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We present data one+e− pair production accompanied by nuclear breakup in ultraperipheral gold-gold
collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects
events at small impact parameters, where higher-order diagrams for pair production should be enhanced. We
compare the data with two calculations: one based on the equivalent photon approximation, and the other using
lowest-order quantum electrodynamics(QED). The data distributions agree with both calculations, except that
the pair transverse momentum spectrum disagrees with the equivalent photon approach. We set limits on
higher-order contributions to the cross section.

DOI: 10.1103/PhysRevC.70.031902 PACS number(s): 25.75.Dw, 12.20.2m, 25.20.Lj

Electron-positron pairs are copiously produced by photon
interactions in the strong electromagnetic fields of fully
stripped colliding heavy nuclei(cf. Fig. 1); the field strength

at the surface of the ions reaches 1020 V/cm. At a center of
mass energy ofÎsNN=200 GeV per nucleon pair, the produc-
tion cross section is expected to be 33000 b, or 4400 times
the hadronic cross section[1,2].
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The electromagnetic fields are strong enough, with cou-
pling Za<0.6 (Z is the nuclear charge anda<1/137 the
fine-structure constant), that conventional perturbative calcu-
lations of the process are questionable. Many groups have
studied higher-order calculations of pair production. Some
early coupled-channel calculations predicted huge(order-of-
magnitude) enhancements in the cross section[3] compared
to lowest-order perturbative calculations.

Ivanov, Schiller, and Serbo[4] followed the Bethe-
Maximon approach[5], and found that at the Relativistic
Heavy Ion Collider(RHIC), Coulomb corrections to account
for pair production in the electromagnetic potential of the
ions reduce the cross section 25% below the lowest-order
result. For high-energy real photons incident on a heavy
atom, these Coulomb corrections are independent of the pho-
ton energy and depend only weakly on the pair-mass[5].
However, for intermediate-energy photons, there is a pair-
mass dependence, and also a difference between thee+ and
e− spectra due to interference between different order terms
[6].

In contrast, initial all-orders calculations based on solving
the Dirac equation exactly in the ultrarelativistic limit[7]
found results that match the lowest-order perturbative result
[8]. However, improved all-orders calculations have agreed
with the Coulomb corrected calculation[9]. These all-orders
calculations do not predict the kinematic distributions of the
produced pairs.

Any higher-order corrections should be the largest close
to the nuclei, where the photon densities are largest. These
high-density regions have the largest overlap at small ion-ion
impact parametersb. Small-b collisions can be selected by
choosing events where the nuclei undergo Coulomb excita-
tion, followed by dissociation. The dissociation also provides
a convenient experimental trigger. Pair production accompa-
nied by mutual Coulomb excitation should occur at smaller
b, and have larger higher-order corrections than for unac-
companied pairs.

Previous measurements ofe+e− pair production were at
much lower energies[10,11]. The cross sections, pair-
masses, angular andpT distributions generally agreed with
the leading-order QED perturbative calculations. These stud-
ies did not require that the nuclei break up, and so covered a
wide range of impact parameters.

This letter reports on electromagnetic production ofe+e−

pairs accompanied by Coulomb nuclear breakup inÎsNN
=200 GeV per nucleon pair Au-Au collisions[12], as is
shown in Fig. 1. Ane+e− pair is produced from two photons,
while the nuclei exchange additional, independent photons,
which break up the nuclei. We require that there be no had-
ronic interactions, which is roughly equivalent to setting the
minimum impact parameterbmin at twice the nuclear radius,
RA, i.e., about 13 fm. The Coulomb nuclear breakup require-
ment selects moderate impact parameter collisions
s2RA,b, <30 fmd [13,14]. Except for the common impact
parameter, the mutual Coulomb dissociation is independent
of the e+e− production[15,16]. The cross section is

ssAuAu → Au*Au*e+e−d =E d2bPeesbdP2EXCsbd, s1d

wherePeesbd andP2EXCsbd are the probabilities ofe+e− pro-
duction and mutual excitation, respectively, at impact param-
eter b. The decay of the excited nucleus usually involves
neutron emission.P2EXCsbd is based on experimental studies
of neutron emission in photodissociation[17]. For smallb, a
leading-order calculation ofP2EXCsbd may exceed 1. A uni-
tarization procedure is used to correctP2EXCsbd to account
for multiple interactions[14,17].

The most common excitation is a giant dipole resonance
(GDR). GDRs usually decay by single neutron emission.
Other resonances decay to final states with higher neutron
multiplicities. In mutual Coulomb dissociation, each nucleus
emits a photon which dissociates the other nucleus. The neu-
trons are a distinctive signature for nuclear breakup.

We consider two different pair production calculations for
Peesbd. The first uses the equivalent photon approach(EPA)
[1], which is commonly used to study photoproduction. The
photon flux from each nucleus is calculated using the
Weizsäcker-Williams method. The photons are treated as if
they were real[2]. The e+e− pair production is then calcu-
lated using the lowest-order diagram[18]. The photonpT
spectrum for a photon with energyk is given by[19,20]

dN

dpT
<

F2sk2/g2 + pT
2dpT

2

p2sk2/g2 + pT
2d2 , s2d

whereF is the nuclear form factor andg is the Lorentz boost
of a nucleus in the laboratory frame. This calculation uses a
Woods-Saxon distribution with a gold radius of 6.38 fm and
a 0.535 fm skin thickness[21]. The individual photonpT are
added in quadrature to give the pairpT. This is a minor
simplification, but should have little effect on the result. For
e+e− pairs visible in STAR, the typical photonpT
<3 MeV/c, for a pairpT<5 MeV/c.

The second calculation is a lowest-order quantum electro-
dynamics(QED) calculation for pair production[22]. The
main difference between this calculation and the EPA ap-
proach is that the QED calculation includes photon virtuality.
In the relevant kinematic range, the results of the calcula-
tions differ mainly in the pairpT spectrum[23]. In the QED
calculation, the pairpT is peaked at 20 MeV/c, higher than
with the EPA.

FIG. 1. Schematic QED lowest-order diagram fore+e− produc-
tion accompanied by mutual Coulomb excitation. The dashed line
shows the factorization into mutual Coulomb excitation ande+e−

production.
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One unavoidable difficulty in studying this reaction at an
ion collider is thate+e− pairs are dominantly produced with a
forward-backward topology. The angle between the electron
momentum and the two-photon axis in the two-photon rest
frame,u* , is usually small. Only a small fraction of the pairs
are visible in a central detector, limiting the statistics.

This analysis presents data taken in 2001 with the Sole-
noidal Tracker at the RHIC(STAR) detector at the Relativ-
istic Heavy Ion Collider(RHIC). Tracks were reconstructed
in a large cylindrical time projection chamber(TPC) [24]
embedded in a solenoidal magnetic field. The track position
and specific energy losssdE/dxd were measured at 45 points
at radii between 60 and 189 cm from the collision point.
Many of the tracks used in this analysis had low transverse
momentapT and curved strongly in the magnetic field, and
therefore had less than 45 reconstructable points. This analy-
sis used data taken in a 0.25 T magnetic field(half the usual
value).

This analysis used about 800 000 events selected by a
minimum bias trigger[25]. This trigger selected events
where both gold nuclei broke up, by detecting events with
one or more neutrons in zero degree calorimeters(ZDCs)
[26] upstream and downstream of the collision point. The
two ZDC hits were required to be within 1 nsec of each
other. With the beam conditions and ZDC resolution, this
selected events along the beam line within<30 cm of the
detector center.

The signature fore+e− production is two reconstructed
tracks which formed a primary vertex along the beamline
and which had specific energy losses consistent with those of
electrons. Event vertices were found by an iterative proce-
dure [12]. The analysis accepted events with a vertex con-
taining exactly two tracks. Up to two additional nonvertex
tracks were allowed in the event, to account for random
backgrounds.

Tracks were required to havepT.65 MeV/c and pseudo-
rapidity uhu,1.15. In this region, the tracking efficiency was
above 80%. Tracks were also required to have momenta
p,130 MeV/c, wheredE/dx allowed good electron/hadron
separation. In this region, the identification efficiency was
almost 100%, with minimal contamination. Pairs were re-
quired to have masses 140 MeV,Mee,265 MeV. The pair-
mass spectrum falls steeply with increasingMee, so few lep-
tons from pairs were expected with higher momenta. Pairs
were required to havepT,100 MeV/c and rapidity
uYu,1.15. The pair cuts remove a very few background
events, but leave the signal intact. These cuts selected a
sample of 52 events.

The data were corrected for efficiency using simulated
events based on the equivalent photon calculation and the
standard STAR detector simulation and reconstruction pro-
grams. The distributions of the number of hits and track fit
quality, the vertex radial positions, and the track distance of
closest approach matched in the data and simulations[12].

The resolutions were found to be 0.017 for pair rapidity,
0.01 for track rapidity, and 6 MeV for pair-mass. The pairpT
resolution varied slightly withpT, but averaged about
4 MeV/c. After accounting for thispT smearing, the effi-
ciency was found to be independent ofpT.

There are two backgrounds in this analysis. Incoherent
(mostly hadronic) backgrounds produce both like-sign and

FIG. 2. (Color online) (a) The pair-mass distribution,(b) pair pT,
(c) pair rapidity, and(d) pair cossu8d distributions. The data(points)
are compared with predictions from the EPA(solid histogram) and
lowest-order QED(dashed histogram) calculations. The error bars
include both statistical and systematic errors.

J. ADAMS et al. PHYSICAL REVIEW C 70, 031902(R) (2004)

RAPID COMMUNICATIONS

031902-4



unlike-sign pairs, at a wide range ofpT. Based on a study of
like-sign and of higherpT pairs, we estimate that this back-
ground is 1 event. Coherent backgrounds are due to photo-
production of misidentifiedp+p− pairs on one of the nuclei.
This background is peaked at higherMee than reale+e− pairs.
From the knownr0 and directp+p− cross sections[13,21],
and electron misidentification probabilities, the contamina-
tion is estimated to be less than 0.1 events. Backgrounds
from other electromagnetic processes should be even
smaller. The background from cosmic rays is suppressed to a
negligible level by the ZDC coincidence requirement.

The luminosity was determined by counting hadronic in-
teractions with at least eight charged tracks. This criteria se-
lects 80% of all hadronic gold-gold interactions[12,27]. Af-
ter compensating for the different neutron multiplicities in
the hadronic ande+e− samples(the ZDC timing resolution
depends on the number of neutrons) and assuming a total
hadronic cross section of 7.2 barns[13], we find a total in-
tegrated luminosity of 94±9 mb−1.

The major systematic errors were due to uncertainties in
the tracking efficiency(6.4% per track, or 13% total), ver-
texing (8.5%), and in the luminosity(10%) [12]. The uncer-
tainties due to backgrounds and particle identification were
much smaller and are neglected. These uncertainties were
added in quadrature, giving a 18.5% total systematic uncer-
tainty.

Figure 2(a) shows the cross section for Au Au
→Au*Au* e+e− as a function of pair-mass, within our kine-
matic fiducial region: trackpT.65 MeV/c, track pseudora-
pidity uhu,1.15, pair rapidity uYu,1.15, and pair-mass
140 MeV,Mee,265 MeV. The data are compared to the
equivalent photon(solid) and QED (dashed) calculations.
Monte Carlo events were generated using the two calcula-
tions, and then filtered to match the acceptances used here.
Both calculations match the pair-mass data.

Figure 2(b) shows the cross section as a function of pair
pT. The equivalent photon(solid) and QED(dashed) calcu-
lations differ whenpT,15 MeV/c, due to the nonzero pho-
ton virtuality in the QED calculation. The data agree with the
QED calculation, but not with the equivalent photon calcu-
lation.

Figure 2(c) shows the cross section as a function of pair
rapidity. The broad peak aroundY=0 is due to the detector
acceptance. Selecting tracks with pseudorapiditiesuhu,1.15
preferentially chooses events with small pair rapidity. The
data agrees with both calculations.

Figure 2(d) shows the angular distribution cossu8d be-
tween thee+ momentum and the beam axis in the pair rest
frame. There is a small(usually ,5 mrad) difference be-
tweenu8 andu* since the photonpT rotates thegg rest frame
slightly with respect to the beam axis. The distribution in
Fig. 2(d) is the convolution of the detector acceptance[larg-
est at small cossu8d] with the production distribution, which
is peaked at large cossu8d. The agreement between the data
and the calculations is good.

Within the kinematic range 140 MeV,Mee,265 MeV,
pair rapidityuYu,1.15, trackpT.65 MeV/c, anduhu,1.15,
the cross sections=1.6±0.2sstatd±0.3ssystdmb, in reason-
able agreement with the equivalent photon prediction of
2.1 mb and the QED calculation ofsQED=1.9 mb. At a 90%

confidence level, higher-order corrections to the cross sec-
tion, Ds=s−sQED, must be within the range
−0.5sQED,Ds,0.2sQED.

At leading order, the electron and positron momentum
spectra are identical. However, interference with higher-
order corrections can create charge-dependent spectral differ-
ences[6]. For some kinematic variables, 30–60 % asymme-
tries may occur[28]. A study of e+e− production in sulfur-
nucleus collisions atÎsNN=20 GeV per nucleon pair found
that the positrons had a higher average energy than the elec-
trons[10]. However, the atomic electrons in the target could
have contributed to the result. Figure 3 compares thepT

spectra of the produced electron and positron; the two spec-
tra are very similar. No asymmetry is seen beyond the ex-
perimental uncertainties.

In addition, we have measured the fraction of events with
a single neutron in each ZDC to be 0.06±0.04(3 out of 52).
This is consistent with the single neutron fraction observed
in similarly taggedr photoproduction[13], supporting the
notion of independence assumed in the factorization, Eq.(1).

In conclusion, we have observede+e− production accom-
panied by nuclear excitation in gold-on-gold ion collisions at
a center of mass energy of 200 GeV per nucleon pair. The
cross section, pair mass, and angular and rapidity distribu-
tions are in agreement with two calculations, one using
equivalent photons, and the other a lowest-order QED calcu-
lation. The pairpT spectrum agrees with the QED calcula-
tion, but not the equivalent photon calculation. Lowest-order
QED describes our data. We set a limit on higher-order cor-
rections to the cross section, −0.5sQED,Ds,0.2sQED at a
90% confidence level. The electron and positronpT spectra
are similar, with no evidence of higher-order corrections due
to interference.

We thank Kai Hencken for providing the results of his
QED calculation, and Joakim Nystrand and Anthony Baltz
for the nuclear breakup subroutines used in the EPA calcula-
tion. We thank the RHIC Operations Group and RCF at
BNL, and the NERSC Center at LBNL for their support.

FIG. 3. ThepT spectra of the produced electrons and positrons,
along with the comparable EPA and QED calculations. In both cal-
culations, the electron and positron spectra are identical. Spectra
from the two calculations are similar; the data agree with both of
them.
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