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We examine the two-pion interferometry for a granular source of quark-gluon plasma droplets. The evolu-
tion of the droplets is described by relativistic hydrodynamics with an equation of state suggested by lattice
gauge results. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration
characterized by a freeze-out temperatureTf. We find that the HBT radiusRout decreases if the initial size of the
droplets decreases. On the other hand,Rside depends on the droplet spatial distribution and is relatively
independent of the droplet size. It increases with an increase in the width of the spatial distribution and the
collective-expansion velocity of the droplets. As a result, the value ofRout can lie close toRside for a granular
quark-gluon plasma source. The granular model of the emitting source may provide an explanation to the
RHIC HBT puzzle and may lead to a new insight into the dynamics of the quark-gluon plasma phase transition.
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Recent experimental pion HBT measurements at RHIC
give the ratio ofRout/Rside<1 [1,2] which is contrary to
many theoretical expectations[1,3–8]. This RHIC HBT
puzzle hints that the pion emitting time may be very short
[9,10]. Various models have been put forth to explain the
HBT puzzle[11–16].

In this paper, we propose a simple model of a granular
source of quark-gluon plasma droplets[17–21] to explain the
puzzle. The possible occurrence of a granular structure of
droplets during a first-order QCD phase transition was dis-
cussed by Witten[22] and examined by many authors
[23–27]. We assume that pions are emitted thermally from
hydrodynamically expanding droplets at a freeze-out tem-
peratureTf and use relativistic hydrodynamics to describe
the evolution of quark-gluon plasma droplets with an equa-
tion of state suggested by QCD lattice gauge results
[3,28–30]. The two-pion correlation function can then be cal-
culated after knowing the hydrodynamical solution
[20,21,31]. As the average freeze-out time is approximately
proportional to the initial droplet size, we would like to see
whether a granular source with many smaller droplets and
their corresponding smaller freeze-out times will lead toRout
close toRside.

We study a quark-gluon plasma with no net-baryon con-
tent and use an equation of state of the fluid in terms of the
entropy density functionssTd by [3,28–30]

ssTd
sc

= F T

Tc
G3S1 +

dQ − dH

dQ + dH
tanhFT − Tc

DT
GD . s1d

HeredQ anddH are, respectively, the degrees of freedom in
the quark-gluon plasma phase and the hadronic phase,Tc
<160 MeV is the transition temperature,sc is the entropy
density atTc, andDT (between 0 and 0.1Tc) is the width of
the transition[3,28]. In this paper, we takedQ=37, dH=3,
Tc=160 MeV as in Ref.[3,28], and takeDT=0.05Tc.

We shall make the approximation that the hydrodynamical
solution for many independent droplets can be obtained by

superposing the hydrodynamical solution of a single droplet.
It suffices to focus attention on the hydrodynamics of a
single droplet. Knowing the entropy densityssTd, one can get
the pressurep, energy densitye, and the velocity of soundcS
in the droplet with the following equations as in Ref.[3,28],

p =E
0

T

dT8ssT8d, e = Ts− p, cS
2 =

dp

de
. s2d

The energy momentum tensor of a thermalized fluid cell
in the center-of-mass frame of the droplet is[3,32,33]

Tmnsxd = fesxd + psxdgumsxdunsxd − psxdgmn, s3d

where x is the space-time coordinate,um=gs1,vd is the
4-velocity of the cell, andgmn is the metric tensor. With the
local conservation of energy and momentum, one can follow
Rischke and Gyulassy and get the equations for spherical
geometry as[3,28]

]tE + ]rfsE + pdvg = − F, s4d

]tM + ]rsMv + pd = − G, s5d

whereE;T00, M ;T0r,

F =
2v
r

sE + pd, G =
2v
r

M . s6d

We assume the initial conditions as[3,28]

es0,rd = He0, r , rd,

0, r . rd,
vs0,rd = H0, r , rd,

1, r . rd,
s7d

wheree0=1.875Tcsc [3,28] is the initial energy density of the
droplets, andrd is the initial droplet radius. Using the Harten-
Lax-van Leer-Einfeldt(HLLE) scheme[3,28,34,35] and the
relation of p=psed obtained from Eqs.(1) and (2), one can
get the solution of the hydrodynamical equations forF=G
=0. One then obtains the solution for Eqs.(4) and (5) by
using the Sod’s operator splitting method[3,28,36]. The grid
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spacing for the HLLE scheme is taken to beDx=0.01rd, and
the time step for the HLLE scheme and Sod’s method cor-
rector isDt=0.99Dx [3,28]. Figures 1(a) and 1(b) show the
temperature and velocity profiles of the droplet. Figure 1(c)
gives the isotherms for the droplet.

The two-particle Bose-Einstein correlation function is de-
fined as the ratio of the two-particle momentum distribution
Psk1,k2d to the product of the single-particle momentum dis-
tribution Psk1dPsk2d. For a chaotic pion-emitting source,
Pskid si =1,2d andPsk1,k2d can be expressed as[37]

Pskid = o
Xi

A2ski,Xid, s8d

Psk1,k2d = o
X1,X2

uFsk1,k2;X1,X2du2, s9d

whereAski ,Xid is the magnitude of the amplitude for emit-
ting a pion with 4-momentumki =sk i ,Eid in the laboratory
frame atXi and is given by the Bose-Einstein distribution in
the local rest frame of the source point.Fsk1,k2;X1,X2d is
the two-pion wave function. Neglecting the absorption of the
emitted pions by other droplets,Fsk1,k2;X1,X2d is simply

Fsk1,k2;X1,X2d =
1
Î2

fAsk1,X1dAsk2,X2deik1·X1+ik2·X2

+ Ask1,X2dAsk2,X1deik1·X2+ik2·X1g. s10d

Using the components of “out” and “side”[5,7,38,39] of the
relative momentum of the two pions,q= uk1−k2u, as vari-
ables, we can construct the correlation functionCsqout,qsided
from Psk1,k2d and Psk1dPsk2d by summing overk1 and k2
for eachsqout,qsided bin. The HBT radiusRout and Rside can
then be extracted by fitting the calculated correlation func-
tion Csqout,qsided with the following parametrized correlation
function:

Csqout,qsided = 1 +le−qout
2 Rout

2 −qside
2 Rside

2
. s11d

The explicit procedure for calculating the two-pion corre-
lation function is as follows.

Step 1: Select the emission points of the two pions ran-
domly on the space-time freeze-out surfaces of the droplets,
and get their space-time coordinateX1 andX2 in the labora-
tory frame.

Step 2: Generate the momentak18 andk28 of the two pions
in local frame according the Bose-Einstein distribution char-
acterized by the temperatureTf, and obtain their momentak1
andk2 in the laboratory frame by Lorentz transforms.

Step 3: CalculatefE18 /E1gfE28 /E2g for Psk1dPsk2d and
fE18 /E1gfE28 /E2gcosfsk1−k2dsX1−X2dg for Psk1,k2d, and accu-
mulate them in the correspondingsqout,qsided bin.

Step 4: Repeat steps 1 through 4 many times to get the
correlation function within a certain accuracy.

We first examine the two-pion correlation function for a
singlet droplet source. By fitting the two-dimension correla-
tion functionCsqout,qsided obtained with the above steps with
Eq. (11), we get the parametersRout, Rside, and l simulta-
neously. In our calculations, the transverse momenta of the
pions are integrated over. The average transverse momenta
of the pions in our fitting samples are 307, 329, and
386 MeV for Tf =0.8 Tc, 0.65Tc, and 0.5Tc, respectively.
The reason for a larger average transverse momentum to as-
sociate with a smaller freeze-out temperature is due to the
larger average expansion velocity in the case of a smaller
freeze-out temperature. Figures 2(a)–2(d) show the HBT re-
sultsRout, Rside, Rout/Rside, andl as a function of the initial
radius rd of the droplet, for the freeze-out temperaturesTf
=0.80Tc (symbol +), Tf =0.65Tc (symbol •), and Tf =0.50Tc
(symbol!). It can be seen that the HBT radiiRout andRside
increase linearly withrd, but the ratioRout/Rside is about 3
within the errors. The radiusRside reflects the spatial size of
the source and the radiusRout is related to the lifetime of the
source[5,7,38,39]. From the hydrodynamical solution in Fig.
1(c), both the average freeze-out time and freeze-out radial
distance increase withrd for different Tf. As a consequence,
Rout/Rside is insensitive to the valuesrd andTf. The value of
Rout/Rside,3 for a single droplet is however much larger
than the observed values[1,2]. In our calculations, we did
not including resonances in the hadronic phase. If we take
the hypothetical case ofdQ/dH=3 to include a resonance gas
in the hadronic phase, as discussed by Rischke and Gyulassy
[3], we find that the ratio ofRout/Rside is about 2.75. It is still

FIG. 1. (a) Temperature profile and(b) velocity profile for the
droplet attn=3nlrd,l=0.99.(c) Isotherms for the droplet.
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much larger than the observed values[1,2]. In Fig. 1(d), the
values of l for rd=4 fm are larger than unity. This is a
non-Gaussian correlation function effect, and the effect is
larger for a wider correlation function, corresponding to a
smaller source.

As the average freeze-out time is proportional to the ini-
tial radius of the droplet, the freeze-out time andRout de-
creases if the initial radius of the droplet decreases. On the
other hand,Rside increases if the width of the droplet spatial
distribution increases. A variation of the droplet size and the
width of droplet spatial distribution can result inRout nearly
equal toRside. Accordingly, we calculate next the two-pion
correlation function for a Gaussian distribution source ofNd
droplets. The spatial center-of-mass coordinatesXd of the
droplets are assumed to obey a static Gaussian distribution
,exps−Xd

2/2RG
2 d [19–21]. Figures 3(a)–3(d) give the HBT

Rout, Rside, Rout/Rside, and l as a function of the number of
dropletsNd for different values ofrd. In this calculation, we
take Tf =0.65Tc and RG=5.0 fm. The symbols+, •, and !
correspond tord=2.0 fm,rd=1.5 fm, andrd=1.0 fm, respec-
tively. It can be seen that the radiiRout and Rside have a
slowly increasing tendency asNd increases but their ratio
Rout/Rside is almost independent ofNd. Rout decreases asrd
decreases butRside is relatively independent ofrd. Conse-
quently, the ratioRout/Rside decreases whenrd decreases. The

ratio Rout/Rside for rd=1.5 fm is about 1.15 which is much
smaller than the result of about 3 for the single droplet
source.

Finally, to study the effect of additional collective expan-
sion of the droplets, we calculate the two-pion correlation
function for an expanding source. The initial distribution of
the droplets is the same Gaussian distribution as the above
granular source, but the droplets are assumed to expand col-
lectively with a constant radial velocityvd after the initial
time, in addition to their hydrodynamical expansion. Figures
4(a)–4(d) give the HBTRout, Rside, Rout/Rside, andl for dif-
ferent values ofvd. In this calculation, we take the initial
radius of the droplets to berd=1.5 fm; the other parameters
are the same as the above calculations for a static granular
source. The symbols+, •, and! correspond tovd=0, 0.3, and
0.6, respectively. The results in Figs. 4(a) and 4(b) show that
Rside increases more rapidly with the droplet collective ex-
pansion velocityvd than Rout. A radial expansion will in-
crease the transverse size of the granular source andRside. On
the other hand,Rout measures the source life-time and the
spatial extension where the two pions are emitted with nearly
parallel and equal momenta, and the additional radial boost
modifies only slightly the spatial separation of these points
for most cases. As a result,Rout does not increase as rapidly
as Rside and Rout/Rside is smaller at largevd than at zerovd
[see Fig. 1(c)]. The ratioRside/Rout is of order 1 which is
close to the observed value[1,2].

In summary, we propose a simple model of granular
source of quark-gluon plasma droplets to examine the HBT
interferometry data. The droplets evolve hydrodynamically
and pions are emitted thermally from the droplets at the
freeze-out configuration characterized by a freeze-out tem-
peratureTf. As the average freeze-out time is proportional to
the radius of the droplet, smaller droplet size allows pions to
be emitted within a shorter time and the life-time of the
source decreases, leading to a smaller HBT radiusRout. On
the other hand, the HBT radiusRside depends on the width of
the spatial distribution of the droplets and is insensitive to
the initial size of the droplets. The ratio ofRout to Rside de-
creases significantly if the emitted source is granular in na-
ture. Furthermore,Rside increases with the collective-
expansion velocity of the droplets more rapidly thanRout.
The ratio Rout/Rside is about 1.15−0.88 for the collective-

FIG. 2. The two-pion interferometry results for the one-droplet
source as a function of the initial droplet radiusrd. The symbols+,
•, and! are for the freeze-out temperaturesTf =0.80Tc, Tf =0.65Tc,
andTf =0.50Tc, respectively.

FIG. 3. Two-pion HBT results for the granular source of the
droplets. The symbols+, •, and! are for the initial droplet radius
rd=2.0, 1.5, and 1.0 fm, respectively.

FIG. 4. Two-pion HBT results for the granular source with a
radial collective expansion of the droplets. The symbols+, •, and!
are for the expansion velocityvd=0, 0.3, and 0.6, respectively.
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expansion velocity of the droplets from zero to 0.6, for the
granular source with a Gaussian initial radius 5 fm and a
droplet initial radius 1.5 fm. ThisRout/Rside ratio is close to
the experimental values[1,2]. The granular model of quark-
gluon plasma may provide a possible explanation to the
RHIC HBT puzzle. It may also lead to a new insight into the
dynamics of the quark-gluon plasma phase transition as the
formation of a granular structure is expected to occur in a
first-order QCD phase transition[22–27].

In order to bring out the most important features, we have
neglected the multiple scattering effects on HBT interferom-
etry [31,40,41], and have not considered how the granular

nature of the plasma may arise from detailed phase transition
dynamics[22,26,27]. The sizes of the droplets in a collision
can also have a distribution. Future refinements of the
present model to take into account these effects onRout/Rside
will be of great interest.

W.N.Z. would like to thank Dr. T. Barnes, Dr. V. Cian-
ciolo, and Dr. G. Young for their kind hospitality at Oak
Ridge National Laboratory. This research was supported by
the National Natural Science Foundation of China under
Contract No. 10275015 and by the Division of Nuclear Phys-
ics, U.S. DOE, under Contract No. DE-AC05-00OR22725
managed by UT-Battle, LC.

[1] PHENIX Collaboration, K. Adcoxet al., Phys. Rev. Lett.88,
192302(2002).

[2] STAR Collaboration, C. Adleret al., Phys. Rev. Lett.87,
082301(2001).

[3] D. H. Rischke and M. Gyulassy, Nucl. Phys.A608, 479
(1996).

[4] D. Teaney and E. Shuryak, Phys. Rev. Lett.83, 4951(1999).
[5] U. A. Wiedemann and U. Heinz, Phys. Rep.319, 145 (1999).
[6] S. Soff, S. A. Bass, and A. Dumitru, Phys. Rev. Lett.86, 3981

(2001).
[7] R M Weiner, Phys. Rep.327, 249 (2002).
[8] S. Pratt, Nucl. Phys.A715, 389c(2003).
[9] S. Soff, S. A. Bass, D. H. Hardtke, and S. Y. Panitkin, J. Phys.

G 28, 1885(2002).
[10] D. Molnár and M. Gyulassy, inProceedings of Budapest ’02

Workshop on Quark Hadron Dynamics, Heavy Ion Phys.18,
69 (2003).

[11] S. Soff, S. A. Bass, D. H. Hardtke, and S. Y. Panitkin, Phys.
Rev. Lett. 88, 072301(2002).

[12] U. Heinz and P. Kolb, Nucl. Phys.A702, 269 (2002).
[13] Z-w. Lin, C. M. Ko, and S. Pal, Phys. Rev. Lett.89, 152301

(2002).
[14] D. Teaney, Nucl. Phys.A715, 817 (2003).
[15] T. Csörgö and J. Zimányi, Acta Phys. Hung. New Ser.: Heavy

Ion Phys. 17, 281 (2003).
[16] D. Molnár and M. Gyulassy, Phys. Rev. Lett.92, 052301

(2004).
[17] D. Seibert, Phys. Rev. Lett.63, 136 (1989).
[18] T. Kajino, Phys. Rev. Lett.66, 125 (1991).
[19] S. Pratt, P. J. Siemens, and A. P. Vischer, Phys. Rev. Lett.68,

1109 (1992).
[20] W. N. Zhang, Y. M. Liu, L. Huo, Y. Z. Jiang, D. Keane, and S.

Y. Fung, Phys. Rev. C51, 922 (1995).
[21] W. N. Zhang, G. X. Tang, X. J. Chen, L. Huo, Y. M. Liu, and

S. Zhang, Phys. Rev. C62, 044903(2000).
[22] E. Witten, Phys. Rev. D30, 272 (1984).
[23] L. P. Csernai and J. I. Kapusta, Phys. Rev. D46, 1379(1992);

Phys. Rev. Lett.69, 737 (1992).
[24] R. Venugopalan and A. P. Vischer, Phys. Rev. E49, 5849

(1994).
[25] S. Alamoudiet al., Phys. Rev. D60, 125003(1999).
[26] L. P. Csernai, J. I. Kapusta, and E. Osnes, Phys. Rev. D67,

045003(2003).
[27] J. Randrup, Phys. Rev. Lett.92, 122301(2004).
[28] D. H. Rischke, nucl-th/9809044.
[29] E. Laermann, Nucl. Phys.A610, 1 (1996).
[30] J. B. Blaizot and J. Y. Ollitrault, Phys. Rev. D36, 916(1987).
[31] W. N. Zhang, M. J. Efaaf, C. Y. Wong, and M. Khalilisr, Chin.

Phys. Lett.(unpublished) nucl-th/0404047.
[32] L. D. Landau and E. M. Lifshitz,Fluid Mechanics(Pergamon,

New York, 1959).
[33] P. Kolb and U. Heinz, nucl-th/0305084
[34] V. Schneideret al., J. Comput. Phys.105, 92 (1993).
[35] A. Harten, P. D. Lax, and B. van Leer, SIAM Rev.25, 35

(1983); B. Einfeldt, SIAM (Soc. Ind. Appl. Math.) J. Numer.
Anal. 25, 294 (1988).

[36] G. A. Sod, J. Fluid Mech.83, 785 (1977).
[37] Chapter 17 of C. Y. Wong,Introduction to High-Energy

Heavy-Ion Collision(World Scientific, Singapore, 1994).
[38] S. Pratt, Phys. Rev. Lett.53, 1219(1984); Phys. Rev. D33, 72

(1986); S. Pratt, T. Csörgo, and J. Zimányi, Phys. Rev. C42,
2646 (1990).

[39] G. Bertsch, M. Gong, and M. Tohyama, Phys. Rev. C37, 1896
(1988); G. Bertsch, Nucl. Phys.A498, 173c(1989).

[40] C. Y. Wong, J. Phys. G29, 2151(2003).
[41] C. Y. Wong, inProceedings of Quark Matter 2004, J. Phys. G

30, S1053(2004); hep-th/0403025.

ZHANG, EFAAF, AND WONG PHYSICAL REVIEW C70, 024903(2004)

024903-4


