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We develop the notion of shower partons and determine their distributions in jets in the framework of the
recombination model. The shower parton distributions obtained render a good fit of the fragmentation func-
tions. We then illustrate the usefulness of the distributions in a problem where a jet is produced in the
environment of thermal partons as in heavy-ion collisions. The recombination of shower and thermal partons
is shown to be more important than fragmentation. Application to the study of two-particle correlation in a jet
is also carried out.
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I. INTRODUCTION

The theoretical description of hadron production at large
transverse momentumspTd in either hadronic or nuclear col-
lisions at high energies is traditionally framed in a two-step
process that involves first a hard scattering of partons, fol-
lowed by the fragmentation of the scattered parton to the
detected hadron[1,2]. The first part is calculable in pertur-
bation QCD, while the second part makes use of fragmenta-
tion functions that are determined phenomenologically. Such
a production mechanism has recently been found to be inad-
equate for the production of particles at intermediatepT in
heavy-ion collisions[3–5]. Instead of fragmentation it is the
recombination of partons that is shown to be the more ap-
propriate hadronization process, especially when the soft par-
tons are involved. Although at extremely highpT fragmenta-
tion is still dominant, it is desirable to have a universal
description that can be applied to anypT, based on the same
hadronization scheme. To achieve that goal it is necessary
that the fragmentation process can be treated as the result of
recombination of shower partons in a jet. The purpose of this
paper is to take that first step, namely, to introduce the notion
of shower partons and to determine their distributions in or-
der to represent the phenomenological fragmentation func-
tions in terms of recombination.

The subject matter of this work is primarily of interest
only to high-energy nuclear collisions because hadronization
in such processes is always in the environment of soft par-
tons. Semihard shower partons initiated by a hard parton can
either recombine among themselves or recombine with soft
partons in the environment. In the former case the fragmen-
tation function is reproduced, and nothing new is achieved. It
is in the latter case that a component emerges in heavy-ion
collisions, one that has escaped theoretical attention thus far.
It should be an important hadronization process in the inter-
mediatepT region. Our main objective here is to quantify the
properties of shower partons and to illustrate the importance
of their recombination with thermal partons. The actual ap-
plication of the shower parton distributions(SPD) developed
here to heavy-ion collisions will be considered elsewhere[6].

The concept of shower partons is not new, since attempts
have been made to generate such partons in perturbative

QCD (pQCD) processes as far as is permitted by the validity
of the procedure. Two notable examples of such attempts are
the work of Marchesini and Webber[7] and Geiger[8].
However, since pQCD cannot be used down to the hadroni-
zation scale, the branching or cascading processes terminate
at the formation of color-singlet prehadronic clusters, which
cannot easily be related to our shower partons and their had-
ronization. We shall discuss in more detail at the end of Secs.
III and IV the similarities and differences in the various ap-
proaches.

II. RECOMBINATION MODEL FOR FRAGMENTATION

The fragmentation of a parton to a hadron is not a process
that can be calculated in pQCD, although theQ2 evolution of
the fragmentation function(FF) is calculable. The FF’s are
usually parametrized by fitting the data frome+e− annihila-
tions [9–11] as well as frompp̄ ande±p collisions [11]. Al-
though the QCD processes of generating a parton shower by
gluon radiation and pair creation cannot be tracked by per-
turbative methods down to low virtuality, we can determine
the SPD’s phenomenologically in much the same way that
the FF’s themselves are, except that we fit the FF’s, whereas
the FF’s are determined by fitting the data. An important
difference is that both the shower partons and their distribu-
tions are defined in the context of the recombination model,
which is the key link between the shower partons(inside the
black box called FF) and the observed hadron(outside the
black box).

In the recombination model the generic formula for a had-
ronization process is[12]

xDsxd =E
0

x dx1

x1
E

0

x dx2

x2
Fqq̄8sx1,x2dRsx1,x2,xd, s1d

where Fqq̄8sx1,x2d is the joint distribution of a quarkq at
momentum fractionx1 and an antiquarkq̄8 at x2, and
Rsx1,x2,xd is the recombination function(RF) for the forma-
tion of a meson atx. We have written the left-hand side
(LHS) of Eq. (1) as xDsxd, the invariant FF, but the right-
hand side(RHS) would have the same form if the equation
were written for the inclusive distribution,xdN/dx, of a me-

PHYSICAL REVIEW C 70, 024904(2004)

0556-2813/2004/70(2)/024904(7)/$22.50 ©2004 The American Physical Society70 024904-1



son produced in a collisional process. In the former case of
fragmentation,Fqq̄8 refers to the shower partons initiated by
a hard parton. In the latter case of inclusive production,Fqq̄8
refers to theq and q̄8 that are produced by the collision and
are to recombine in forming the detected meson. The equa-
tions for the two cases are similar because the physics of
recombination is the same. In either case the major task is in
the determination of the distributionFqq̄8.

We now focus on the fragmentation problem and regard
Eq. (1) as the basis of the recombination model for fragmen-
tation. The LHS is the FF, known from the parametrization
that fits the data. The RHS has the RF that is known from
previous studies of the recombination model[12,13] and will
be specified in the next section. Thus, it is possible to deter-
mine the properties ofFqq̄8 from Eq. (1). To facilitate that
determination we shall assume thatFqq̄8 is factorizable ex-
cept for kinematic constraints, i.e., in schematic form we
write it as

Fqq̄8
sid sx1,x2d = Si

qsx1dSi
q̄8sx2d, s2d

whereSi
qsx1d denotes the distribution of shower partonq with

momentum fractionx1 in a shower initiated by a hard parton
i. The exact form with proper kinematic constraints will be
described in detail in the next section. Here we remark on the
general implications of Eqs.(1) and (2).

The important point to emphasize is that we are introduc-
ing the notion of shower partons and their momentum distri-
butionsSi

jsx1d. The significance of the SPD is not to be found
in problems that involve only the collisions of leptons and
hadrons, for which the fragmentation of partons is known to
be an adequate approach, and the recombination of shower
partons merely reproduces what is already known. The
knowledge about the SPD becomes crucial when the shower
partons recombine with other partons that are not in the jet
but are in the ambient environment. We shall illustrate this
important point later.

It should be recognized that the SPD that we shall deter-
mine through the use of Eqs.(1) and (2) depends on the
specific form ofRsx1,x2,xd, which in turn depends on the
wave function of the meson produced. It would be inconsis-
tent to use ourSi

j given below in conjunction with some
approximation of the RF that differs significantly from ourR.
The recombination of two shower partons must recover the
FF from which the SPD’s are obtained.

Finally, we remark thatSi
j should in principle depend on

Q2 at which theDsx,Q2d is used for its determination, since
Q2 evolution affects both. It is outside the scope of this paper
to treat theQ2 dependence ofSi

j. Our aim here is to show
how Si

j can be determined phenomenologically, and how it
can be applied, whenQ2 is fixed. The same method can be
used to determineSi

j at other values ofQ2. In practice, theQ2

dependence ofSi
j is not as important as the inclusion of the

role of the shower partons in the first place at any reasonably
approximateQ2 in heavy-ion collisions where hard partons
are produced in a range of transverse momentum.

III. SHOWER PARTON DISTRIBUTIONS

In order to solve Eqs.(1) and(2) for Si
j, we first point out

that there are variousDsxd functions corresponding to vari-

ous fragmentation processes. We shall select five of them,
from which we can determine five SPD’s. Three of them
form a closed set that involves no strange quarks or mesons.
Let us start with those three. Consider the light quarksu, d,

ū, d̄, and gluong. They can all fragment into pions. To re-
duce them to three essential FF’s, we consider the three basic
typesDV

p, DS
p, andDG

p, that correspond to valence, sea, and
gluon fragmentation, respectively. If the fragmenting quark
has the same flavor as that of a valence quark inp, then the
valence part of the fragmentation is described byDV

p, e.g.,
uv→p+, dv→p−, ūv→p−, the subscriptv referring to the
valence component. All other cases of quark fragmentation
are described byDS

p, e.g., u→p−, d→p+, ū→p+. If the
initiating parton is a gluon, then we haveDG

p for any state of
p. Those FF’s are given by Ref.[9] in parametric form. We
shall use them even though they are older than the more
recent ones[10,11,14], which do not give theDV

p and DS
p

explicitly. Our emphasis here is not on accuracy, but on the
feasibility of extracting the SPD’s from the FF’s of the type
discussed above. We shall determineSi

j from the parametri-
zation of Ref.[9] with Q2 fixed at 100 GeV2 and demon-
strate that the use of shower partons is important in heavy-
ion collisions.

For the SPD’s we use the notationKNS andL for valence
and sea-quark distributions, respectively, in a shower initi-
ated by a quark or antiquark, andG for any light quark
distribution in a gluon-initiated shower. That is, for example,
KNS=Su

uv, L=Su
d, G=Sg

u. It should be recognized thatL also
describes the sea quarks of the same flavor, such asSu

usea, so
that the overall distribution of shower quark that has the
same flavor as the initiating quark(e.g.,u→u) is given by

K = KNS+ L. s3d

It is evident from the above discussion that there is a closed
relationship that is independent of other unknowns. It fol-
lows from Eq. (1) when restricted to sea-quark fragmenta-
tion:

xDS
psxd =E dx1

x1

dx2

x2
Lsx1dLS x2

1 − x1
DRpsx1,x2,xd. s4d

The sea-SPDLszd can be determined from this equation
alone. In Eq.(4) we have exhibited the argument of the sec-
ondL function that reflects the momentum constraint, i.e., if
one shower parton has momentum fractionx1, then the mo-
mentum fraction of the other recombining shower parton
cannot exceed 1−x1, and can only be a fraction of the bal-
ancex2/ s1−x1d. Symmetrization ofx1 andx2 is automatic by
virtue of the invariance ofRpsx1,x2,xd under the exchange of
x1 andx2.

After Lszd is determined from Eq.(4), we next can obtain
KNS from

xDV
psxd =E dx1

x1

dx2

x2
hKNSsx1d,Lsx2djRpsx1,x2,xd, s5d

where the curly brackets define the symmetrization of the
leading parton momentum
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hKNSsx1d,Lsx2dj ;
1

2
FKNSsx1dLS x2

1 − x1
D

+ KNSS x1

1 − x2
DLsx2dG . s6d

Finally, we have the closed equation for the gluon-initiated
shower

xDG
psxd =E dx1

x1

dx2

x2
Gsx1dGS x2

1 − x1
DRpsx1,x2,xd. s7d

In this nonstrange sector we have three SPD’s(L, KNS, and
G) to be determined from the three phenomenological FF’s
(DS

p, DV
p, andDG

p).
In extending the consideration to the strange sector, we

must make use ofL andG determined in the above set and
two FF’s DS

K and DG
K that describe the fragmentation of a

nonstrange quark and gluon, respectively, to a kaon. That is,
we have

xDS
Ksxd =E dx1

x1

dx2

x2
hLsx1d,Lssx2djRKsx1,x2,xd, s8d

xDG
Ksxd =E dx1

x1

dx2

x2
hGsx1d,Gssx2djRKsx1,x2,xd, s9d

where Ls and Gs are two additional SPD’s specifying the
strange quark distributions in showers initiated by non-
strange and gluon partons, respectively.RK is the RF for
kaon.

To complete the description of the integral equations, we
now specify the RF’s. They depend on the square of the
wave functions of the mesons,p andK, whose structures in
momentum space have been quantified in the valon model
[12,13]. Unlike the case of the proton, whose structure is
well studied by deep inelastic scattering so that the valon
distribution can be obtained from the parton distribution
functions[15], the RF for the pion relies on the parton dis-
tribution of the pion probed by the Drell-Yan process[16].
The derivation of the RF’s for bothp andK is given in Ref.
[13]; they are

Rpsx1,x2,xd =
x1x2

x2 dSx1

x
+

x2

x
− 1D , s10d

RKsx1,x2,xd = 12Sx1

x
D2Sx2

x
D3

dSx1

x
+

x2

x
− 1D . s11d

The d functions guarantee the momentum conservation of
the recombining quarks and antiquarks, which are dressed
and become the valons of the produced hadrons.

Since the recombination process involves the quarks and
antiquarks, one may question the fate of the gluons. This
problem has been treated in the formulation of the recombi-
nation model[12], where gluons are converted to quark-
antiquark pairs in the sea before hadronization. That is, the
sea is saturated by the conversion to carry all the momentum,
save the valence parton. Such a procedure has been shown to
give the correct normalization of the inclusive cross section

of hadronic collisions[12]. In the present problem of parton
fragmentation we implement the recombination process in
the same framework, although gluon conversion is done only
implicitly. What is explicit is that the gluon degree of free-
dom is not included in the list of shower partons. It means
that in the equations forDV

p, DS
p, andDG

p (and likewise in the
strange sector) only KNS, L, andG appear; they are the SPD’s
of quarks and antiquarks that are to recombine. Those quarks
and antiquarks must include the converted sea, since they are
responsible for reproducing the FF’s through Eqs.(4), (5),
and(7) without gluons. Thus the shower partons whose mo-
mentum distributions we calculate are defined by those equa-
tions that have no gluon component for recombination, and
would not be the same as what one would conceptually get
(if it were possible) in a pQCD calculation that inevitably
has both quarks and gluons.

It should be noted that our procedure of converting gluons
to qq̄ pairs is essentially the same as what is done in Ref.[7],
whose branching processes terminate at the threshold of the
nonperturbative regime. In that approach, nearby quarks and
antiquarks that are the products of the conversion from dif-
ferent gluons form color-singlet clusters of various invariant
masses that subsequently decay(or fragment as in strings)
sequentially through resonances to the lowest lying hadron
states[17]. A similar but not identical approach is taken in
Ref. [18], where gluons are not directly converted toqq̄
pairs, but are either absorbed or annihilated byg+g→q+ q̄
Born-diagram processes.

IV. RESULTS

We now proceed to solve the integral equations for the
five FF’s, which are known from Ref.[9]. Those equations
relate them to the five unknown SPD’s:KNS, L, G, Ls, and
Gs. If those equations were algebraic, we obviously could
solve them for the unknowns. Being integral equations, they
can nevertheless be “solved” by a fitting procedure that
should not be regarded as being unsatisfactory for lack of
mathematical rigor, since the FF’s themselves are obtained
by fitting the experimental data in some similar manner. In-
deed, the FF’s in the next-to-leading order are given in pa-
rametrized forms[9]

Dk
hsxd = Nxas1 − xdbs1 + xdg, s12d

where the parameters forQ2=100 GeV2 are given in Table I
for k=S,V,G, andh=p ,K.

All five SPD’s are denoted collectively bySi
j with i

=q,q̄,g and j =q,s,q̄, s̄, whereq can be eitheru or d. If in i

TABLE I. Parameters in Eq.(12) for Q2=100 GeV2.

N a b g

DS
p 2.7236 −0.734 3.384 −5.471

DV
p 0.2898 −1.040 1.608 −0.111

DG
p 0.7345 −1.112 2.547 −0.541

DS
K 0.2106 −1.005 2.548 −0.620

DG
K 0.0768 −1.481 2.489 −0.778
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the initiating hard parton is ans quark, it is treated asq. That
is not the case ifs is in the produced shower. Our parametri-
zation ofSi

j has the form

Si
jszd = Azas1 − zdbs1 + czdd, s13d

where the dependences of the parametersA, a, etc., oni and
j are not exhibited explicitly, just as in Eq.(12). Substituting
Eqs. (10) and (11) into Eqs.(4)–(9), we can determine the
parameters one equation at a time, i.e.,L from DS

p, G from
DG

p, and thenKNS from DV
p and so on. In most cases it can be

shown that thex→1 limit requiresb=b. The final results of
the fits are shown in Fig. 1 with the corresponding param-
eters given in Table II.

It is evident from Fig. 1 that all the fits are very good,
except in the lowx region ofDV

psxd. In the latter case we are
constrained by the condition

E dz

z
KNSszd = 1 s14d

that is imposed by the requirement that there can be only one
valence quark in the shower partons. However, the fit for
x.0.4 is excellent, and that is the important region for the
determination ofKNSszd. In application tou→p+, say, theu
quark in the shower must have both valence and sea quarks
so the shower distribution for theu quark is always the sum
Kszd=KNSszd+Lszd. Since Lszd is large at smallz, and is
accurately determined, the net result forKszd should be quite
satisfactory.

It is remarkable how well the FF’s in Fig. 1 are repro-
duced in the recombination model. The corresponding SPD’s
that make possible the good fit are shown in Fig. 2. They
have very reasonable properties, namely:(a) valence quark is
harder,(b) sea quarks are softer,(c) gluon jet has a higher
density of shower partons, and(d) the density of produceds
quarks is lower than that of the light quarks.

It is appropriate at this point to relate our approach to
those of Marchesini-Webber[7] and Geiger[8], which are
serious attempts to incorporate the QCD dynamics in their
description of the branching and collision processes. The
former is done in the momentum space only, whereas the
latter is formulated in space time as well as in momentum
space. The parton cascade model of Geiger is a very ambi-
tious program that treats a large variety of processes ranging
from e+e− annihilation[18] to deep inelastic scattering[19]
to hadronic and nuclear collisions[20]. The evolution of par-
tons is tracked by use of relativistic transport equations with
gain and loss terms. Cluster formation takes into account the
invariant distance between near-neighbor partons. Cluster
decay makes use of the Hagedorn spectrum and the particle
data table. Because of the complexity of the problems, both
QCD models are implemented by Monte Carlo codes. The
predictive power of the models is exhibited as numerical
outputs that cannot easily be adapted for comparison with
our results on the SPD’s. Our approach makes no attempt to
treat the QCD dynamics; however, the SPD’s obtained are
guaranteed to reproduce the FF’s on the one hand, and are
conveniently parametrized for use in other context that goes
beyond fragmentation, as we shall show in the next section.
From the way the color-singlet clusters are treated in the
QCD models, it is clear that our shower partons do not cor-
respond to the partons of those models at the end of their
evolution processes, except in the special case when the clus-
ter consists of only one particle. In our approach, the non-
perturbative part of how the shower partons dress themselves
and recombine to form hadrons with the proper momentum-
fraction distributions is contained in the RF’s. Such shower
partons that are ready to hadronize are sufficiently far from
other shower partons as to be independent from them. In
general, they cannot be identified with theq andq̄ that form
the color-singlet clusters in the QCD models, but are more
closely related to the constituents of the final hadrons, as in
the case of quarkonium formation[21]. The distribution of

FIG. 1. Fragmentation functions, as parametrized in Ref.[9], are
shown in symbols, while those calculated in the recombination
model are shown by the solid lines. All curves are forQ2

=100 GeV2.

TABLE II. Parameters in Eq.(13).

A a b c d

KNS 0.333 0.45 2.1 5.0 0.5

L 1.881 0.133 3.384 −0.991 0.31

G 0.811 −0.056 2.547 −0.176 1.2

Ls 0.118 −0.138 2.3 0.90 0.1

Gs 0.069 −0.425 2.489 −0.5 1.1

FIG. 2. Shower parton distributions determined in the recombi-
nation model, corresponding to the parametrization given in Table
II.
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those constituents in a hard-parton shower cannot be dis-
played in the QCD models, but are determined by us by
solving Eqs.(4) and (9).

V. APPLICATIONS

As we have stated in the introduction, the purpose of de-
termining the SPD’s is for their application to problems
where the FF’s are insufficient to describe the physics in-
volved. We consider in this section two such problems as
illustrations of the usefulness of the SPD’s. The first is when
a hard parton is produced in the environment of thermal
partons, as in heavy-ion collisions. The second is the deter-
mination of two-pion distribution in a jet.

Let us suppose that au quark is produced atkT
=10 GeV/c in a background of thermal partons whose in-
variantkT distribution is

TskTd = kT
dN

dkT
= CkTe−kT/T. s15d

Let the parametersC and T be chosen to correspond to a
typical situation in Au+Au collisions atÎs=200 GeV[6]

C = 23.2 GeV−1, T = 0.317 GeV. s16d

The high-kT u quark generates a shower of partons with vari-

ous flavors. Consider specificallyu andd̄ in that shower. The

valence quark distribution is given byKNSsx1d, while the d̄
sea-quark distribution(including the ones converted from the
gluons) is given byLsx1d. In Fig. 3 we plotdN/kTdkT for (a)

u quark(valence and sea) in solid line,(b) d̄ sea antiquark in

dashed-dotted line, and(c) d̄ thermal antiquark in dashed
line. They correspond tokT

−23 (invariant distributionsK
=KNS+L, L, andT, respectively), in which Ksx1d and Lsx1d
are evaluated atkT=x1kT

max, with kT
max=10 GeV/c. Note that

the thermal distribution is higher than the shower parton dis-
tributions forkT,1 GeV/c. That makes a crucial difference
in the recombination of those partons. Such a thermal distri-
bution is absent inpp collisions, whose soft partons are at
least two orders of magnitude lower. Ine+e− annihilation
there are, of course, no soft partons at all.

We now calculate the production ofp+ from the assem-

blage ofu and d̄ partons. The thermal-showersTSd recom-
bination gives rise to

dN
p+
TS

pTdpT
=

1

pT
3E

0

pT

dkTKskT/kT
maxdTspT − kTd, s17d

where Eq.(10) has been used in an equation such as Eq.(1)
for xdNp /dx, but expressed fordNp /pTdpT. Using Eqs.(3)
and(15) and the parametrizations given in Table II, the inte-
gral in Eq.(17) can readily be evaluated. The result is shown
by the solid line in Fig. 4. It is to be compared with thepT
distribution from the fragmentation of theu quark to p+,
which is

dN
p+
SS

pTdpT
=

1

pT
3E

0

pT

dkTHKS kT

kT
maxD,LS pT − kT

kT
max− kT

DJ , s18d

Since this is just retracing the path in which we obtainedK
and L from the D function in the first place, Eq.(18) can
more directly be identified with

dNp+
frag

pTdpT
= spTkT

maxd−1FDV
pS pT

kT
maxD + DS

pS pT

kT
maxDG . s19d

The result is shown by the dashed-dotted line in Fig. 4. Evi-
dently, the contribution from the thermal-shower recombina-
tion is much more important than that from fragmentation in
the range ofpT shown. Despite the fact thatTskTd is lower
than LskTd for kT.1.5 GeV/c, its dominance at
kT,1.5 GeV/c is enough to result in theTS recombination
to dominate over theSS recombination for allpT,8 GeV/c.
This example demonstrates the necessity of knowing the
SPD’s in a jet, sinceKsx1d is used in Eq.(17). If SS recom-
bination is the only important contribution, as inpp colli-
sions, then fragmentation as in Eq.(19) is all that is needed,
and the search for SPD’s plays no crucial role. In realistic
problems the hard-parton momentumkT

max has to be inte-
grated over the weight of the jet cross section. However, for
our illustrative purpose here, that is beside the point.

Our next example is the study of the dihadron distribution
in a jet. We need only carry out the investigation here for a
jet in vacuum, since the replacement of a shower parton by a
thermal parton for a jet in a medium is trivial, having seen
how that is done in the replacement of Eq.(18) by Eq. (17)
in the case of the single-particle distribution. Consider the
joint distribution of two p+ in a jet initiated by a hardu

FIG. 3. Parton distributions in transverse momentumkT for
valence1sea quark(solid line), sea quark(dashed-dotted line), and
thermal partons(dashed line).

FIG. 4. Distributions ofp+ in pT arising from thermal-shower
recombination(solid line) and shower-shower recombination, i.e.,
fragmentation(dashed-dotted line).
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quark. As we shall work in the momentum fraction variables,
the value of the momentum of the initiatingu quark is irrel-
evant, except that it should be high. LetX1 andX2 denote the
momentum fractions of the twop+, andxi denotes that of the
ith parton,i =1, . . . ,4. Then, since only oneu quark can be
valence, the other three quarks being in the sea, we have one
K, threeL, and twoR functions. Combinatorial complica-
tions arise when we impose the condition thatoixi ,1 for i
=1,2,3,4.There are two methods to keep the accounting of
the different orderings of the fourxi.

Method 1.
Let one ordering be

SPDsx1x2x3x4d = Ksx1dLS x2

1 − x1
DLS x3

1 − x1 − x2
D

3LS x4

1 − x1 − x2 − x3
D . s20d

There are 4! ways to rearrange the fourxi in all orders. How-
ever, they are to be convoluted withRpsx1,x2,X1d, which is
symmetric inx1↔x2, and similarly withRpsx3,x4,X2d. Thus
there are 4! /2!2! independent terms. SinceK can appear at
any one of the four positions in Eq.(20), we have altogether
24 terms. Thus we have

X1X2

dNp+p+

dX1dX2
=E Sp

i=1

4
dxi

xi
DF 1

24oP SPDsx1x2x3x4dG
3Rpsx1,x2,X1dRpsx3,x4,X2d, s21d

whereoP symbolizes the permutation of allxi and summing
over all four positions ofK, but eliminating redundant terms
that are symmetric under the interchanges ofx1↔x2 and
x3↔x4.

Method 2.
Let us fix the ordering in Eq.(20) but permute the con-

tributing xi to X1 and X2. There are six arrangements ofxi
and xj in Rpsxi ,xj ,X1dRpsxi8 ,xj8 ,X2d, while counting inxi8
and xj8 is unnecessary. Let us denote the summation over
them byoQ. Thus we have

X1X2

dNp+p+

dX1dX2
=E Sp

i=1

4
dxi

xi
DF1

4o
K

SPDsx1x2x3x4dG
3F1

6o
Q

Rpsxi,xj,X1dRpsxi8,xj8,X2dG s22d

where oK denotes summing over the four positions ofK.
Equation(22) is equivalent to Eq.(21).

It should be noted that not all terms in these equations can
be expressed in the form factorizable FF’s. One example that
can is

E Sp
i=1

4
dxi

xi
D1

2
FKsx1dLS x2

1 − x1
D

+ Lsx1dKS x2

1 − x1
DGRpsx1,x2,X1d

3 LS x3

1 − x1 − x2
DLS x4

1 − x1 − x2 − x3
DRpsx3,x4,X2d

= Du
p+

sX1dDS
p+

fX2/s1 − X1dg. s23d

Because of the presence of terms that cannot be written in
factorizable form, the two-particle distribution cannot be ad-
equately represented by the FF’s only.

Using the SPD’s obtained in the previous section, we get
the results shown in Fig. 5, which exhibits theX2 distribution
for four fixed values ofX1. This type of correlation in parton
fragmentation has never been calculated before. Although
the shapes of theX2 distributions look similar in the log scale
in Fig. 5, there is significant attenuation asX2→1−X1 for
each value ofX1. Thus, the effective slope becomes steeper
for largerX1. Recent experiments at the relativistic heavy-ion
collider have begun to measure the distribution of particles
associated with triggers restricted to a small interval. The
extension of our calculation here to such problems will need
the input of jet cross sections for all hard partons in heavy-
ion collisions and the participation of thermal partons in the
recombination. Here we only demonstrate the utility of the
SPD’s in the study of dihadron correlation.

VI. CONCLUSION

We have described the fragmentation process in the
framework of recombination. The shower parton distribu-
tions obtained are shown to be useful in problems where the
knowledge of the fragmentation functions alone is not suffi-
cient to provide answers to questions concerning the interac-
tion between a jet and its surrounding medium or between
particles within a jet. Such questions arise mainly in nuclear
collisions at high energies.

In our view the basic hadronization process is recombina-
tion, even for fragmentation in vacuum. Since the recombi-
nation process can only be formulated in the framework of a
model, the shower parton distributions obtained are indeed
model dependent. That is a price that must be paid for the

FIG. 5. Two p+ correlated distribution in au-quark initiated
jet.
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study of hadrons produced at intermediatepT where the in-
teraction between soft and semihard partons cannot be ig-
nored, and where perturbative QCD is not reliable. Once
recombination is adopted for treating hadronization in thatpT
range, the extension to higherpT can remain in the recombi-
nation framework, since the fragmentation process is recov-
ered by the recombination of two shower partons. For hadron
production in heavy-ion collisions at superhigh energies,
such as the large hadron collider, then the high density of
hard partons produced will require the consideration of re-
combination of hard partons from overlapping jets. Thus it is
sensible to remain in the recombination mode for allpT.

We have shown in this paper how the SPD’s can be de-
termined from the FF’s. Although we have determined the
SPD’s at only one value ofQ2 for the FF’s, it is clear that the
same procedure can be followed for other values ofQ2. The
formal description of how theQ2 dependences of the FF’s
can be transferred to theQ2 dependences of the SPD’s is a
problem that is worth dedicated attention. While the numeri-

cal accuracy of the SPD’s obtained here can still be im-
proved, especially at lowerQ2, for the purpose of phenom-
enological applications the availability of the
parametrizations given in Table II is far more important than
not taking into account at all the shower partons and their
interactions with the medium in the environment. TheQ2

evolution of the SPD’s may have to undergo a long process
of investigatory evolution of its own just as what has hap-
pened to the FF’s. That can proceed in parallel to the rich
phenomenology that can now be pursued in the application
of the role of shower partons to heavy-ion collisions.
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