
A= %. (269
B, = —3B(y;_ v (26b)
__6a(a+p)
T 4a+38° (273
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Relativistic Non-relativistic

FIG. 3. Sketch of the overlap in the reactipp— 7 7" in the
c.m. system at two different angles ,, between the incomingp

FIG. 2. The first graph shows a two-dimensional projection ofand the outgoingr pairs. In the left column, the pions are Lorentz
the spherical intrinsic pion wave functioolid lineg given by Eq.  contracted, while in the right column they are described by spheri-
(1) and (antproton wave functiongdashed linesof Eq. (2). The  cal wave functions. One sees that the angular dependence of the
distance between the peaks of the solid-line Gaussians represenjgerlaps at the same distancRé and R strongly differs in the
the relative pion coordinate’ =R ,-—R .+ whereas the distance be- relativistic and nonrelativistic cases.
tween the peaks of the dashed-line Gaussians is the relpfive

coordinateR=Ry—R,. The distances remain the same in both . . .
. S As discussed in Sec. lll, thB2 transition operators ac-
graphs. However, in the second graph the boosted intrinsic pion

function. given by Eq5) with =7, i tracted in the boost quire new terms which introduc_e additional angular depen-
\évi?gfti::.c lon. given by Eq3) with y=7, Is contracted in the boos dence. The effect of th® term in Eqs.(10) and (11), for

example, is strongly angle dependent—Rparallel or an-

6a28(12 - 1) tiparallel toR’, theR range ofTg, is drastically reduced due
- ) (27b) to large D values, whereas foR L R’ this cutoff effect is

(4a +3pB)(4a + 3BY°) absent. This angular dependence is schematically depicted in
Fig. 3, whereR’ andR have fixed magnitudes. Fé&t L R’
in the top panels one sees that even though the pions are
Lorentz contracted, each pion still overlaps with thepair
as in the nonrelativistic case. This overlap vanishes at small
anglesé (see lower panels in Fig.))&nd atd=0(6=) when
R’ is (antiparallel toR. This illustrates that the angle depen-

It is important to understand the geometric implications ofdence of the overlap in the relativistic and nonrelativistic
deformed pion wave functions as required by relativity andcases are quite different. That the least overlap occurs for

their relation to thepp annihilation range. In Sec. | we recall R |R" is expressed in the transition operaté‘r@ by the
that in a previous(nonrelativistig attempt to explain the pR2cogg term in the exponent of Eqg12)—(14). The over-

LEAR data onpp— 7~7" [2], an increase of proton, antipro- |ap is minimal at these angles as are the resulting amplitudes
ton, and pion radii effectively augments the range of the“l.

.. - o . .. R2
transition operator§g, andT .. It is therefore surprising that  The angular momentum content of the scattering matrix
one can obtain any improvement from the Lorentz contracelementsT is obtained by sandwiching the transition opera-

tion of pions. After all, we shrink the intrinsic pion wave tors between the initial-statpp and the final-stater 7
function in the boost direction, which amounts to less overaye functions,

lap of the quark and antiquark wave functions. The graphic

description in Fig. 2 visualizes this. The two intrinsic pion J_ rdd (BT Mappd=lEl

wave functions are plotted at a fixed distafigé| from each T _JdeR Pra(R)Troma(RR)W ™ (R), - (28)
other and the centers of titalso Gaussianproton and anti- I ey J=l41 , .

proton intrinsic wave functions are separated by a distanc¥here®z(R") and W= (R) still contain the usual angular
IR|. One sees that, when the pion wave functions are Lorentdependence in the form of appropriate spherical harmonics.
contracted in the c.m., the overlap of pions, proton, and anTherefore, additional angle-dependent term¥4pa(R,R’)
tiproton (and of a transition operator depending on the annienhance the contribution of higher angular momeht&he
hilation mechanism, which we omit here for simpligitye-  resulting increase of contributions to higher partial wades
creases considerably and so does their contribution to the 1 is the main reason for a better description of the experi-
annihilation amplitude. Since the total probability is con- mental data. We will give numerical evidence for this in
served, the Gaussian wave functions of the pions are peakeshother communicatiof20]. A partial wave analysis of the
higher in the lower graph. integral in Eq.(28) will show that the richer angular depen-

T =
Clearly, D, By, B, andBt vanish in the nonrelativistic limit

y—1.

IV. GEOMETRIC INTERPRETATION

034001-6
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dence of theR2 transition operators considerably increased orentz transformed the Gaussian part of the wave function
contributions to partial wave3=2 and higher. in Eq.(32) into the c.m. but did not apply this transformation
to the spinor. In their analysis, Maruyanea al. found that
the small relativistic components have little influence on the
V. LORENTZ TRANSFORMATION OF (ANTI)QUARK predictions of relative ratios opp annihilation amplitudes
SPINORS into mesons. The effect of including the Lorentz contraction,
an the other hand, is to enhance the production of two pions.

PR : : : In Sec. Ill, the momentum space transition operators in
pion intrinsic wave functions. As-wave pion wave function ' :
in momentum space, omitting flavor and color componentsEqS'(lo)’ (1D, (22), and(23) were calculated making use of

is given by just the Gaussian part of the wave function of E29). In the

present section we investigate how Lorentz boosts of quark
¥ (pip)) = N, (47! B)%?8(p; + p;—P,) spinors in the pion wave function of Eq29) affect these
)2} calculations.

So far, we have solely treated the Gaussian part of th

Again, in the pion rest frameS, the quark four-
momentum i, while in the c.m. frames, ,, of the reaction
(29) pp— 7 7" the quark four-momentum ig'. They are related
by the inverse Lorentz transformatitrt=1"%(8) as follows:
The momentg; andp; denote the antiquark and quark, re-
spectively,P_ is the pion momentuny is the parameter that p'=1"p. (33
determines the size of the pion, antp;) anduv(p;) are the
usual quark and antiquark Dirac spinors for particles with

1 1
X u(pi)v(p;)exp{— EZ_(pa -5P
a=i,|

Here, B=v/c is a vector along the pion momentury.
Helicity states in frameS, are denoted byp,\)s while

. _1 o
SPINS=2, in the c.m. frameS, , they are|p’,\)s_ . The two sets of
VE+m states are related by o
up,m)={ o-p |xm, (309 P’ A, = Ul N)s L (39)
VE+m m

whereU(I7Y) is a unitary operator effecting the inverse Lor-
entz transformation. It can be shown for any Lorentz trans-

o -
J P o formation| that the operation otJ(I) on the statdp,\) is

v(p,mg) =| VE+m X—ms(‘) s, (30b) equivalent to a rotatiom(l,p) in spin space. For a detailed
VE+m derivation of Lorentz transformations of helicity states, see,

for instance, Ref[18]. The rotationsr(l,p) that yield the

or in terms of helicity spinors c.m. state$p,)\>scm are the Wick helicity rotations. With the

VE+m appropriate (2s+1)-dimensional matrix representation
apn=| 200 ), (319 D3, [r(l,p)] wheres=3 is the spin of the(antijquark, one
T can rewrite Eq(34) as
VE+m
|fl
- 2p)\ |p1)\>Sﬁ4> |p,’)\,>sc.m.: Di)\/[r(lip)]“_lp,lOsﬁ- (35)
v(pN) = VE+m [y, (p)(-)Y2. (31b A sum overu is implied. The quark wave functions are
JE+m obtained from
Our approach differs from that of Maruyanes al. [15], 1 iox
who use an approximation of thes juark wave function in O[g(x)|p,\) = ﬁu(p,)\)e : (36)
the MIT bag inr space as introduced in Ref&6,17. In Ref. v
[15] the quark wave function is where (x) is the quark Dirac field. The correspondence
1 Ip,\)y«<u(p,\) between the physical state and its wave func-

_ tion realization yields the desired Lorentz transformation of
Pory) = [R3m2(1 + 37%12) /2 X exp{~ r/2R%} i¢Z i |X: the Dirac spinor
Ro
(32) u(p’.\s, = D}, (Hu(™'p,N)s (373

whereR; is the size parameter, which can be related to theand similar arguments lead to

bag radius. The parametérdetermines the probability that

the quark is in thdower component of the Dirac spinor, and v(p"\)s, . :D)S\)\,(r_l)v(l_lp,)\)sﬁ. (37b)
is referred to as the small relativistic component of the wave o

function. The value of in the bag model has been estimatedFor the general case of a boost of the akgd®), with g
to be 0.36 for zero quark mass. The authors of RES] also  =(8, 65, ¢p), the matricesDiw are
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Di)\r_ ”7)\ )\)d)\)\!( W)! (38)

where 7 is a function of the angleg; and ¢4 and the Wick
angle6,, [18] is given by

cos 6, = p—y,(p + BE c0s 6). (39)
Here,E=\p?+n¥ is the energy of onéantiquark as in Egs.
(308 and (30b), y=E;,/2m,, p'=|I"Yp|, and 0< s
=< is the angle betweep and B, defined by

Bp_Pip
Bp  P.p-

For Lorentz boosts,(B), for which thez axis is alongP,
in the c.m. system and;=¢z=7,=0, the expression in Eq.
(38) simplifies to

cosé= (40)

DS, =d5, (6. (41)

Sinces=%, only two matrix elements are requir¢tio]:

Oy 1 1
di3 146w = cosE >t 2cosa

\/1

> + ;(p+ BE cos ), (429
. Oy
1/2 14 6w) = SN =\ 5 75008 O
= \/1——( + BE c0s 6). (42b)
2 2 ! p B

This means that the quark helicity spinors $p,, are ex-
pressed in terms of Dirac spinors 8} as

/
VE+m

1 7'p|
VE+m

A A\ ql/2
U(p ,7\ )_ Xl/2(p )dl/z)\r(ew)
VE+m
- I"p|
\r’E+ m

X-12P) A, (6,) (432

and similarly for the antiquark spinors,
0l
\E+m X- 1/2([3 )d 1/2(0W)
VE+m
Tl
\E+m X1/2(p )d)\r 1/2(9 )
VE+m

v(p'\) =

(43b)

To obtain the above expression for antiquark spinors th
property d,, (-6,)=d,.\(6,) has been used. Note that the
spinors now depend off},, via the relativistic factory

PHYSICAL REVIEW C70, 034001(2004

VI. RELATIVISTIC SPINOR CORRECTIONS TO R2 AND
A2 DIAGRAMS

Having shown in Sec. Il how the Lorentz transformation
of the spatial part of the intrinsic pion wave function alters
the annihilation operators, we will now discuss the effect on
the operators due to modifications in the spinors of the final
quarksi=1",2’ and antiqguarks=4',5'. The A2 and R2
spin-matrix elements read schematically

+1/2

>

{)\i}=—1/2

Mg= ([s185/]s =l ® ([S2rSa]s =0l

X VR2lA2|[SCLSZSS]sp:l/2> ® |[SASSS6:|53:1/2>1 (44)
wheref/Rz,Az is either one of the four operators introduced in
Eqgs.(8), (9), (20), and(21). As before, we neglect relativistic
corrections to thepp wave functions; hence, only the final
quark and antiquark helicity states are Lorentz transformed.

Note that the operator8g,x, mentioned above are in the
c.m. frame, where they act between initial- and final-state
spin wave functions.

In the derivation of the transition operators in E@8),
(9), (20), and(21), only leading order terms ip were kept.
Here the same strategy is followed: we make use of Egs.
(439 and (43b) but we do apply these boosts to the Pauli
spinors in the pions, each consisting of a quadnd anti-
quarkj with spin statessm;) and|s;m;) (with corresponding
helicities\; and\j) andm; #m=+1/2:

1
|S;=m;=0)= E(|Simi> ® [smy) - [sm) @ [smy)).

The Pauli spinors in the c.m. frame are expressed in terms of
the Pauli spinors irs, by

X)\’(p )= dl/z)\/(aw))(llz(p )+d_1/2)\'(0W)X—1/2(ﬁ,)
(4539

for particles and

X (B) = A2 Ba) xuaB) + A A Bu) X-17(P")
(45b)

for antiparticles.

The Pauli matricesr in the transition operatorggz,,s, act
on the boosted spinorg), with i=1",2',4’,5'. The spin-
matrix elements pertinent to thég,a, Operators are thus
modified since the rotation matrix elemernt_gf,zyl,i(ew) in
Eqgs.(428 and(42b) come into play. We make use of the fact
that in the c.m. frame the transverse components of the quark
momenta are much smaller than the component along the
boost directionfrom now on we refer only to the quark but
the discussion is identical for the antiquarkVe can thus

gpproximate

s

I7XB)p| = VP + ¥(p + BE)*> = ¥(p - P, +BE), (46)

present in Eqs(428 and (42b) as well as in the Lorentz which we write asp’ = y(p cos 6+ BE). This approximation

boostl™L.

is valid except for a small region where cés—BE/p. With
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this, the following approximation for the matrix elements VII. CONCLUSION
di?, 1,4 6,) holds:
In this paper, the effects of Lorentz transformations on
(ﬁ/lz/2 A O) = \/} + 1@_ (47) ?ntrins_ic pion wa_ve_functions _in _the reactipp— = 7" are
2 2pcosé+ BE investigated. This is done within the framework of a con-

stituent quark model used previous|2,7,8 to describe
do/dQ) and Ay, data of this reaction. The Lorentz transfor-
mations are effected on both the spatial part as well as the

To illustrate the role of the co8 term in Eq.(47), we quark spinqr components in 'Fhe intrinsic pion wave fung—
consider two cases ca¥= 1, i.e., for which the quark mo- tions. We find that the coordinate-space wave function is
mentum is parallel or antiparallel to the boost directjpn  Strongly contracted along the boost direction, and that the
Recall that for coss=+1, of coursep, vanishes, in which ~spatial part of the annihilation amplitudes dependsyand

The numerator and denominator in E47) are very similar
and the matrix elementﬁ_’lz,zyl,z(ew) are functions of3 rather
than of y.

case Eqs(46) and(47) are exact. ¥?. The spinors are modified by Wick rotations and the rela-
The following relationships exist between helicity and tivistic effects due to spin are therefore proportional 2o
momentum orientation of a quark in the c.m. frame: rather than to the boost factor
g2 In addition to the nonplanar quark rearrangement dia-
If cos 6= + 1 d1/2,1/4 ) (48) gramsR2, we also compute the transition operators originat-
a2 12, 1,2(9W) 0. ing from the planaA2 diagrams for puréS; as well as a

mixture of S, and P, annihilation mechanisms.

The nonrelativistic annihilation operator for the nonplanar
2 diagrams was given in Reff7]. In this paper, we obtain
ew terms in the operator that affect its range and introduce
additional angular dependence. The dependence on the c.m.
energyy's is now manifest via the relativistic boost facter
Most of the new relativistic factors are considerably larger
than the nonrelativistic ones. Therefore, the geometry of the
annihilation amplitudes is drastically modified. Nonetheless,

In other words, if the quark momentum in the pion rest frame
is aligned with the boost direction, then helicity is conservedR
under the boost. In this case there is no Wick rotation and,
6,,=0. Of course the momentup? and boost vectop will
also be parallel in the c.m. frame.

However, if momentum in the pion rest frame is antipar-
allel to the boost directio8 then helicity in the c.m. frame
can flip, as seen from E@49) and now6,,= .

ig 1d6,) =0, the selection rules described in RET] are preserved. The
Ifcos6=-1 a)=1. (49) A2 amplitudes are simpler than tiR2 amplitudes, and they
1/2 v Ow) = depend only on the relative distance of the proton and anti-

The relativistic effect described in Eqgl8) and(49) can  proton.
be interpreted as follows. Assume a quark inside the pion We will show [20] that the modifications in the annihila-
with a given helicity and its momentum oriented antiparalleltion amplitudes, due to relativistic considerations, strongly
to the boost directiog8. For very large boosts, an observer in improve the description of the cross section and analyzing
the c.m. system perceives a reversed quark momentum. APwer as measured at LEAR]. Therefore with a relativistic
the spin direction is not changed, this implies a flipping oftreatment one obtains a description of the reactjgm
the helicity in the c.m. frame, which confirms that for — 7 «* similar to or better than with thad hocincrease of
cosd=-1 the matrix elementl;)3,{6,) is zero whereas the particle radii which was the approach in Rgf.

’12,2 1/46y) is 1 as seen in Eq49). On the other hand, if the
quark momentum in the pion frame is parallel wih then

helicity will not flip, as the quark momentum in the c.m. is ACKNOWLEDGMENTS
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