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Phase transitions in hot and dense matter, and the in-medium behavior of pseudoscalar mesons(p±, p0, K±,

K0, K̄0, h, andh8), are investigated, in the framework of the three flavor Nambu-Jona-Lasinio model, including
the ’t Hooft interaction, which breaks theUAs1d symmetry. Three different scenarios are considered: zero
density and finite temperature, zero temperature and finite density in quark matter with different degrees of
strangeness, and finite temperature and density. AtT=0, the role of strange valence quarks in the medium is
discussed, in connection with the phase transition and the mesonic behavior. It is found that the appearance of
strange quarks, above certain densities, leads to meaningful changes in different observables, especially in
matter withb equilibrium. The behavior of mesons in theT-r plane is analyzed in connection with possible
signatures of restoration of symmetries.
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I. INTRODUCTION

Understanding the behavior of matter under extreme con-
ditions is, nowadays, a challenge in the physics of strong
interactions. Different regions of the QCD phase diagram are
of interest, and major theoretical and experimental efforts
have been dedicated to the physics of relativistic heavy-ion
collisions, looking for signatures of the quark gluon plasma
(QGP) [1–3]. Special attention has also been given to neu-
tron stars, which are a natural laboratory to study matter at
high densities.

There are indications from lattice QCD that the transition
from the hadronic phase to the QGP is probably associated
with the transition from the Nambu-Goldstone realization of
chiral symmetry to the Wigner-Weyl phase. While the phase
transition with finite chemical potential and zero temperature
is expected to be first order, at zero chemical potential and
finite temperature there will be a smooth crossover. Experi-
mental and theoretical efforts have been done in order to
explore them-T phase boundary. Recent lattice results indi-
cate a critical “end point,9 connecting the first-order phase
transition with the crossover region, atTE=160±35 MeV,
mE=725±35 MeV[4]. Understanding the results of experi-
ments at BNL[2] and CERN[3] provides a natural motiva-
tion for these studies.

The rich content of the QCD phase diagram has been
recently explored in the direction of high density and cold
matter, that can exist in neutron stars, where a “color-flavor
locking” [CFL] phase, exhibiting a variety of interesting
physics, is expected to occur[5,6].

Restoration of symmetries and deconfinement are ex-
pected to occur at high density and/or temperature. In this
concern, the study of observables of pseudoscalar mesons is
particularly important. Since the origin of these mesons is
associated with the phenomena of spontaneous and explicit
symmetry breaking, its in-medium behavior is expected to
carry relevant signs for the possible restoration of symme-
tries. On the classical level, and in the chiral limit, the QCD
Lagrangian has two chiral symmetries, theSUsNfd and the
UAs1d. This would imply the existence of nine Goldstone
bosons, forNf =3, and, in order to have mesons with finite
mass, chiral symmetry must be explicitly brokenab initio by
giving current masses to the quarks. However, in nature there
are only eight light pseudoscalar mesons, the octetsp ,K ,hd;
the h8 has a mass too large to be considered a remnant of a
Goldstone boson, so its mass must have a different origin. In
fact, theUAs1d symmetry is not a real symmetry of QCD,
since it is broken at the quantum level, as pointed out by
Weinberg[7]. The breaking of theUAs1d symmetry can be
described semiclassically by instantons, which have the ef-
fect of giving a mass toh8 of about 1 GeV. On the other
side, thisUAs1d anomaly causes flavor mixing, which has the
effect of lifting the degeneracy betweenh andp0. So a per-
centage of theh mass comes from theUAs1d symmetry
breaking.

So far as the restoration of symmetries is concerned, there
are two possible scenarios[8]: only SUs3d chiral symmetry
is restored or both,SUs3d and UAs1d symmetries, are re-
stored. The behavior ofh8 in medium or of related observ-
ables, like the topological susceptibility[9], might help to
decide between these scenarios. A decrease of theh8 mass
could lead to the increase of theh8 production cross section,
as compared to that forpp collisions [10].

Strange quark matter[SQM] has attracted a lot of interest
since the suggestion[11] that it could be the absolute ground
state of matter. Stable SQM inb equilibrium is expected to
exist in the interior of neutron stars, or even be the constitu-
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ent matter of highly bound compact stars(“strange quark
stars”). Lumps of SQM, the strangelets, might also be
formed in earlier stages of heavy-ion collisions(in this case,
b equilibrium may not be achieved). Experiments of ul-
trarelativistic heavy-ion collisions at BNL and CERN are
proposed to search for strangelets[12,13], but up to now
there is no evidence of such objects[14]. Several studies on
the behavior of matter with different strangeness fractions
are known(see[15,16] and references therein).

An interesting problem in flavor asymmetric matter is the
behavior of the charge multiplets of mesons[17,18]. These
charge multiplets, that are degenerated in vacuum or in sym-
metric mattersru=rd=rsd, are expected to have a splitting in
flavor asymmetric matter. In particular, the masses of kaons
(antikaons) would increase(decrease) with density. A similar
effect would occur forp− andp+ in neutron matter. A slight
raising of the K+ mass and a lowering of theK− mass
[19–23] seems to be compatible with the analysis of data on
kaonic atoms[24] and with the results of KaoS and FOPI
collaborations at GSI[25]. The driving mechanism for the
mass splitting is attributed mainly to the selective effects of
the Pauli principle, although, in the case ofK−, the interac-
tion with the Ls1405d resonance plays a significant role, as
well, in the low-density regime[20].

Effective quark models are useful tools to explore the
behavior of matter at high densities or temperatures. Nambu-
Jona-Lasinio(NJL) [26] type models have been extensively
used over the past years to describe low-energy features of
hadrons and also to investigate the restoration of chiral sym-
metry with temperature or density[15,19,26–36].

The NJL model is an effective quark model, where the
gluonic degrees of freedom are supposed to be integrated out
and, besides its simplicity, has the advantage of incorporating
important symmetries of QCD, namely, chiral symmetry.
Since the model has no confining mechanism, several draw-
backs are well known. It should be noticed, for instance, that
theh8 mass is very close to theq̄q threshold and, depending
on the parametrization, it can be above this threshold. In this
case, this meson is described, even at zero temperature and
density, asq̄q resonance, which would have the unphysical
decay inq̄q pairs, and the definition of its mass is unsatis-
factory.

The behavior ofSUs3d pseudoscalar mesons in hot matter
has been studied within the framework of the NJL model in
[31,32,34,35]. Different studies have been devoted to the be-
havior of pions and kaons at finite density in flavor symmet-
ric [27,28] or asymmetric matter[28,30,36].

A model aiming at describing hadronic behavior in the
medium should account for the great variety of particle-hole
excitations that the medium can exhibit, some of them with
the same quantum numbers as the hadrons under study
[21,22]. Particle-hole excitations with the same quantum
numbers of kaons have been discussed in[18]. It has been
shown, within the framework of NJL models, that low-
energy pseudoscalar modes, which are excitations of the
Fermi sea, occur in flavor asymmetric media[27–29]. Such
studies were carried out in quark matter simulating nuclear
matter(ru=rd, rs=0), for charged kaons, and neutron matter
without b equilibrium, for charged pions. The role of the ’t
Hooft interaction was not taken into account in the last case.

The combined effect of density and temperature, as well as
the effect of vector interaction, was discussed for the case of
charged kaons[19,36]. Only densities below,3r0 were con-
sidered. The high-density regionsrn.rn

cr=2.25r0d of quark
matter simulating neutron matter in weak equilibrium, hav-
ing in mind the study of the behavior of kaonic(charged and
neutral) and pionic(charged) excitations, was investigated in
[37], and the behavior of neutral pseudoscalar mesons in hot
and dense matter was investigated in[38].

This paper is devoted to investigating the phase transition
in hot and dense matter, and the in-medium behavior of the
pseudoscalar mesons, in the framework of theSUs3d
Nambu-Jona-Lasinio model, including the ’t Hooft interac-
tion, having in mind to look for manifestations of restoration
of symmetries and to discuss the role of the strangeness de-
gree of freedom.

We present the model and formalism in the vacuum(Sec.
II ), and at finite density and temperature(Sec. III). We will
present and discuss our results for the phase transition and
meson behavior in three scenarios: finite temperature and
zero density(Sec. IV), zero temperature and finite density in
quark matter with different degrees of strangeness, and with
and withoutb equilibrium (Sec. V). Finally, the meson prop-
erties in hot and dense matter are investigated in Sec. VI. In
Sec. VII we draw our conclusions.

II. MODEL AND FORMALISM

The NJL model with three quarks can be described by the
Lagrangian,

L = q̄si] · g − m̂dq +
gS

2 o
a=0

8

fsq̄laqd2 + „q̄sig5dlaq…2g

+ gDhdetfq̄s1 + g5dqg + detfq̄s1 − g5dqgj. s1d

Hereq=su,d,sd is the quark field with three flavors,Nf =3,
and three colors,Nc=3. la are the Gell-Mann matrices,a
=0,1, . . . ,8,l0=Î2

3I . The explicit symmetry breaking part
in (1) contains the current quark massesm̂
=diagsmu,md,msd. The last term in(1) is the lowest six-
quark dimensional operator and it has theSULs3d ^ SURs3d
invariance, but breaks theUAs1d symmetry. This term is a
reflection of the axial anomaly in QCD. For general reviews
on the three flavor version of the NJL model, see[26,31,34].

Following a standard hadronization procedure, the follow-
ing effective action is obtained:

Wefffw,sg = −
1

2
ssaSab

−1sbd −
1

2
swaPab

−1wbd − i Tr lnfisgm]md

− m̂+ sala + sig5dswaladg. s2d

The notation Tr stands for the trace operation over discrete
indices (Nf and Nc) and integration over momentum. The
fields sa andwa are the scalar and pseudoscalar meson non-
ets andSab, Pab are projectors defined in the Appendix.

The first variation of the action(2) leads to the gap equa-
tions,
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Mi = mi − 2gskq̄iqil − 2gDkq̄jqjlkq̄kqkl, s3d

with i , j ,k=u,d,s cyclic. Mi are the constituent quark
masses, and the quark condensates are given bykq̄iqil=
−i TrfSispdg, with Sispd being the quark Green function.

To calculate the meson mass spectrum, we expand the
effective action(2) over meson fields. Keeping the pseudo-
scalar mesons only, we have the effective meson action

Weff
s2dfwg = −

1

2
wafPab

−1 − PabsPdgwb = −
1

2
waDab

−1sPdwb,

s4d

with PabsPd being the polarization operator(see Appendix).
The expression in square brackets in(4) is the inverse non-
normalized meson propagatorDab

−1sPd. The pseudoscalar me-
son masses are obtained from the conditionf1−PijP

i jsP0

=M ,P=0dg=0. For the nondiagonal mesonsp, K, the polar-
ization operator takes the form,

Pi jsP0d = 4hsI1
i + I1

j d − fP0
2 − sMi − Mjd2gI2

i jsP0dj, s5d

where the integrals are given in the Appendix.
The quark-meson coupling constants are evaluated as

gMq̄q
−2 = −

1

2M

]

]P0
fPi jsP0dg

uP0=M
, s6d

where M is the mass of the bound state containing quark
flavors i, j .

To consider the diagonal mesonsp0, h, andh8 we take
into account the matrix structure of the propagator in(4). In
the basis of thep0−h−h8 system we write the projectorPab
and the polarization operatorPab as matrices

Pab = 1P33 P30 P38

P03 P00 P08

P83 P80 P88
2 andPab = 1P33 P30 P38

P03 P00 P08

P83 P80 P88
2 .

s7d

The nondiagonal matrix elementsP30=s1/Î6dgDskq̄uqul
−kq̄dqdld, P38=−s1/Î3gDskq̄uqul−kq̄dqdld, P30

=Î2/3fJuusP0d−JddsP0dg, and P38=1/Î3fJuusP0d−JddsP0dg
correspond top0−h, andp0−h8 mixing. In the casekq̄uqul
=kq̄dqdl, the p0 is decoupled from theh−h8 and these ele-
ments vanish. The specific form of the nonvanishing ele-
ments of those matrices may be found in the Appendix.

Defining the orthogonal matrix

O = Scosu − sinu

sinu cosu
D , s8d

we may find theh−h8 mixing angleu via the condition to
diagonalizeDab

−1sPd as O−1Dab
−1sPdO=diagfDh

−1sPd ,Dh8
−1sPdg.

To find the massesMh and Mh8, we use the inverse propa-
gators,

Dh
−1sPd = sA + Cd − ÎsC − Ad2 + 4B2, s9d

Dh8
−1sPd = sA + Cd + ÎsC − Ad2 + 4B2, s10d

with A=P88−DP00sPd, C=P00−DP88sPd, B=−fP08

+DP08sPdg, and D=P00P88−P08
2 . In the rest frame,Dh

−1sP0

=Mh ,P=0d=0, Dh8
−1sP0=Mh8 ,P=0d=0. The mixing angleu

can be calculated by tan 2u=2B/ sA−Cd. The coupling con-
stants are determined by(6). Note that from(6) we have the
quantitiesg0h, g8h andg0h8, g8h8, from which we can obtain
ghsh8dūu and ghsh8ds̄s, using standard expressions(for more
details see for example[34,39]).

The model is fixed by the coupling constantsgS, gD in the
Lagrangian(1), the cutoff parameterL, which regularizes
momentum space integralsI1

i and I2
i jsPd, and the current

quark massesmi. For our numerical calculations we use the
parameter set[34], mu=md=5.5 MeV, ms=140.7 MeV,
gSL2=3.67, gDL5=−12.36, andL=602.3 MeV, that has
been determined by fixing the values,Mp=135.0, MK
=497.7, fp=92.4, andMh8=960.8 MeV. We also haveMh

=514.8 MeV, usMh
2d=−5.8°, ghūu=2.40, ghs̄s=−3.91,

usMh8
2 d=−43.6°,gh8ūu=2.69, andgh8s̄s=−0.54. For the quark

condensates we havekq̄uqul=kq̄dqdl=−s241.9 MeVd3 and
kq̄sqsl=−s257.7 MeVd3, and Mu=Md=367.7 MeV, Ms

=549.5 MeV, for the constituent quark masses.

III. THE MODEL AT FINITE TEMPERATURE AND
CHEMICAL POTENTIAL

Now we generalize the NJL model to the finite tempera-
ture and chemical potential case. It can be done by the sub-
stitution (see[40])

E d4p

s2pd4 → 1

− ib
E d3p

s2pd3o
n

, s11d

where b=1/T, T is the temperature, and the sum is done
over Matsubara frequencies vn=s2n+1dpT, n
=0, ±1, ±2, . . ., sothat p0→ ivn+m with a chemical poten-
tial m. Instead of integration overp0, we have now the sum
over Matsubara frequencies, which can be evaluated as

−
1

b
o
n

hsvnd = o
Re zmÞ0

hf1 − fszmdgResfhsvnd,zmg

+ f̄szmdResfh̄svnd,zmgj, s12d

where fszd and f̄szd are the Fermi distribution functions for
quarks and antiquarks,

fszd =
1

1 + ebsz−ud , f̄szd =
1

1 + ebsz+ud . s13d

As 1−f̄szd= fs−zd, we introduce, for convenience, the Fermi
distribution functions of the positive(negative) energy state
of the ith quark,

ni
± = f is±Eid =

1

1 + e±bsEi7mid
. s14d

The integralsI1
i , I2

i jsPd that enter in the expressions of the
propagators depend now on the temperatureT and on the
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chemical potentials, in a standard way(see Appendix). Hav-
ing these integrals, we can investigate the phase transition
and meson properties in hot and dense matter. We analyze
the mesonic behavior at finite temperature and vanishing
chemical potentials. Although such a study was already per-
formed in [31,34], it is pertinent to present the results here
for the sake of comparison with our new findings at finite
temperature and density, to be presented in the next sections.

Figure 1 shows the temperature dependence ofp, K, h
and h8 meson masses, as well as of 2Mu and Mu+Ms at m
=0. One can see that, at low temperature, the masses of
mesons(except theh8 meson that is always unbound) are
lower than the masses of their constituents. In this case, the
integralsI2

i j are real. The crossing of thep andh lines with
2Mu and theK line with Mu+Ms indicates the respective
Mott transition temperatureTM for these mesons. Mott tran-
sition comes from the fact that mesons are not elementary
objects, but are composed states of quarks, and is defined by
the transition from a bound state to a resonance in the con-
tinuum of unbound states. Above the Mott temperature we
have taken into account the imaginary parts of the integrals
I2
i j and used a finite width approximation[34,35]. For our set

of parameters, one can see that Mott temperatures forh and
p mesons are:TMh=180 MeV andTMp=212 MeV. Thep
and K mesons become unbound at approximately the same
temperature.

IV. THE PHASE TRANSITION

The nature of the phase transition in NJL-type models at
finite T and/or m has been discussed by different authors
[15,19,32,37,41]. At zero density and finite temperature there
is a smooth crossover, at nonzero densities different situa-
tions can occur. We will discuss this problem by analyzing
the behavior of the pressure and of the energy per particle as
functions of the baryonic density.

The equilibrium state may be determined as the point
where the thermodynamical potential takes the minimum
with the quark condensateskq̄iqil as variational parameters.
The baryonic thermodynamic potential has the following
form:

Vsr,Td = E − TS− o
i=u,d,s

miNi , s15d

whereE, S, andNi are, respectively, the internal energy, the
entropy, and the number of particles of theith quark, that are
given by the following expressions:

E = −
Nc

p2V o
i=u,d,s

HE p2dp
p2 + miMi

Ei
sni

− − ni
+dusL2 − p2dJ

− gS o
i=u,d,s

skq̄iqild2 − 2gDkūulkd̄dlks̄sl, s16d

S= −
Nc

p2V o
i=u,d,s

E p2dpusL2 − p2d

3hfni
+ ln ni

+ + s1 − ni
+dlns1 − ni

+dg + fni
+ → ni

−gj,

s17d

Ni =
Nc

p2VE p2dpsni
− + ni

+ − 1dusL2 − p2d. s18d

V is the volume of system and the quark density is deter-
mined by the relationri =Ni /V.

We define the pressure and the energy density, such that
their values are zero in the vacuum,

psr,Td = −
1

V
fVsr,Td − Vs0,Tdg, s19d

esr,Td =
1

V
fEsr,Td − Es0,Tdg. s20d

A. Chiral phase transition at zero temperature

We start by analyzing the behavior of quark matter at zero
temperature and, in order to discuss the role of the strange-
ness degree of freedom, we will consider matter with and
without b equilibrium and, in the last case, we assume dif-
ferent fractions of strange quarks.

In “neutron” matter in chemical equilibrium, maintained
by weak interactions and with charge neutrality, the follow-
ing constraints on the chemical potentials and densities of
quarks and electrons should be imposed:

md = ms = mu + me, s21d

2

3
ru −

1

3
srd + rsd − re = 0, s22d

with

ri =
1

p2smi
2 − Mi

2d3/2usmi
2 − Mi

2d andre = me
3/3p2. s23d

We should note that if the chemical potential of the electron
exceeds the rest mass of the muonsme.Mmd, it becomes
energetically favorable for an electron to decay into am− via
the weak processe−→m−+ n̄m+ne and we can have a Fermi

FIG. 1. Temperature dependence of the pion(solid line), kaon
(dotted line), h (dashed line), and h8 (short-dashed line) masses.
The curves 2Mu and Mu+Ms (dot-dashed line) show the tempera-
ture dependence of the quark thresholds. The respective Mott tem-
peratures areTMp.TMK=212 MeV andTMh=180 MeV.
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sea of degenerate negative muons. Consequently, the condi-
tion for charge neutrality would be23ru− 1

3srd+rsd−re−rm

=0. However, we have foundme
max=95.7 MeV,Mm. So, we

can neglect the muon contribution.
The thermodynamic potential, pressure, and energy de-

fined in (19) and(20) have to be modified in order to include
the contribution of electrons. This leads to the following ex-
pressions for the pressure and energy density(see[15]):

P = − esr,0d + o
i=u,d,s

miri +
me

4

12p2 , s24d

E = esr,0d +
me

4

4p2 . s25d

Therefore, the zeros of the pressure give the following
expression for the energy density:

E = o
i=u,d,s

miri + mere. s26d

Defining the baryonic matter density asrn= 1
3sru+rd+rsd

and using the conditions(21) and (22), it is straightforward
to show that the energy per baryon at the zeros of the pres-
sure takes the form

E
rn

= mu + 2md. s27d

The pressure has a zero atrn=0, the energy per baryon at
that point beingMu+2Md (since in vacuum the masses of the
quarksu, d are equal we will from now on denote this quan-
tity as 3Mv). If there is another zero of the pressure, atrn
Þ0, that corresponds to a minimum of the energy, the crite-
rion for stability of the system at that point ismu
+2md,3Mv. Let us now analyze our results for the pressure
and energy per baryon, that are plotted in Figs. 2(a) and 2(b)
as functions ofrn/r0, where r0=0.17 fm−3 is the normal
nuclear matter density. The pressure has three zeros, respec-
tively at rn=0, 0.45r0, 2.25r0, that correspond to extrema of
the energy per particle. Forrn,0.2r0 the pressure and com-
pressibility are positive, so the system could exist in uniform
gas phase, but it will not survive indefinitely, since the zero
density state is energetically favored; for 0.2r0,rn,0.45r0
the system is unstable, since the compressibility is negative,
and in fact,rn=0.45r0 corresponds to a maximum of the
energy per particle; for 0.45r0,rn,2.25r0, the pressure is
negative, and the third zero of the pressure,r=2.25r0, cor-
responds to an absolute minimum of the energy. In fact, at
that point mu+2md=1099.4 MeV, lower than 3Mv
=1102.9 MeV. Abovern=2.25r0, that we define asrcr, we
have again a uniform gas phase. The phase transition de-
scribed in this model is a first–order one, since there is a
region where the pressure and/or compressibility are nega-
tive and, given that at the critical densitymu+2md,3Mv (we
notice that the satisfaction of this condition is dependent on
the parameter choice), the behavior described allows the in-
terpretation that the uniform gas phase will break up into
stable droplets of nonstrange quarks with partially restored

chiral symmetry and densityrn
cr=2.25r0, surrounded by a

nontrivial vacuum(see also[6,15,19,36]).
We will now discuss cases of matter withoutb equilib-

rium. As we will show, the results are qualitatively similar to
those discussed above, although some specific aspects de-
serve a closer analysis. We consider three cases: Case
I—“neutron matter” without strangeness,srd=2ru,rs=0d;
Case II—matter with equal chemical potentialssm=md=mu

=msd with isospin symmetry, ru=rd, rs=1/p2sm2

−Ms
2d3/2usm2−Ms

2d; and Case III—matter entirely flavor
symmetricsrd=ru=rsd.

Let us make some comments concerning Case III, which
intuitively seems the less natural scenario. Although rather
schematic, this case simulates a situation where we can ex-
plore the hypothesis of absolutely stable SQM. It has been
argued[15,16] that SQM may only be stable if it has a large
fraction of strange quarkssrs<ru<rdd. The speculations on
the stability of SQM are supported by the following obser-
vations: the weak decay of strange quarks into nonstrange
quarks can be suppressed, or even forbidden, due to Pauli
blocking, and, in addition, the inclusion of a new flavor de-
gree of freedom allows for a larger decrease of strange quark
mass, which can produce a sizable binding energy. As we
will see, Case III confirms this tendency when compared
with, for instance, Case I.

So, in spite of the simplicity of our assumptions, we think
that the analysis of these types of matter could be useful as a
guideline to understand the role of the strangeness degree of
freedom in matter that is supposed to exist in neutron stars
and in matter that might be formed in an early stage of

FIG. 2. Energy per baryon number(a) and pressure(b) as a
function of density. Solid line:T=0, dashed line:T=56 MeV.
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heavy-ion collisions. This will also be relevant for the dis-
cussion of the mesonic behavior that will be presented in the
next section.

We notice that in all cases there is an absolute minimum
of the energy per particle at nonzero density and zero pres-
sure, lower than the vacuum constituent quark masses, so we
have a first-order phase transition with the formation of
quark droplets(see Fig. 3). However, this minimum of the
energy is always higher than 930 MeV, which is the energy
per baryon number in atomic nuclei, and therefore we do not
find absolutely stable quark matter. The lower energy per
baryon is for Case II, and the higher binding energy, com-
pared to the vacuum constituent quark masses, is for Case
III. The minimum of the energy occurs atrn=2.25r0 in mat-
ter in b equilibrium and in Case I, atrn=2.33r0 for Case II,
and atrn=3.50r0 for Case III. Only in the last case we find
stable SQM, since in the other cases the minimum occurs in
the region where strange quarks do not exist(see Fig. 4, right
panel).

Finally, we add some considerations about the restoration
of chiral symmetry. When chiral symmetry is brokenab ini-
tio, one can talk about the restoration of chiral symmetry if

the constituent quark masses drop to the current quark
masses, indicating a transition from the chirally broken to
approximately chirally symmetric phase. This would happen
at asymptotic densities, when the Fermi momentum equals
the cutoff. However, at densities considerably lower, one can
see, or not, a clear tendency to the restoration of chiral sym-
metry depending on the quark sector considered and on the
strangeness fraction[16]. To illustrate this point, we plot in
Fig. 4 the dynamical quark masses and chemical potentials
as functions ofrn/r0. The nonstrange quark masses decrease
sharply in all cases, reflecting the quick restoration of chiral
symmetry in this sector and, as expected, the behavior of the
strange quark mass depends strongly on the amount of
strange quarks in the medium. In all cases, except Case III,
the mass decrease up to,2r0 is due to the ’t Hooft contri-
bution in the gap equations. In Case I it remains constant
afterwards, since strangeness is put equal to zero by hand; in
Case II and inb equilibrium, at densities above 5r0 and
3.8r0, respectively, the mass becomes lower than the chemi-
cal potential and a more pronounced decrease is observed.
These densities are the onsets for the appearance of strange
valence quarks, which become more important as the density
increases. In Case III, there are always strange valence
quarks present, so the strange quark mass decreases more
strongly, although, even in this case, is still away from the
strange current quark mass. We observe that in matter inb
equilibrium, there is a tendency to the restoration of flavor
symmetry, as the density increases: the chemical potentials
md=ms andmu become closer andme decreases.

B. Chiral phase transition at finite temperature and density

Now we discuss the phase transition in hot and dense
matter, and consider only matter inb equilibrium (the other
cases are qualitatively similar). Since for very low tempera-
tures the absolute minimum of the energy turns to be at zero
density, the phase transition is still first order but the system
is unstable against expansion. With increasing temperature,
we will have a crossover aboveT.Tcl=56 MeV. The point
T=56 MeV, rn=1.53r0, where the pressure is already posi-
tive and the compressibility has only one zero[see Fig. 2(b)],
is identified, as usual, as the critical end point that connects
the first-order phase transition and the crossover regions. At
this point we have a second-order phase transition, once the
end point of a first-order line is a critical point of the second
order. The values of the chemical potentials aremu=304.5,
md=ms=353.3, andmn=smu+md+msd /3=337.0 MeV.

In order to get a better insight on the nature of the phase
transition in hot and dense matter, we plot in Fig. 5(a) the
pressure in theT−r plane. The region of the surface with
negative curvature corresponds to the region of temperatures
and densities where the phase transition is first order.

We can also illustrate the degree of restoration of chiral
symmetry in different flavor sectors by plotting the constitu-
ent quark masses in theT−r plane. In Fig. 5(b) (see also
[32]) one can see a clear manifestation of the restoration of
chiral symmetry for the light quarks that is indicated by the
pronounced flattening of the surface with increasing tem-
perature and density. Fig. 5(c) shows a more smooth behav-

FIG. 3. Energy per baryon number for all types of quark matter
considered atT=0.

FIG. 4. Constituent quark massesMu, Md, Ms and chemical
potentialsmu, md, me as functions of density atT=0. Left panel:
without b equilibrium (Mu=Md in Cases II and III). Right panel:
with b equilibrium.
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ior of the strange quark, which reflects the well-known fact
that, as already discussed, chiral symmetry shows a slow
tendency to get restored in the strange sector.

V. MESONS IN COLD QUARK MATTER

In this section we present our results on the behavior of
pseudoscalar mesons in quark matter atT=0, giving special
attention to matter inb equilibrium. The presence of strange
valence quarks is related to a change in different observables.
In order to discuss the relevance of the strange quark, we will
show the results for the mesonic behavior also in matter
without b equilibrium.

One of our aims is to discuss what in-medium pseudo-
scalar meson properties can tell us about the possible resto-
ration of symmetries. If to discussUAs1d symmetry it is
enough to study neutral mesons, this is not sufficient if one
also wants to study chiral symmetry, especially in the strange
sector. Strangeness enters explicitly in the structure ofh, h8
and of kaons, and influences the behavior of pions through
the ’t Hooft interaction. So, in order to have a comprehensive
view of restoration of chiral symmetry, we have to include
the study of pions and kaons.

A. Behavior of pions and kaons

Hadronic systems created in realistic heavy-ion collisions
are strongly interacting. Many-body excitations may carry

the same quantum numbers of the hadrons under investiga-
tion and, therefore, influence hadron properties in medium.
Other many-body effects, such as the Pauli principle, lead to
modifications of hadronic properties, as well. How these ef-
fects are related with partial restoration of chiral symmetry is
a challenging problem in many-body physics. As it will be
shown, both effects are present in the behavior of the flavor
multiplets of pions and kaons.

Let us analyze the results for the masses ofK+, K−, K0, K̄0

and forp+, p0, p−, that are plotted as functions ofrn/r0 in
Figs. 6, 7, and 9.

As it was already shown in other works[27,28,37], two
kinds of solutions may be found in asymmetric matter for
pionic and kaonic modes in the NJL model, corresponding
respectively to excitations of the Dirac sea, that are modified
by the presence of the medium, and excitations of the Fermi
sea. Here, in order to appreciate the role of the strangeness
degree of freedom, we start by comparing the results ob-
tained in matter withb equilibrium and without, Case I.

In order to get a better insight of the results, we plot the
limits of the Dirac and of the Fermi sea continua ofq̄q ex-
citations with the quantum numbers of the mesons under
study in Figs. 7 and 9(dashed lines): v8=ÎMs

2+ls
2

+ÎMusdd
2 +ls

2 is the lower limit of the Dirac continuum, and

vup=ÎMs
2+ls

2−ÎM2
usdd+l2

s, vlow=ÎM2
s+lusdd−musdd are

the upper and lower limits of the Fermi sea continuum, with

FIG. 5. Combined effects of temperaturesTd and densitysrn/r0d in neutron matter inb equilibrium: (a) pressure,(b) Mu, and(c) Ms.
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li the Fermi momentum of the quarki. These limits can be
obtained by inspection of the expressions for the meson
propagators(for details, see[27,37]). We do not show the
corresponding limits for the pions because, in the range of
densities studied, the pion modes remain outside the con-
tinuum.

Concerning the Dirac sea excitations, we observe the ex-
pected splitting between charge multiplets: the increase of

the masses ofK+, K0, andp− with respect to those ofK−, K̄0,
andp+, respectively, is due to Pauli blocking. At the critical
density the antikaons enter in the continuum, but, in matter
with b equilibrium, they become again bound states above
r0,4r0. The difference between the behavior of mesons in
matter with and without strange valence quarks(the right and
left panels of Figs. 6 and 7, respectively) is more evident for
kaons than for pions, as expected, since the strange degree of
freedom for pions only contributes explicitly through the
projectorPab [see(A3)], and for kaons it contributes through
its quark structure. The dominant effect is the reduction of
the splitting between the kaon and antikaon masses, which is
a combination of many-body effects and restoration of chiral
symmetry(Fig. 7).

Let us now analyze the other type of solution, which we
denoted by the subscriptS. Below the lower limit of the
Fermi sea continuum of particle-hole excitations, there are

low bound states with quantum numbers ofK−, K̄0, andp+,
respectively. These low-energy modes are associated with a
first-order phase transition. As a matter of fact, it was shown
in [19,36] that in the NJL model including vector mesons,
where a crossover occurs, the splitting between the excita-
tions of the Dirac sea is more pronounced and the low-
energy solutions do not appear. A general conclusion from
our exploration of the high-density region, whether or not we
have matter inb equilibrium, is that the low-energy modes in
this region are poorly collective and, therefore, have little
strength, contrary to what happens in the low-density region.
The pion low-energy mode merges even in Fermi sea con-
tinuum just afterrn=rn

cr [37].
Since the strangeness degree of freedom is more relevant

for kaons than for pions, we will analyze the results for ka-
ons in more detail, in particular, discussing what happens in
Cases II and III. Complementary information concerning the
results shown in Figs. 6 and 7 is given by the quark-meson
coupling constants displayed in Fig. 8. The coupling constant
for kaons decreases with density, which is consistent with the
increasing of its mass; for antikaons, it remains constant
when the modes are in the continuum, but, if they get outside
of the continuum it increases again, which is consistent with
the interpretation given above that they are bound states in
that region of densities. Concerning the low-energy antikaon,
it becomes less bound as the density increases.

In Fig. 9 the results for the masses and meson-quark cou-
pling constants are shown for Cases II and III. In Case III
(matter completely flavor symmetric) all the charged and
neutral kaons and antikaons are degenerated, as expected; its
mass increases and its coupling constant decreases accord-
ingly. The low-energy antikaon does not exist, which is in
agreement with its origin: a particle-hole excitation due to
the flavor asymmetry of matter. The behavior for Case II is
qualitatively similar to matter inb equilibrium, which is
natural, since the strange valence quarks only appear at some
density. The main differences are that the neutral kaons are

FIG. 6. Pion masses as functions of density without(left panel)
and with (right panel) b equilibrium atT=0.

FIG. 7. Kaon and antikaon masses as functions of density atT
=0: Case I(a) and(c), and withb equilibrium (b) and(d). v8 is the
lower limit of the Dirac sea continuum;vup, vlow are the limits of
the Fermi sea continuum.

FIG. 8. Density dependence of meson-quark coupling constants
for T=0: Case I(a) and (c), and withb equilibrium (b) and (c).
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degenerated with the charged ones, due to isospin symmetry,
and the upper antikaon gets out the continuum at a higher
density than in the case ofb equilibrium and is less bound,
which is due to later appearance and smaller fraction of
strange valence quarks, in this case.

Finally, some remarks are in order concerning our results.
Below the critical density the system is in a mixed phase,
therefore, there is no clear definition of hadron masses. That
is why we plotted the masses as dotted lines in this region
(they should be understood as average values, meaningful
only from a qualitative point of view). Moreover, it is clear
that a Fermi sea of quarks is certainly not a good description
of nuclear matter in the confined phase, and the results in
that region within NJL models should be taken with caution.
The results for the high-density region are more reliable,
since at such densities the quarks are supposed to be decon-
fined and a Fermi sea of quarks is a reasonable description of
matter in that region.

A question that can be naturally raised is if our model
allows for the possibility of kaon condensation. The idea of
kaon condensation and the recognition of its relevance for
astrophysics have been explored since the 1980s[17,18,42].
In our present approach, however, the criterion for the occur-
rence of kaon condensation is not satisfied, since the anti-
kaon masses are always larger than the difference between
the chemical potential of strange and nonstrange quarks. Our
results should be understood as a starting point for further
refinements, since it is known that in matter of high density
and low temperature the system might undergo one or more
phase transitions. For instance, we have not taken into ac-
count the effect of color superconductivity that is expected to
provide an extra binding mechanism. This mechanism is
more important for strange quarks, leading to the CFL phase
[5,6], with kaon condensates, and is supposed to have inter-
esting consequences for the structure of neutron stars. This is
out of the scope of the present paper, but work in this direc-
tion is in progress.

B. Behavior of h and h8

Now, we analyze the results for the masses ofh andh8.
As we can see, theh8 meson lies above the quark-antiquark

threshold forrn,2.5r0 and it is a resonant state. After that
density, theh8 becomes a bound state. This is due to the fact
that the limits of the Dirac sea increase with density(vu,d

=2mu,d and vs=ÎMs
2+ls

2 at rÞ0, instead ofvi =2Mi at r
=0).

Interest in the study of in-medium properties ofh, h8 is in
part motivated by the conjecture that their behavior could
give indications of possible restoration of theUAs1d symme-
try, in particular, their masses could eventually be degener-
ated. We will show that within our model this does not hap-
pen; the behavior ofh and h8 essentially reflects the
tendency to restoration of chiral symmetry in different sec-
tors.

It has been argued that, in principle, there is no reason
why the parameters used to fix the model in vacuum
should not depend on density or temperature. In[31] a de-
pendence on temperature of the coupling constant(gDsTd
=gDs0dexpf−sT/T0d2g). was used in order to investigate the
restoration with temperature of theUAs1d symmetry, that is
explicitly broken in this model by the ’t Hooft interaction. In
the present calculation our parameters, includinggD, are kept
constant, so it would be expected that no indications of res-
toration ofUAs1d symmetry would be found.

The masses, plotted in Fig. 10, exhibit a tendency to level
crossing but, after the critical density, they split again, with
the splitting being more pronounced in the case of matter
without strange quarks. This is due to the absence of strange
valence quarks in this case, and is related with the in-
medium behavior of the mixing angle,u, betweenh andh8.
As it was shown in[38], abover.3.5r0 the angle becomes
positive and increases rapidly; a similar behavior with tem-
perature was found in the framework of thes model [43].
Therefore, the strange quark content of the mesons changes:
at low density, theh8 is more strange than theh but the
opposite occurs at high density. So, in a medium without
strange quarks theh mass should stay constant in the region
where its content is dominated by the strange quark.

Finally, we add some remarks on the approximations
made in the study ofh, h8 in medium. Let us focus again on
the projectorPab andPab (7). The nondiagonal elements that
describe the mixing ofp0−h and ofp0−h8 are proportional
to kq̄uqul−kq̄dqdl for Pab and toJuusP0d−JddsP0d for Pab. In

FIG. 9. Kaon and antikaon masses(left panel) and meson-quark
coupling constants(right panel) as functions of density for Cases II

and III atT=0. In Case IIK0, K̄0, andK̄S
0 are degenerated withK+,

K−, and KS
−, respectively. In Case III all kaons are degenerated

(dash-dot-dot line).

FIG. 10. h andh8 masses as functions of density without(left
panel) and with (right panel) b equilibrium atT=0. vu, vd are the
limits of the Dirac continua.
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the cases here considered of matter with isospin asymmetry
(matter in b equilibrium and Case I), these quantities are
nonzero. Here we did the approximation of neglecting them
and we checked, by means of a simple estimation, that this is
a reasonable approximation.

VI. MESONS IN HOT AND DENSE MATTER

As it has been discussed in Sec. IV, the phase transition in
hot and dense matter is of first order belowTcl,56 MeV.
Above Tcl we have a crossover. We define the critical point
as the temperature and density where the pion becomes un-
bound(Mott transition point). Since the model has no con-
finement, the system is unstable against expansion, but, in
spite of these drawbacks, we think it is illustrative to plot the
meson masses as functions of temperature and density. We
consider here only the case of neutron matter inb equilib-
rium. As already discussed in Sec. V A, in order to investi-
gate the possible restoration of symmetries, it is important to
study the mesons that have phenomena of symmetry break-
ing at their origin, whether it is chiral orUAs1d symmetry. As
it will be shown, the dominant effect found in our results is
the restoration of chiral symmetry.

A first conclusion is that there are differences in the me-
sonic behavior as compared to the zero temperature case dis-
cussed in the last section, where we have seen that some

mesons are still bound states in the chiral restored phase.
Here, similarly to the finite temperature and zero density
case, theq̄q threshold for the different mesons is at the sum
of the constituent quark masses, so the mesons dissociate at
densities and temperatures close to the critical ones. A sec-
ond feature to be noticed is that the mesons that are remnants
of Goldstone bosons show more clearly the difference be-
tween the chiral symmetric and asymmetric phases. The
slight differences of behavior inside each flavor multiplet are
due to many-body effects. It can be seen in the diagrams that
there is a “line” separating the regions of the surface with
different curvatures. This is very clear for the case of pions
(Fig. 11) and kaons(Fig. 12), and, as shown in[38], this is
also apparent for theh. We may call this line the “Mott
circle,” since it separates the region where the mesons are
bound states from the region where they are in the con-
tinuum.

We notice that in the context of our model, the Mott tran-
sition is certainly related with the chiral transition but cannot
be seen as a mechanism for quark deconfinement. In fact, the
NJL model is suitable to describe the chiral phase transition
but not the deconfinement phase transition, since it has no
confining mechanism. However, in spite of this drawback,
the model gives a reasonable description of a quark phase, at
high densities and temperatures, where interacting quarks
with small constituent mass are supposed to exist. In this

FIG. 11. Pion masses as functions of temperature and density.
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phase the mesons are unstable resonances, decaying in pairs
of quark-antiquark states.

The behavior of theh8 is more involved, since this meson
is not a Goldstone boson associated with spontaneous chiral
symmetry breaking, and, in the present model is described as
a q̄q resonance, even at zero temperature and density(see
Fig. 10). Only at zero temperature and forrn.3.0r0 it be-
comes a bound state(for more details see[38]).

Finally, we notice that, as soon as the system heats, and
since very low temperatures, the low-energy modes stay in-
side the low continuum and, unlike the zero-temperature
case, they do not become bound states.

VII. SUMMARY AND CONCLUSIONS

In the present paper we have investigated phase transi-
tions in hot and dense matter, and the in-medium behavior of
the pseudoscalar mesons, in the framework of theSUs3d NJL
model, including the ’t Hooft interaction, which breaks the
UAs1d symmetry.

Three scenarios were considered:(i) zero chemical poten-
tial and finite temperature,(ii ) zero temperature and finite
chemical potential in four types of quark matter and, finally,
(iii ) finite temperature and density. Although in all the cases
we found (partial) restoration of chiral symmetry, different
features occur in several observables.

Concerning case(i) we mainly reproduce results obtained
by other authors[32], in order to allow for comparison with
situations(ii ) and (iii ) that represent our original contribu-
tion. The main feature is the dissociation of mesons at the

Mott transition point that occurs when the meson masses
equal the sum of the masses of their constituents. After that
point, which sets the corresponding threshold of theq̄q con-
tinuum, the mesons cease to be bound states and become
resonances.

New features occur at zero temperature and finite density,
in flavor asymmetric medium(ii ). In order to discuss the
nature of the phase transition, we plot the pressure and en-
ergy per particle versus baryonic density. For a suitable
choice of the parameters we have a mixed phase, which may
be interpreted as the system having a hadronic phase with
partially restored chiral symmetry embedded in a nontrivial
vacuum. After the critical density we have a quark phase. We
notice that in flavor asymmetric matter the energy of the
stable hadronic phase, atrcr, is in a region where strange
valence quarks are still absent, so SQM only could exist in a
metastable state. Only for the case of an equal number of
quarksu, d, s we found stable SQM, but with a higher en-
ergy per particle than atomic nuclei. Concerning the masses
of the mesons, there is a splitting between the flavor multip-
lets in flavor asymmetric matter and, for kaons and pions,

low-energy modes with quantum numbers ofp+, K−, andK̄0

appear. Our results for kaons in flavor asymmetric matter
show that the splitting between kaons and antikaons in-
creases with density, which is compatible with experimental
results[25] that indicate a reduction(enhancement) of kaon
(antikaon) production in medium. In the high-density region
the splitting has a different behavior according to whether
there are strange quarks present or not. However, although
the splitting is reduced in matter with strangeness(the
smaller splitting is in matter inb equilibrium, where there is

FIG. 12. Kaon masses as functions of temperature and density.
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a larger fraction of strange quarks), the upper antikaon be-
comes more bound in this case, so it is likely that the split-
ting can also be observed. The lower antikaons are more
bound in the low-density region; these modes do not exist in
flavor symmetric matter. Although we find kaons as bound
states in the high-density region, we do not find kaon con-
densation. Concerningh andh8, their masses come closer up
to the critical density, but after that point they split again, the
splitting being more pronounced in the case of neutron mat-
ter withoutb equilibrium, which is related to the change of
the strangeness content of the mesons.

In situation(iii ), hot and dense matter, the phase transition
becomes a crossover above the critical “end point”T
=56 MeV, r=1.53r0, the system having a mixed phase be-
fore that point. In this case, theq̄q continuum turns again to
beat the sum of the constituent quark masses. By plotting the
meson masses we see that there is a line along which the
curvature of the surfaces changes, indicating the partial res-
toration of chiral symmetry. Beyond that line, the mesons
become resonances.
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APPENDIX

In this Appendix we give some details about the calcula-
tion of the effective action and of the integrals appearing in
the meson propagators, in the vacuum and at finite tempera-
ture and density.

Calculation of the effective action

The model Lagrangian(1) can be put in a form suitable
for the usual bosonization procedure after an adequate treat-
ment of the last term that contains a six-quark interaction. To
obtain a four-quark interaction from the six-quark interaction
we make a shiftsq̄laqd→ sq̄laqd+kq̄laql, where kq̄laql is
the vacuum expectation value, and contract one bilinear
sq̄laqd. Then, the following effective quark Lagrangian is
obtained:

Leff = q̄sigm]m − m̂dq + Sabfsq̄laqdsq̄lbqdg

+ Pabfsq̄ig5laqdsq̄ig5lbqdg, sA1d

where the projectorsSab, Pab are of the form,

Sab = gSdab + gDDabckq̄lcql, sA2d

Pab = gSdab − gDDabckq̄lcql. sA3d

The constantsDabc coincide with theSUs3d structure con-
stants dabc for a,b,c=s1,2, . . . ,8d and D0ab=−s1/Î6ddab,
D000=Î2

3. The hadronization procedure can be done by the
integration over the quark fields in the functional integral
with I A, leading to the effective action(2).

Integrals

The polarization operator in Eq.(5) in the momentum
space has the form,

PabsPd = iNcE d4p

s2pd4trDfSispdsladi jsig5dSjsp + Pd

3slbd jisig5dg, sA4d

where trD is the trace over Dirac matrices.
In the expressions ofPi j in Eq. (5), at T=0 andr=0, we

have used the following integrals:

I1
i = iNcE d4p

s2pd4

1

p2 − Mi
2 =

Nc

4p2E
0

L p2dp

Ei
, sA5d

I2
i jsP0d = iNcE d4p

s2pd4

1

sp2 − Mi
2dfsp + P0d2 − Mj

2g
,

=
Nc

4p2E
0

L p2dp

EiEj

Ei + Ej

P0
2 − sEi + Ejd2 , sA6d

whereEi,j =Îp2+Mi,j
2 is the quark energy. To regularize the

integrals we introduce the three-dimensional cutoff param-
eter L. When P0.Mi +Mj, it is necessary to take into ac-
count the imaginary part of the second integral. It may be
found, with help of theie prescriptionP0

2→P0
2− ie, that

I2
i jsP0d =

Nc

4p2PE
0

L p2dp

EiEj

Ei + Ej

P0
2 − sEi + Ejd2 + i

Nc

16p

p*

sEi
* + Ej

*d
,

sA7d

with the momentum

p * = ÎfP0
2 − sMi − Mjd2gfP0

2 − sMi + Mjd2g/2P0

and the energyEi,j
* =Îsp* d2+Mi,j

2 .
Concerning the calculation of the propagators of the diag-

onal mesonsp0, h, andh8, the projectorPab and the polar-
ization operatorPab [see Eq.(7)] are matrices that, in the
casekq̄uqul=kq̄dqdl, have the nonvanishing elements,

P33 = gS+ gDkq̄sqsl, sA8d

P00 = gS−
2

3
gDskq̄uqul + kq̄dqdl + kq̄sqsld, sA9d

P88 = gS+
1

3
gDs2kq̄uqul + 2kq̄dqdl − kq̄sqsld, sA10d

P08 = P80 =
1

3Î2
gDskq̄uqul + kq̄dqdl − 2kq̄sqsld, sA11d

and
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P00sP0d =
2

3
fJuusP0d + JddsP0d + JsssP0dg, sA12d

P88sP0d =
1

3
fJuusP0d + JddsP0d + 4JsssP0dg, sA13d

P08sP0d = P80sP0d =
Î2

3
fJuusP0d + JddsP0d − 2JsssP0dg,

sA14d

where

JiisP0d = 4SI1
i −

P0
2

2
I2
iisP0dD . sA15d

At finite temperature, and with two chemical potentials,mi
andm j, the integralsI1

i , I2
i j , I2

ii take the form,

I1
i = −

Nc

4p2 E p2dp

Ei
sni

+ − ni
−d, sA16d

I2
i jsP0,T,mi,m jd = − NcE d3p

s2pd3F 1

2Ei

1

„Ei + P0 − smi − m jd…2 − Ej
2ni

+ −
1

2Ei

1

„Ei − P0 + smi − m jd…2 − Ej
2ni

−

+
1

2Ej

1

„Ej − P0 + smi − m jd…2 − Ei
2nj

+ −
1

2Ej

1

„Ej + P0 − smi − m jd…2 − Ei
2nj

−G , sA17d

whereni
± are the Fermi distribution functions(14), defined in Sec. III.

For the casei = j , with imaginary part, we have the expression,

I2
iisP0,T,mid = −

Nc

2p2PE p2dp

Ei

1

P0
2 − 4Ei

2sni
+ − ni

−d − i
Nc

4p
Î1 −

4Mi
2

P0
2 Fni

+SP0

2
D − ni

−SP0

2
DG . sA18d
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