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We calculate the equation of state of a quark system interacting through a phenomenological potential, the
Richardson’s potential, at finite baryon density and zero temperature. In particular we study three different
cases with different quark masses(u andd), and different assumptions for the potential at large distances. We
solve molecular dynamics with a constraint due to Pauli blocking and find evidence of a phase transition from
“nuclear” to “quark matter.” The phase transition is analyzed also through the behavior of theJ/C embedded
in the quark system. We show that theJ/C particle behaves as an order parameter.
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I. INTRODUCTION

The production of a state of matter, the quark-gluon
plasma(QGP), is one of the open problems of modern phys-
ics. Theoretically, quantum chromodynamics(QCD) predicts
such a state, QGP, but it can be applied only to some limited
cases such as quark matter at zero density and high tempera-
tures. Experimentally, such a system can be obtained through
ultrarelativistic heavy ion collision(RHIC) at CERN and at
Brookhaven[1]. QGP can be formed in the first stages of the
collisions, and can be studied through the secondary particles
produced. Some features of the quark matter can be revealed
by studying the properties of hadrons in a dense medium.
The particleJ/C is a good candidate because the formation
of the QGP might lead to its suppression[2].

In this work we propose a semiclassical model which has
an equation of state(EOS) resembling the well-known prop-
erties of nuclear matter and its transition to the QGP at zero
temperature and finite baryon densities. We simulate the
nuclear matter, which is composed of nucleons(which are by
themselves composite three-quark objects), and its dissolu-
tion into quark matter. In addition, for our system of colored
quarks, we will show how the color screening is related to
the lifetime of the particleJ/C in the medium. In particular,
we will see that the lifetime of theJ/C as a function of
density behaves as an order parameter. Having a model
which simulates the QGP might be useful when dealing with
finite and,(possibly) out of equilibrium systems. In fact, dy-
namics and finite-size effects might wash out completely or
hide a phase transition. The goal of our microscopic simula-
tions is to help find unambiguous signals of the occurrence
of the phase transition. In this work we will show that with
using some phenomenological potential and suitably chosen
quark masses we can indeed obtain an EOS which has some
features of nuclear matter and its transition to the QGP. In
fact, we stress that two systems having a similar EOS will
behave the same. An important ingredient of our approach is
a constraint to satisfy the Pauli principle. The approach,
dubbed constrained molecular dynamics(CoMD) has been
successfully applied to relativistic and nonrelativistic[3,4]

heavy-ion collisions and plasma physics as well[5].
The paper is organized as follows: in Sec. II we introduce

the method, molecular dynamics with a constraint for fermi-
ons, CoMD. In Sec. III we apply the method to calculate the
equation of state, with an arbitrary cutoff in the potential. In
Sec. IV we use a screened linear potential and we calculate
the EOS. In Sec. V there is a brief summary.

II. NUMERICAL METHOD

We use molecular dynamics with a constraint for a Fermi
system of quarks with colors. The color degrees of freedom
of quarks are taken into account through the Gell-Mann ma-
trices and their dynamics are solved classically, in phase
space, following the evolution of the distribution function.
Starting from the quark degrees of freedom, some dynamical
approaches have been proposed in Refs.[6–8] based on the
Vlasov equation[9,10], and/or a molecular-dynamics-type
approach. Of course, in such approaches it is important to get
quark clusterization and the correct properties of nuclear
matter (NM) at the ground-statesGSd baryon densityr0

,0.15 fm−3 [11]. However, the property of ground-state
nuclear matter, together with the high-density phenomena, is
not sufficiently studied from the point of view of the quark
degrees of freedom.

In our work, the quarks interact through the Richardson’s
potentialVsr i ,r jd,

Vsr i,jd = 3o
a=1

8
li

a

2

l j
a

2
F 8p

33 − 2nf
LSLr ij −

fsLr ijd
Lr ij

DG , s1d

and [12]

fstd = 1 − 4E dq

q

e−qt

flnsq2 − 1dg2 + p2 . s2d

la are the Gell-Mann matrices. We fix the number of flavors
nf =2 and the parameterL=0.25 GeV,s" ,c=1d unless oth-
erwise stated. Here we assume the potential to be dependent
on the relative coordinates only. The first term is the linear
term, responsible for the confinement, the second term is the
Coulomb term[13].

The exact (classical) one-body distribution function
fsr ,p ,td satisfies the equation[10]*Email address: terranova@lns.infn.it; bonasera@lns.infn.it
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]t f +
p

E
·¹W r f − ¹W rU ·¹W pf = 0, s3d

whereE=Îp2+mq
2 is the energy,mq is thesu,dd quark mass,

and U=Usr d=o jVsr ,r jd. Numerically, Eq.(3) is solved by
writing the one-body distribution function for each particlei
through the delta function

f isr ,p,td = o
a=1

Q

dsr − r addsp − pad, s4d

whereQ=q+ q̄ is the total number of quarkssqd and anti-
quarkssq̄d (in this work q̄=0).

Inserting this expression in the exact equation(3) gives
the Hamilton’s equations

dr i

dt
=

pi

Ei
, s5d

dpi

dt
= − ¹W r i

Usr d. s6d

Hence we must solve these equations of motion for our sys-
tem of quarks.

Initially we distribute randomly the quarks in a box of
side L in coordinate space and in a sphere of radiuspf in
momentum space.pf is the Fermi momentum estimated in a
simple Fermi gas model by imposing that a cell in phase
space of sizeh=2p can accommodate at mostgq identical
quarks of different spins, flavors, and colors.gq=nf 3nc
3ns is the degeneracy number,nc is the number of colors
(three different colors are used: red, green, and blue), hence
nc=3, ns=2 is the number of spins[1].

A simple estimate gives the following relation between
the density of quarks with colors,rqc, and the Fermi momen-
tum:

rqc =
3ns

6p2pf
3. s7d

We generate many events and take the average over all
events in each cell on the phase space. For each particle we
calculate the occupation average, i.e., the probability that a
cell in the phase space is occupied. To describe the Fermi-
onic nature of the system we impose that average occupation

for each particle is less or equal to 1s f̄ i ø1d.
At each time step we control the value of average distri-

bution function, and consequently we change the momenta
of particles by multiplying them by a quantityj: Pi =Pi 3j. j

is greater or less than 1 iff̄ i is greater or less than 1, respec-
tively; which is theconstraint[4].

With this procedure, the basic quantities describing the
system, such as, total energy, average occupation, and order
parameters,(they will be described in this section below),
will reach stationary values after a given time. We can see
this in Fig. 1 in a typical case withrB=0.24 fm−3. We have
performed two calculations, under the same conditions, but
with two different starting points, first from quarks with col-
ors randomly distributed, i.e., QGP(left panels) and second

from quarks condensed in clusters of three with different
colors, i.e., nucleons(right panels), respectively. We can see
that in both cases, the system reaches the same saturation
value, though at different times. We stress that this behavior
is independent of the density.

In the middle row of Fig. 1 we display the time depen-
dence of the average occupation. It is greater than 1 when
initially we distribute randomly the quarks in the box and
later it approaches nearly to 1 at saturation.

We define an order parameter to check the order of a
phase transition, if any. It is defined through the Gell-Mann
matrices as[3]

Mc3 =
1

N
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N

o
a=3,8

l j
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a + li
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a=3,8
l j

alk
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alk
a, s8d

where jsid andksid are the two quarks closest to the quarki.
Mc2 is the reduced order parameter which gives the color of
the particlej closest to a particular quarki.

In Fig. 1 (bottom) we show the time evolution ofMc2 and
Mc3 when the quarks are initially randomly distributed in the
system (left) and when they are clusterized in nucleons
(right), at the same conditions as above. The saturation val-
ues are equal in both cases, but the initial ones are different,
0 for the first case and close to 1/2 and 3/2, respectively, for
Mc2 and Mc3, for the second case. These values are typical
for QGP and a system of nucleons, respectively, as we will
show later in this section.

FIG. 1. Time evolution of energy per quark(top panel), average
occupation(middle panel), and reduced order parameters(bottom
panel), with different initial conditions: QGP(left panels) and
nucleons(right panels).
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To better understand the clusterization of colored quarks
we also define a higher-order parameterMc4 related to the
colors of the four closest quarks

Mc4 =
1

N
o
i=1

N

o
a=3,8

l j
alk

a + li
al j

a + l j
all

a + li
alk

a + lk
all

a + li
all

a,

s9d

wherelsid is the third quark closest to the particular quarki.
We normalize the order parameters in this way

M̃c2 =
2

3
fMc2 + 1g, s10d

M̃c3 =
2

9
fMc3 + 3g, s11d

M̃c4 =
2

15
fMc4 + 6g. s12d

From the properties of the Gell-Mann matrices[14] it is
easy to derive the following results for the order parameters:

if the three closest quarks have different colors, thenM̃c2

=1 sMc2=1/2d, M̃c3=1 sMc3=3/2d, and M̃c4=1 sMc4

=3/2d. In fact the fourth quark will have the same color of
one of the first three; in this case we have isolated white
nucleons. This case is recovered in the calculation at small
densities, where the system is locally invariant for rotation in
color space.

If the four closest quarks have the same colorM̃c2=M̃c3

=M̃c4=0, we have a condition that we call exotic color clus-
tering. Also in this case the system is locally invariant for
rotation in color space. The corresponding potential energy is
very large and repulsive.

If the three closest quarks have two different colors, inde-
pendently of the color of the two closest quarks, i.e., the
color of the closest particle to quarki is randomly chosen,

we have the quark-gluon plasma, hence:M̃c2=M̃c3= 2
3. In

this stateM̃c4 can assume three different values:4
5; 1; 3

5,
according to the colors of the four closest quarks and number
of pairs of different color. If we have two pair of quarks with

the same color(e.g.,rggr) M̃c4= 4
5. If the quarks have three

different colors and two of the first three have two different

colors(e.g.,rggb) M̃c4=1. If instead three of the four closest
quarks have the same color, but the first three have two dif-

ferent colors(e.g., rggg), M̃c4= 3
5. In the next sections we

will analyze these quantities better in different conditions.
We note that in the QGP case the system is globally invariant
for rotation in color space.

To test for a signature of the various states of matter we
studied the behavior of a pair of quarksc andc̄ embedded in
the system, withmc=mc̄=1.37 GeV. For each density we
calculate the lifetime of theJ/C particle, through its survival
probability in the system. TheJ/C embedded in matter
might breakup, essentially for two reasons. The first is that
the internal kinetic energy of thesc, c̄d pair is large compared
to the mutual attraction of the components(this is true in the

case where the interaction is neglected—which we will dis-
cuss below). The second, and most important reason, is that
other quarks interact with the bound pair, eventually splitting
it. Intuitively, it is clear that the splitting occurs faster at
higher densities where thesc, c̄d pair interacts with many
other lighter quarks. The survival probability is related to the
total number of pairsc and c̄ that stay bound after they are
inserted in our saturated system ofu andd quarks. We have
made a fit to theJ/c survival probability with the expression

Psurstd = expf− st − tDd/tg s13d

and

tsur = tD + t, s14d

wheretD is the delay time of theJ/c before the probability
exponentially decreases, andtsur is the lifetime ofJ/c in the
system, similar to fission[15]. A typical example of the fit is
given in Fig. 2, where the dotted line is an example of the
real distribution and the full line is obtained through Eq.
(13).

In our study of the equation of state of quark matter at
various baryon densities we look for some evidence of a
phase transition to QGP also through the properties of the
mesonJ/C in the medium. This is important because we
want to see if theJ/C can tell us about the occurrence and
the order of the phase transitions. In future works for finite
systems we want to test if the properties of theJ/C remain.
In fact, in an infinite system there is unlimited time for dis-
solving theJ/C, but in a rapidly expanding QGP this disso-
lution might not occur, also because of the relatively large
charm mass.

III. RESULTS WITH CUTOFF

When quarks, objects of different colors, are embedded in
a dense medium such as in nuclear matter, the potential be-
comes screened in a similar fashion to ions and electrons in
condensed matter. This is theDebye screening[1,10]. The
screening can be obtained through the use of a Debye radius
in the interaction, as will be discussed in the next section. In
this section, the screening is produced directly, through the
interaction of colored quarks. But our system is not really an
infinite system, like nuclear matter, and this screening is in-
sufficient to screen the linear potential and avoid its diver-
gence forr →`, hence we introduce a cutoff for the poten-
tial. The cut-off is a free parameter. When quark distances
are greater than the cutoff, the interaction is equal to zero. Of

FIG. 2. Time evolution of survivingJ/C’s.
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course, we are aware that by using a cutoff in the linear term,
the confinement property of the quarks might be lost. Nev-
erthless we will show that this prescription leads to interest-
ing effects which might be used in finite system studies.
Furthermore, the cutoff is relatively large, thus it takes con-
siderable energy to have isolated quarks.

In Fig. 3 we plot some quantities related to the case with
small quark masses,mu=5 MeV, md=10 MeV, and a cutoff
of 3 fm.

The energy per nucleon and the corresponding energy
density in units of«F (energy density for a Fermi gas[1])
(top panels) versus baryon density divided by the normal
densityr0, have a very irregular behavior that we can explain
through the order parameters(third panel).

For small densities the quarks are condensed in clusters of
three different colors, the system is locally white(isolated

white nucleon). The normalized order parametersM̃c2

(circles), M̃c3 (squares), and M̃c4 (diamonds) are near to 1,
hence the two closest particles to quarki have different col-
ors and consequently the third closest quark toi has the same

color of one of the first two or ofi, M̃c2=M̃c3=M̃c4.1. At

higher densities, the quarks are not in clusters but randomly
distributed, M̃c2=M̃c3. 2

3 and M̃c4. 4
5, and we have the

QGPsrB/r0,1.2d. But the system does not stay in this state,
it prefers the exotic color clustering state, where at least the
four closest quarks have the same color. At a density of about
1.4–2.4 times the normal density,M̃c2=M̃c3=M̃c4.0. The
system reaches this state through a first-order phase transi-
tion [1] at about 1.3 times the normal nuclear matter density.
In the figure pertaining to the energy per nucleon, the tran-
sition is signaled by a discontinuity at the same density. The
other discontinuities at larger densitiessrB/r0.1.5d, are
probably due to the clusterization of more than four quarks
of the same color. The reason for the phase transition at such
a small density is because of the small quark masses and the
large cut-off radius. As we will show more in detail below,
we can change those values and change not only the density
where the transition occurs, but also the order of the transi-
tion, if any.

In the present conditions, the linear term becomes very
large and positive, hence the attraction between different
clusters of quarks with different colors, far apart in space,
prevails over the repulsion between charges of the same
color in each cluster; this explains the large values of the
energy and consequently of energy density. For instance, we
might have the formation of a three-red-quark cluster and
this is attracted by an analogous three-green-quark cluster.

It is the linear term that produces this very irregular be-
havior. In fact, repeating the same calculations with the Cou-
lomb term only(triangles in Fig. 3), we obtain a constant
contribution, not only to the energy, but also to the order
parameters. The Coulomb term produces a permanent clus-
terization among quarks, which prevents them from reaching
the ideal QGP state. In fact, the density dependence of the
Coulomb term is similar to the Fermi energy term. The dif-
ference between the two terms depends on theas value,
whereas is the strong constant coupling defined in the po-
tential through theL parameter. When the linear term is
included it prevails with respect to the Coulomb one and the

system stays in an exotic color clustering state,M̃c2=M̃c3

=M̃c4=0.
In Fig. 3 (bottom) we plot the lifetime ofJ/C versus

baryon density divided byr0 (full line). When the density
increases, the lifetime decreases because it is more probable
that a particle of different flavor gets in between acc̄ pair
and breaks the bond, thus the number of survivingJ/C’s in
the medium decreases faster and we have small values oftsur.

tsur behaves similarly to an order parameter; in fact, it has
a jump just where we found the phase transitionsrB/r0

,1.3d. Analyzing the particleJ/C in the medium, by turning
off the interaction(squares in the bottom of Fig. 3), gives a
different behavior, viz., a monotonic decrease with density.
The survival time in the medium is always larger than that
with interaction, because the forces break more easily the
bonds between particles(c,c̄ quarks). After the jump we no-
tice a saturation of the surviving probability, again similar to
the order parameter. We would like to note that even though
there is not much similarity between the EOS obtained here
and nuclear matter with its transition to the QGP, it was the
first case we studied and its features are quite general, as we

FIG. 3. Energy per nucleon(top panel), energy density(second
to top), normalized order parameters(third panel), and time survival
of J/c (bottom panel) vs density divided by the normal densityr0,
for mu=5 MeV, md=10 MeV, and cutoff=3 fm.
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will see in the following. In fact, a simple scaling around the
critical density would suffice to compare to the other sys-
tems. We notice also that even though theJ/C is usually
studied at zero density and finite temperatures, we expect a
similar behavior to the one discussed here, with the Fermi
motion playing the role of the temperature.

In order to study the sensitivity of the results to the input
parameters, we have repeated the calculations withmu
=180 MeV, md=180 MeV, and a cutoff equal to 1.26 fm.
The quark masses are chosen to reproduce the energy per
nucleon of nuclear matter at normal density[11]. In Fig. 4
where we plot the same quantities of Fig. 3(the symbols
have the same meaning), we can see a behavior more regular
than we did previously. At very high densities(almost 45
times the normal density), in the figure relative to the energy
per nucleon (top) we see a flex, probably indicating a
second-order phase transition, which becomes a change of
slope in energy density(figure below). The normalized order
parameters are always positive, i.e., it never happens that
three equal quark color states are, on average, in the same
region inr space. At low densities actually they never reach
the value of 1(nucleons), which implies that our potential is
insufficient to get a good clusterization. In fact, we do not
obtain the minimum in energy per nucleon, indicating a con-
dition of stability for the system.

Values of order parameters at high density are always

larger than 2/3 forM̃c2 andM̃c3, and 4/5 forM̃c4 (one of the

possible values ofM̃c4 to have QGP). This indicates a re-
sidual clusterization between quarks of different color, which
we associate to the semiclassical counterpart of pairing. In
fact, a residual attractive force, especially due to the Cou-
lomb term, couples quarks of different color.

Also in this case we studied the behavior of theJ/C in
the medium and we obtained a regular behavior for the life-
time, see Fig. 4(bottom), i.e., a fast decrease for small den-
sities and after about 7r0 a slow decrease with some fluctua-
tion around 1,2 fm/c. The lifetime ofJ/C again behaves
similarly to the order parameters. In conclusion, we can see
that changing quark masses and cutoffs does not result in
exotic color clustering and a first-order phase transition, but
a probable second-order phase transition to QGP.

It is clear that the cut-off value affects the transition point
as a consequence. In Fig. 5 we plot the reduced order param-

etersM̃c2, M̃c3, M̃c4 versus cutoff at a densityrB=r0 (left)
and at rB=0.3558 fm−3 s,2.3r0d (right) for mu=5 MeV,
md=10 MeV. Changing the cut-off value from 1.26 to 4 fm
results in a phase transition changing from QGP to an exotic
color clustering state, at 3.1 fm for smaller density and at
2.7 fm forrB=0.3558 fm−3, while the system was in a nucle-
onic state for small cut-off values for both cases.

At rB=3.49 fm−3 s,23.26r0d we calculated the order pa-
rameters versus cutoff, shown in Fig. 6, formu=md
=180 MeV (left) and versus quark masses for a cutoff
=1.26 fm(right). As in the previous case with smaller quark
masses, Fig. 5, for small cut-off values we have typical val-
ues of a nucleonic state. When the cutoff increases we have a
phase transition from QGP to an exotic color clustering state,
at a cutoff equal to 2.3 fm. If we analyze the reduced order
parameters versus quark masses we find an almost constant
behavior. Very large variations of quark masses correspond

to small variations of theM̃c2, M̃c3, M̃c4 values, hence the

FIG. 4. Energy per nucleon(top panel), energy density(second
to top panel), normalized order parameters(third panel), and time
survival ofJ/c (bottom panel) versus density divided by the normal
densityr0 for mu=md=180 MeV, and a cutoff of 1.26 fm.

FIG. 5. Reduced order parameters vs cutoff formu=5 MeV,
md=10 at two different densities.

FIG. 6. Reduced order parameters vs cutoff formu=md

=0.18 MeV and vs quark masses for cutoff=1.26 fm.
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cutoff is mainly responsible for the phase transition at differ-
ent densities.

This suggests the use of a different cut-off value to change
the point of transition. In Fig. 7, we plot the energy per
nucleon, the energy density, the normalized order param-
eters, and the time survival ofJ/c, for mu=5 MeV, md
=10 MeV, and cutoff=2 fm.

At rB=r0 the total energy per nucleon(top) has a value
similar to the typical value of nuclear matter, but we do not
have the expected minimum. Important physics is in fact
missing in our approach to describe the system of quark at
small densities, i.e., the nuclear part. AtrB=10r0 the energy
per nucleon and energy density(second to top) displays
some fluctuations near the QGP state. In fact, the value of the
reduced order parameters(third panel) are close to 2/3 for

M̃c2, M̃c3 and 4/5 for M̃c4. Increasing the density further
gives a first-order phase transition to exotic color clustering
state atrB,40r0, as signaled by the reduced order param-

eters M̃c2=M̃c3=M̃c4.0 and the large increase of energy
and energy density. The lifetime of theJ/C particle displays
some fluctuations around 10r0 and a jump around 40r0, simi-

lar to the behavior of the reduced order parameters. This
equation of state could be our initial condition to simulate a
finite system and a collision between nuclei.

IV. DEBYE SCREENING

In this section, to have a good screening of the linear
interaction we use a particular expression of the linear term
obtained through the resolution of the Poisson equation in
one dimension[16]

¹2fLin = − o
i

qirqi, s15d

whererqi is the linear density obtained in the Thomas-Fermi
approximation

rqi
<

EF0

s6p2d1/3FS1 −
fLin

EF0

D2

−
mq

2

EF0

2 G1/2

. s16d

EF0
is the Fermi energy calculated at large distances,

where the fieldfLinsrd→0 andPF0
=s6p2/gqrq0d1/3, i.e., we

FIG. 8. Energy per nucleon(top panel), energy density(second
to top panel), normalized order parameters(third panel), and time
survival ofJ/c (bottom panel) versus density divided by the normal
densityr0 for mu=md=324 MeV.

FIG. 7. Energy per nucleon(top panel), energy density(second
to top panel), normalized order parameters(third panel), and time
survival ofJ/c (bottom panel) versus density divided by the normal
densityr0 for mu=5 MeV, md=10 MeV and cutoff=2 fm.
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require that all ther dependence is contained in the field and
the density reduces to the free one for large distances from a
given quark. Hence,

flin = 5K

xl
exps− xlr i jd rq Þ 0

Krij rq = 0
6 ,

with

xl
2 =

4
Î3

KS gq

6p2D1/3ÎPF
2 + mq

2

PF
. s17d

xl is the linear Debye inverse radius[16], which for large
densities go to a constant. Also the linear potential goes to a
constant and not to zero like for a total screening, but for
distance larger than the Debye radius, the potential is
screened.K is the string tension defined through theL pa-
rameter[14]. We stress that the confinement property is re-
covered in the zero density limit.

In Fig. 8 we plot some results with this potential andmu
=md=324 MeV. Again in this case we choose the masses of
quarks to reproduce the energy per nucleon of nuclear matter
at normal density.

In the top panel of Fig. 8, relative to energy per nucleon
we find a minimum for low densities. The energy density, for
large densities, shows some fluctuations, which may be due
to numerical fluctuations.

The order parameters are smooth functions of the density
and also in this case they never reach the QGP values(dotted

line): M̃c2=M̃c3= 2
3 and M̃c4= 4

5 (or other possible values),
i.e., a residual clusterization remains. Probably it is an effect
of the instability of quark pairs of different colors that pro-
duces the instability at large energy densities. Also, in this
case the reduced order parameters are always positive, and
we never have exotic color clustering. The calculated life-
time of J/C in the medium versus density is shown in Fig. 8
(bottom) and it behaves like the order parameters.

V. SUMMARY

In conclusion, in this work we have discussed a semiclas-
sical molecular dynamics approach to infinite matter at finite
baryon densities and zero temperature starting from a phe-
nomenological potential that describes the interaction be-
tween quarks with color. Pauli blocking, necessary for fermi-
ons at zero temperature, is enforced through a constraint to
the average one-body occupation function. Color degrees of
freedom for quarks are responsible for Debye screening,
even though we have adopted some prescription mainly for
numerical reasons to screen the linear term at large distances.
Depending on parameters for the quark masses and the po-
tential, we obtain an EOS which exhibits a first, second, or a
simple crossover to the QGP. We stress that these transitions
are due to changes in the system symmetries. In fact, we
have a local invariance for rotation at low densities, i.e., for
nucleons. This means that we can rotate locally the color of
the quarks with no change in the energy. The QGP displays a
global invariance, i.e., we can change randomly the quarks
colors anywhere in the system without changing the system
properties. Exotic color clustering is also a local property, in
fact, we can change the color randomly, but only within a
cluster of identical colors. It is the breaking of these symme-
tries that gives the phase transitions. A suitable physical ob-
servable for the phase transition could be theJ/C. In fact,
we have shown that for infinite systems it behaves like an
order parameter and it is also able to distinguish between a
first-order and a second-order(or a crossover) phase transi-
tion. Finite-size and dynamical studies within the model pro-
posed will reveal if such a property remains. Those studies
could also give indications on the possibility that the phase
transitions are washed out by finite-size effects. Also, other
indicators of a phase transition such as intermittency can be
easily studied in the framework of our model.
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