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Constrained molecular dynamics simulation of the quark-gluon plasma
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We calculate the equation of state of a quark system interacting through a phenomenological potential, the
Richardson’s potential, at finite baryon density and zero temperature. In particular we study three different
cases with different quark mass@sandd), and different assumptions for the potential at large distances. We
solve molecular dynamics with a constraint due to Pauli blocking and find evidence of a phase transition from
“nuclear” to “quark matter.” The phase transition is analyzed also through the behavior ¥fithembedded
in the quark system. We show that th&V particle behaves as an order parameter.
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I. INTRODUCTION heavy-ion collisions and plasma physics as vig]!
The paper is organized as follows: in Sec. Il we introduce

The produc_tion of a state of matter, the quark-gluonye method, molecular dynamics with a constraint for fermi-
plasma(QGP), is one of the open problems of modern phys-qon5 CoMD. In Sec. 11l we apply the method to calculate the

ics. Theoretically, quantum chromodynami€CD) predicts  gquation of state, with an arbitrary cutoff in the potential. In

such a state, QGP, but it can be applied only to some limite&ec |\ we use a screened linear potential and we calculate
cases such as quark matter at zero density and high tempekiz EOS. In Sec. V there is a brief summary.

tures. Experimentally, such a system can be obtained through
ultrarelativistic heavy ion collisioiRHIC) at CERN and at Il. NUMERICAL METHOD
Brookhaven1]. QGP can be formed in the first stages of the
collisions, and can be studied through the secondary particles We use molecular dynamics with a constraint for a Fermi
produced. Some features of the quark matter can be revealystem of quarks with colors. The color degrees of freedom
by studying the properties of hadrons in a dense mediun®f quarks are taken into account through the Gell-Mann ma-
The particleJ/V is a good candidate because the formationtrices and their dynamics are solved classically, in phase
of the QGP might lead to its suppressifs. space, following the evolution of the distribution function.

In this work we propose a semiclassical model which hasStarting from the quark degrees of freedom, some dynamical
an equation of stattEOS resembling the well-known prop- approaches have been proposed in Réfs8| based on the
erties of nuclear matter and its transition to the QGP at zerylasov equation[9,10,, and/or a molecular-dynamics-type
temperature and finite baryon densities. We simulate th@pproach. Of course, in such approaches it is important to get
nuclear matter, which is composed of nuclegnkich are by — quark clusterization and the correct properties of nuclear
themselves composite three-quark objgctmd its dissolu- matter (NM) at the ground-statéGS baryon densityp,
tion into quark matter. In addition, for our system of colored ~0.15 fni® [11]. However, the property of ground-state
quarks, we will show how the color screening is related tonuclear matter, together with the high-density phenomena, is
the lifetime of the particled/ ¥ in the medium. In particular, not sufficiently studied from the point of view of the quark
we will see that the lifetime of thd/W¥ as a function of degrees of freedom.
density behaves as an order parameter. Having a model In our work, the quarks interact through the Richardson’s
which simulates the QGP might be useful when dealing withpotential V(r;,r;),
finite and,(possibly out of equilibrium systems. In fact, dy- 8 4 a
namics and finite-size effects might wash out completely or v(r: ) =33 A_.h{ 87 A(Ar-- _ f(Ari-))] 1)
hide a phase transition. The goal of our microscopic simula- bl 2 2| 33-x T Ar '
tions is to help find unambiguous signals of the occurrence
of the phase transition. In this work we will show that with and[12]
using some phenomenological potential and suitably chosen

ft)=1-4 f

a=1l ij

_qt
guark masses we can indeed obtain an EOS which has some dg €

features of nuclear matter and its transition to the QGP. In q [In(e? - 1P+ 7>

fact, we stress that two systems having a similar EOS Wilha 4r¢ the Gell-Mann matrices. We fix the number of flavors
behave the same. An important ingredient of our approach iﬁf=2 and the parameteX=0.25 GeV,(#,c=1) unless oth-

2 (t:)(t))nztramt tto _sagsfy }he IP audll p”n.céglji/'lg hr? apbproaCherwise stated. Here we assume the potential to be dependent
ubbe fccl)lns ran:'e d rtno e‘l’“t?‘F t.ynarr:j( )I t.a.s efn on the relative coordinates only. The first term is the linear
successfully applied to relativistic and nonrelativisi8;4] term, responsible for the confinement, the second term is the

Coulomb term[13].
The exact (classical one-body distribution function
*Email address: terranova@Ins.infn.it; bonasera@Ins.infn.it f(r,p,t) satisfies the equatiofl0]

(2)
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e
=
=

atf+%€,f—6,u-6pf=o, 3)

whereE:\s’p2+m§ is the energym,, is the (u,d) quark mass,
andU=U(r)=2;V(r,r;). Numerically, Eq.(3) is solved by

writing the one-body distribution function for each particle
through the delta function ' ' ' T ' ' '

1.00 m 1 [“‘\
where Q=q+q is the total number of quark&)) and anti-
quarks(q) (in this work q=0). 154 : : : : : :
Inserting this expression in the exact equat{8 gives
the Hamilton’s equations

Energy/Q(GeV/Q)
=1
&

Q
fi(r,p,0) = 2 8(r —1,)8(p - pa), (4)

a=1

Average Occupation

dri _pi
dt E' ®

®i_ %, u0). ©)
dt FIG. 1. Time evolution of energy per quaftop pane), average

Hence we must solve these equations of motion for our syseccupation(middie panel, and reduced order parametgt®ttom

tem of quarks. pane), with different initial conditions: QGR(left panel3 and
Initially we distribute randomly the quarks in a box of Mucleonsight panels.

side L in coordinate space and in a sphere of radiusn

momentum spacey is the Fermi momentum estimated in a from quarks condensed in clusters of three with different

simple Fermi gas model by imposing that a cell in phasecolors, i.e., nucleongight panels, respectively. We can see

space of sizéh=27 can accommodate at mogy identical that in both cases, the system reaches the same saturation

quarks of different spins, flavors, and cologg,=nxn, value, though at different times. We stress that this behavior

X ng is the degeneracy number, is the number of colors is independent of the density. . _

(three different colors are used: red, green, and)bluence In the middle row of Fig. 1 we display the time depen-
n.=3, ns=2 is the number of spingl]. dence of the average occupation. It is greater than 1 when
A simple estimate gives the following relation betweeninitially we distribute randomly the quarks in the box and

the density of quarks with colorp,, and the Fermi momen- later it approaches nearly to 1 at saturation.

tum: We define an order parameter to check the order of a
phase transition, if any. It is defined through the Gell-Mann
3n matrices a§3
Pgc= ;;p? (7) 3l
We generate many events and take the average over all 1 N
events in each cell on the phase space. For each particle we M= NE > APAR + APAS + NG
calculate the occupation average, i.e., the probability that a i=1a=3,8
cell in the phase space is occupied. To describe the Fermi- 1
onic nature of the system we impose that average occupation =Me+ 2 NN, (8)
‘a a=3,8

for each particle is less or equal to(fi<1).
At each time step we control the value of average distri-
bution function, and consequently we change the momentaherej(i) andk(i) are the two quarks closest to the quark
of particles by multiplying them by a quantity P;=P; X £. & M, is the reduced order parameter which gives the color of
is greater or less than 1 ff is greater or less than 1, respec- the particlej closest to a particular quark
tively; which is theconstraint[4]. In Fig. 1 (bottom) we show the time evolution d#l, and
With this procedure, the basic quantities describing theM  when the quarks are initially randomly distributed in the
system, such as, total energy, average occupation, and ordgrstem (left) and when they are clusterized in nucleons
parameters(they will be described in this section belgw (right), at the same conditions as above. The saturation val-
will reach stationary values after a given time. We can seales are equal in both cases, but the initial ones are different,
this in Fig. 1 in a typical case witpg=0.24 fn73. We have 0 for the first case and close to 1/2 and 3/2, respectively, for
performed two calculations, under the same conditions, bul,, and M, for the second case. These values are typical
with two different starting points, first from quarks with col- for QGP and a system of nucleons, respectively, as we will
ors randomly distributed, i.e., QGReft panels and second show later in this section.
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To better understand the clusterization of colored quarks
we also define a higher-order parameliéy, related to the
colors of the four closest quarks

N

=
(=3

Njpfevents
(=
(%]

1
Mes = N% a_%‘,Bxfxﬁ +NIATH NINT NN NN+ AN,
(9 00, 5 10 15
. . . . t(fm/c)
wherel(i) is the third quark closest to the particular quark
We normalize the order parameters in this way FIG. 2. Time evolution of surviving/¥’s.

~ 2
Meo = é[Mc2+ 1], (10)  case where the interaction is neglected—which we will dis-

cuss below. The second, and most important reason, is that
5 > other quarks interact with the bound pair, eventually splitting
M ==[Mg+3], (11) it. Intuitively, it is clear that the splitting occurs faster at
9 higher densities where the,c) pair interacts with many
other lighter quarks. The survival probability is related to the
M., = 2 M. +6 12 total number of pairg andc that stay bound after they are
ca [Mg4+6]. (12) . .
15 inserted in our saturated systemwéandd quarks. We have

From the properties of the Gell-Mann matrigds]] it is made a fit to thel/ ¢ survival probability with the expression

easy to derive the following results for the order parameters: Peut) = exd - (t—tp)/7] (13)
if the three closest quarks have different colors, tlﬁfe&
=1 (Mu=1/2), Mg=1 (M4=3/2), and My=1 (Mg,
=3/2). In fact the fourth quark will have the same color of tur=tp + 7, (14)

one of the first three; in this case we have isolated whitgyneret, is the delay time of the/ ¢ before the probability
nucleons. This case is recovered in the calculation at smaflyponentially decreases, atyg, is the lifetime ofd/ in the
densities, where the system is locally invariant for rotation iNsystem, similar to fissiofil5]. A typical example of the fit is
color space. o given in Fig. 2, where the dotted line is an example of the
If the four closest quarks have the same cdly,=M3 real distribution and the full line is obtained through Eg.
=M,=0, we have a condition that we call exotic color clus- (13).
tering. Also in this case the system is locally invariant for In our study of the equation of state of quark matter at
rotation in color space. The corresponding potential energy i¥arious baryon densities we look for some evidence of a
very large and repulsive. phase transition to QGP also through the properties of the
If the three closest quarks have two different colors, indemesonJ/¥ in the medium. This is important because we
pendently of the color of the two closest quarks, i.e., thevant to see if the)/¥ can tell us about the occurrence and
color of the closest particle to quaikis randomly chosen, the order of the phase transitions. In future works for finite
we have the quark-gluon plasma, henM(;Z:Mcg,:%. In ~ Systems we want to test if the properties of fe’ remain.

. ~ . ! 3 In fact, in an infinite system there is unlimited time for dis-
this stateM, can assume three different valugs: 1, 5, gq\ying thed/w, but in a rapidly expanding QGP this disso-
accordlng tq the colors of the four closest q!JarkS and NUMBE(3tion might not occur, also because of the relatively large
of pairs of different color. Iiwe have two pair of quarks with charm mass.
the same colote.g.,rggr) MC4:§. If the quarks have three
different colors and two of the first three have two different

colors(e.g.,rggh) |\~/Ic4:1. If instead three of the four closest

quarks have the same color, but the first three have two dif- \when quarks, objects of different colors, are embedded in
ferent colors(e.g., rggg), MC4=§. In the next sections we a dense medium such as in nuclear matter, the potential be-
will analyze these quantities better in different conditions.comes screened in a similar fashion to ions and electrons in
We note that in the QGP case the system is globally invariantondensed matter. This is thgebye screeningl1,10. The
for rotation in color space. screening can be obtained through the use of a Debye radius
To test for a signature of the various states of matter wen the interaction, as will be discussed in the next section. In
studied the behavior of a pair of quarksindc embedded in  this section, the screening is produced directly, through the
the system, withm.=mz=1.37 GeV. For each density we interaction of colored quarks. But our system is not really an
calculate the lifetime of thé/W particle, through its survival infinite system, like nuclear matter, and this screening is in-
probability in the system. Thd/WV embedded in matter sufficient to screen the linear potential and avoid its diver-
might breakup, essentially for two reasons. The first is thagence forr — <o, hence we introduce a cutoff for the poten-
the internal kinetic energy of thie, c) pair is large compared tial. The cut-off is a free parameter. When quark distances
to the mutual attraction of the componeftisis is true in the are greater than the cutoff, the interaction is equal to zero. Of

and

IIl. RESULTS WITH CUTOFF
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wF ' ] higher densities, the quarks are not in clusters but randomly

distributed, M,=Mg =35 and M=%, and we have the
QGP(pg/ pg~ 1.2). But the system does not stay in this state,
it prefers the exotic color clustering state, where at least the
four closest quarks have the same color. At a density of about

] 1.4-2.4 times the normal density].,=M3=M=0. The
system reaches this state through a first-order phase transi-
tion [1] at about 1.3 times the normal nuclear matter density.
In the figure pertaining to the energy per nucleon, the tran-
sition is signaled by a discontinuity at the same density. The
other discontinuities at larger densitiépg/py>1.5), are
probably due to the clusterization of more than four quarks
of the same color. The reason for the phase transition at such
o a small density is because of the small quark masses and the
large cut-off radius. As we will show more in detail below,
we can change those values and change not only the density
where the transition occurs, but also the order of the transi-
tion, if any.

In the present conditions, the linear term becomes very
T large and positive, hence the attraction between different
clusters of quarks with different colors, far apart in space,
prevails over the repulsion between charges of the same
0ol i color in each cluster; this explains the large values of the

- : 1 energy and consequently of energy density. For instance, we
0E e might have the formation of a three-red-quark cluster and

i ] this is attracted by an analogous three-green-quark cluster.

It is the linear term that produces this very irregular be-
havior. In fact, repeating the same calculations with the Cou-
3 lomb term only(triangles in Fig. 3, we obtain a constant
A . contribution, not only to the energy, but also to the order
10°k - - 4 parameters. The Coulomb term produces a permanent clus-
10 J 10 terization among quarks, which prevents them from reaching

pelo the ideal QGP state. In fact, the density dependence of the

FIG. 3. Energy per nuc|e0(10p panejl energy densit}(second COU|0mb term |S S'm”ar to the Fel’ml energy term. The d|f'
to top), normalized order parametetird paneJ, and time survival ~ ference between the two terms depends on dhevalue,
of J/4 (bottom panelvs density divided by the normal densjty, =~ Where a is the strong constant coupling defined in the po-
for m,=5 MeV, my=10 MeV, and cutoff=3 fm. tential through theA parameter. When the linear term is
_ . . included it prevails with respect to the Coulomb one and the
course, we are aware that by using acutoff_m the linear terrrgystem stays in an exotic color clustering stdtby=M
the confinement property of the quarks might be lost. Nev—_|\~/I -0
erthless we will show that this prescription leads to interest- IrC14T:ié 3 (bottom) we plot the lifetime ofJ/ W versus
ing effects which might be used in finite system studies. R . . .
g g Y baryon density divided by, (full line). When the density

Furthermore, the cutoff is relatively large, thus it takes con-, L L
siderable energy to have isolated quarks. increases, the lifetime decreases because it is more probable

In Fig. 3 we plot some quantities related to the case Withthat a particle of different flavor gets in betweercapair

small quark massesy, =5 MeV, my=10 MeV, and a cutoff and breaks the bond, thus the number of survivfig’s in
of 3 fm ’“ ' ' the medium decreases faster and we have small valugg. of

: tsur behaves similarly to an order parameter; in fact, it has
The energy per nucleon and the corresponding energy .sY ~~. "
density in units ofeg (energy density for a Fermi gd4]) X Jump just \{vhere we found the phase .transn((pjglgo
(top panels versus baryon density divided by the normal ~1-3-Analyzing the particled/"V"in the medium, by turning
densityp,, have a very irregular behavior that we can explain®ff the interaction(squares in the bottom of Fig)3gives a
through the order paramete(third pane. different _beha_vlor,_wz., a monotonic decrease with density.
For small densities the quarks are condensed in clusters df'€ Survival time in the medium is always larger than that
three different colors, the system is locally whiisolated with interaction, because the forces break more easily the

. . bonds between particlgs,c quarks. After the jump we no-
white nuEIeon. The normalized order parametefd., tice a saturation of the surviving probability, again similar to

(circles, Mz (squares and M, (diamonds are near to 1,  the order parameter. We would like to note that even though
hence the two closest particles to quathave different col-  there is not much similarity between the EOS obtained here
ors and consequently the third closest quarkhias the same and nuclear matter with its transition to the QGP, it was the
color of one of the first two or of, M,=M3=M,=1. At  first case we studied and its features are quite general, as we

E/A (GeV/Nucleon)

10
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3 1.0
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E/A (GeV/Nucleon)
- N
=3
~
IS

3 3
120 T L cut-off (fm) cut-off (fm)
115 F ] FIG. 5. Reduced order parameters vs cutoff fiq;=5 MeV,
& my=10 at two different densities.
@ L10F ]
Lost ] Values of order parameters at high density are always
, , , larger than 2/3 foM, andMs, and 4/5 forM4 (one of the
ouliie WY possible values oM., to have QGP. This indicates a re-
ls‘f 09r “*\‘ ] sidual clusterization between quarks of different color, which
3 - we associate to the semiclassical counterpart of pairing. In
’zﬁ osh ] fact, a residual attractive force, especially due to the Cou-
] lomb term, couples quarks of different color.
Also in this case we studied the behavior of thel in

the medium and we obtained a regular behavior for the life-
time, see Fig. 4bottom), i.e., a fast decrease for small den-
s I ) sities and after aboutpg a slow decrease with some fluctua-
E i 1 tion around 2 fm/c. The lifetime ofJ/¥ again behaves
£ | 1 similarly to the order parameters. In conclusion, we can see
that changing quark masses and cutoffs does not result in
exotic color clustering and a first-order phase transition, but
a probable second-order phase transition to QGP.

It is clear that the cut-off value affects the transition point
as a consequence. In Fig. 5 we plot the reduced order param-

etersM.,, M3, M, versus cutoff at a densityg=p, (left)

and atpg=0.3558 fm? (~2.3p,) (right) for m,=5 MeV,
my=10 MeV. Changing the cut-off value from 1.26 to 4 fm
results in a phase transition changing from QGP to an exotic
color clustering state, at 3.1 fm for smaller density and at
2.7 fm for pg=0.3558 fm?, while the system was in a nucle-

Pe/Po

FIG. 4. Energy per nucleoftop panel, energy densitysecond
to top pane), normalized order parametefthird panej, and time
survival of J/ ¢ (bottom panelversus density divided by the normal
densitypy for my;=my=180 MeV, and a cutoff of 1.26 fm.

will see in the following. In fact, a simple scaling around the
critical density would suffice to compare to the other sys-="
tems. We notice also that even though thel is usually onic state for sm_aall cut-off values for both cases.

studied at zero density and finite temperatures, we expect a At pg=3.49 fnT= (~23.2€po) we calculated the order pa-

similar behavior to the one discussed here, with the Fernfidmeters versus cutoff, shown in Fig. 6, fon,=my
motion playing the role of the temperature. =180 MeV (left) and versus quark masses for a cutoff

In order to study the sensitivity of the results to the input™1-26 fm(righ). As in the previous case with smaller quark
parameters, we have repeated the calculations wigh Masses, Fig. 5, for small cut-off values we have typical val-
=180 MeV, my=180 MeV, and a cutoff equal to 1.26 fm. U€S of a nucleonic state. When the cutoff increases we have a

The quark masses are chosen to reproduce the energy pQgpase transition from QGP to an exotic color clustering state,
nucleon of nuclear matter at normal dengit]. In Fig. 4 at a cutoff equal to 2.3 fm. If we analy;e the reduced order
where we plot the same quantities of Fig(tBe symbols Parameters versus quark masses we find an almost constant
have the same meanipgve can see a behavior more regular behavior. Very large varlzitlons~ of q~uark masses correspond
than we did previously. At very high densitigalmost 45 to small variations of theM,, M, M, values, hence the
times the normal densityin the figure relative to the energy

per nucleon(top) we see a flex, probably indicating a —— ' ' BBEARSERRDS
second-order phase transition, which becomes a change ¢ 3 T

slope in energy densitfigure below. The normalized order "% o5l ]
parameters are always positive, i.e., it never happens the% 080f

085

———

__/4--—/

three equal quark color states are, on average, in the sam®
region inr space. At low densities actually they never reach
the value of 1(nucleong, which implies that our potential is
insufficient to get a good clusterization. In fact, we do not
obtain the minimum in energy per nucleon, indicating a con-
dition of stability for the system.
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FIG. 8. Energy per nucleoiop pane), energy densitysecond
to top panel, normalized order parametefthird panej, and time
survival of J/ ¢ (bottom panelversus density divided by the normal
density pg for m,=my=324 MeV.

FIG. 7. Energy per nucleofiop pane), energy densitysecond
to top pane), normalized order parametefthird panej, and time
survival of 3/ ¢ (bottom panelversus density divided by the normal
densitypg for my=5 MeV, my=10 MeV and cutoff=2 fm.

cutoff is mainly responsible for the phase transition at differ-lar to the behavior of the reduced order parameters. This

ent densities. equation of state could be our initial condition to simulate a
This suggests the use of a different cut-off value to changdnite system and a collision between nuclei.

the point of transition. In Fig. 7, we plot the energy per

nucleon, the energy density, the normalized order param-

eters, and the time survival af/ ¢, for m,=5 MeV, my

=10 MeV, and cutoff=2 fm. In this section, to have a good screening of the linear
At pg=p, the total energy per nucleatop) has a value nteraction we use a particular expression of the linear term

similar to the typical value of nuclear matter, but we do notoptained through the resolution of the Poisson equation in
have the expected minimum. Important physics is in factone dimensiorj16]

missing in our approach to describe the system of quark at

small densities, i.e., the nuclear part. #Ad=10p, the energy V2hiin=— >, dipgi» (15
per nucleon and energy densitgecond to top displays i

some fluctuations near the QGP state. In fact, the value of t
reduced order parametefthird pane) are close to 2/3 for

I\~/Icz, Mq and 4/5 forMg,. Increasing the density further

IV. DEBYE SCREENING

r\S?Iherepqi is the linear density obtained in the Thomas-Fermi
approximation

gives a first-order phase transition to exotic color clustering __Es dun\? My [V

state atpg~ 40p,, as signaled by the reduced order param- P~ (6213 1 “E) B (16)
etersM,=M3=My4=0 and the large increase of energy _ _ ° 0 _

and energy density. The lifetime of tdéW particle displays Er, is the Fermi energy calculated at large distances,
some fluctuations around A@and a jump around 4§, simi-  where the fieldg,,(r) — 0 andPg =(672/gepe) ™ i.e., we
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require that all the dependence is contained in the field and V. SUMMARY

the density reduces to the free one for large distances from a

given quark. Hence In conclusion, in this work we have discussed a semiclas-

sical molecular dynamics approach to infinite matter at finite
baryon densities and zero temperature starting from a phe-
nomenological potential that describes the interaction be-
tween quarks with color. Pauli blocking, necessary for fermi-
ons at zero temperature, is enforced through a constraint to
the average one-body occupation function. Color degrees of

K
—exp(-xifij) pq# 0
din =\ Xi SO \

Krij pq:0

with freedom for quarks are responsible for Debye screening,
4 g 1’%’@ even t_hough we have adopted some prescription ma_linly for

Xo=—= <—q-> &-_ (17) numerical reasons to screen the linear term at large distances.

V3 \ 677 Pr Depending on parameters for the quark masses and the po-

tential, we obtain an EOS which exhibits a first, second, or a

X 1S the linear Debye inverse rad|_{1196], which f_or large simple crossover to the QGP. We stress that these transitions
densities go to a constant. Also the linear potential goes to a . X
X . are due to changes in the system symmetries. In fact, we

constant and not to zero like for a total screening, but for, : . . o
-have a local invariance for rotation at low densities, i.e., for

distance larger than the Debye radius, the potential ISnucleons This means that we can rotate locally the color of
screenedK is the string tension defined through thepa- ' Y

the quarks with no change in the energy. The QGP displays a

rameter[14]. We stress that the confinement property is re- . . .
. o global invariance, i.e., we can change randomly the quarks
covered in the zero density limit.

In Fig. 8 we plot some results with this potential amg colors anywhere in the system without changing the system

S roperties. Exotic color clustering is also a local property, in
=my=324 MeV. Again in this case we choose the masses o
quarks to reproduce the energy per nucleon of nuclear matte?Ct’ we can c_hange the cqlor randomlly, but only within a
at normal density. Cluster of identical colors. It is the breaking of these symme-

In the top panel of Fig. 8, relative to energy per nucleontrles that gives the phase transitions. A suitable physical ob-

i = " : servable for the phase transition could be #i#&. In fact,
we find a minimum for low densities. The energy density, for S ; .
large densities, shows some fluctuations, which may be dul® have shown that fo_r infinite systems it behaves like an
' ' order parameter and it is also able to distinguish between a

to numerical fluctuations. first-order and a second-ord@r a crossoverphase transi-
The order parameters are smooth functions of the densit b

and also in this case they never reach the QGP vatigited ¥lon. Finite-size and dynamical studies within the model pro-
. P =, . posed will reveal if such a property remains. Those studies
line): M;=Mg=5 and M=z (or other possible valugs

: ; 4V ) < could also give indications on the possibility that the phase
i.e., aresidual clusterization remains. Probably it is an effecfransitions are washed out by finite-size effects. Also, other
of the instability of quark pairs of different colors that pro- jngjcators of a phase transition such as intermittency can be

duces the instability at large energy densities. Also, in thiasily studied in the framework of our model.
case the reduced order parameters are always positive, and

we never have exotic color clustering. The calculated life-
time of J/¥ in the medium versus density is shown in Fig. 8
(bottom) and it behaves like the order parameters.
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