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The framework to describe natural phenomena at their basics being quantum mechanics, there exist a large
number of common global phenomena occurring in different branches of natural sciences. One such global
phenomenon is spontaneous quantum decay. However, its long time behavior is experimentally poorly known.
Here we show, that by combining two genuine quantum mechanical results, it is possible to infer on this large
time behavior, directly from data. Specifically, we find evidence for nonexponential behavior of alpha decay of
8Be at large times from experiments.
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I. INTRODUCTION

The decay law in quantum mechanics is necessarily non-
exponential[1] and deviates from a simple exponential form
at small and large times(for reviews see[2–4]). Though
there exists some experimental evidence of the deviation
from exponential behavior at short times[5], this is not the
case for the large time behavior which is often not directly
observable[6] (indeed, we are not aware of any such suc-
cessful experiment). The information about resonance time
evolution, in general, and the long time behavior, in particu-
lar, should as a matter of principle be encoded in the resonant
scattering dataA+a→ resonance→B+b. The survival am-
plitude, ACstd, (related to the survival probability,PCstd
= uACstdu2/ uACs0du2) can be written as a Fourier transform
[7], namely

ACstd =E
Eth.

`

dErCsEde−iEt, s1d

(whereEth. is the minimum sum of the masses of the decay
products) of an energy dependent quantity[the spectral func-
tion, rCsEd] which can be constructed on the premises of the
scattering matrix,S. Since theS-matrix itself for a resonant
reaction can be extracted from experiment, the information
encoded in the scattering allows us to infer on the time evo-
lution of the resonance produced as an intermediate state in
the process. The spectral functionrCsEd, is the probability
density to find the eigenstatesuEl of the decay products in
uCl, or, in other words, it is the continuum probability den-
sity of states in a resonance which can hence be written as:
rCsEd=dProbCsEd /dE= ukEuClu2.

In the present work, we attempt to extractrCsEd from
experimental data and Fourier transform it to conclude, now
from experiment, on the long tail of the survival amplitude of
the resonance under consideration. This is probably the clos-
est that one can ever come to pinning down the large times in
a decay directly from experiment albeit by an indirect
method.

II. DENSITY OF STATES

We start by noting that one important result originating
from statistical mechanics seems to have been overlooked, at
least in connection with unstable states. In calculating the
second virial coefficientsB andC for the equation of states
in a gas,pV=RTf1+B/V+C/V2+ . . .g, Beth and Uhlenbeck
[8] (see also[9–11]) found that the difference between the
density of states with interaction,nl, and without,nl

s0d, is
given by the derivative of the scattering phase shiftdl as

nlskcmd − nl
s0dskcmd =

2l + 1

p

ddlsEcmd
dEcm

, s2d

wherel is the angular momentum of thel th partial wave and
kcm andEcm are the momentum and energy in the center-of-
massscmd system of the scattering particles, respectively. If
a resonance is formed during the scattering process,Ecm be-
comes the energy of the resonance in its rest frame. Cer-
tainly, the density of states and the probability density men-
tioned above are connected. Switching off the interaction
(by, say, letting the coupling constants go to zero), nl will not
become zero, but tend tonl

s0d from above. Therefore, as long
as nl −nl

s0dù0 (this is always the case for anisolated reso-
nance), we can write for the continuum probability density of
states of the decay products in a resonance

dProbCl
sEcmd

dEcm
= const

ddlsEcmd
dEcm

, s3d

which is the sought after connection between data, here in
the form ofdl, and the survival amplitude. This method is a
general(i.e., without any further restrictions with the excep-
tion of our belief in quantum mechanics) feasible tool for
studying the time evolution of isolated resonances from data.
In reality, overlapping resonances can causeddl /dEcm to
have several maxima and minima(see Fig. 1), even negative.
As noted by Wigner, the negative regions are bound to ap-
pear between resonances[12]. The realistic situation of sev-
eral overlapping resonances implies that the identification(3)
is operative starting from threshold and extending over one
resonance region, but often not beyond. However, one very
useful feature remains when we restrict ourselves to large
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times. Since large times correspond to small energies, in or-
der to experimentally extract information on this region, all
we need to know isdl at threshold and in the vicinity of the
resonance. The exact form of howrCsEd falls off at largeE,
well beyond the resonance region, is not important to con-
clude on the behavior ofACstd as t→`.

To see the connection betweenrCsEd and ddl /dE as in
(3), we note that starting from the Breit-Wigner form of the
amplitude, one gets[13], dd /dE=fG /2g /fsER−Ed2+ 1

4G2g.
The right-hand side, up to a constant, is commonly taken as
rCsEd to display the fact that a one-pole approximation for
the amplitude leads to the exponential decay law[14].

III. THE LONG TAIL OF QUANTUM DECAY FROM
EXPERIMENT

With the aim of making a fit to the data on phase shifts,dl,
with a reasonable scan of the threshold/resonance region
which would determine the large time behaviour of the decay
law, we opted for an experiment with many data points at
threshold and relatively small error bars. We chose thea
−a D-wave resonant scattering in nuclear physics[15],
namely, a+a→8Bes2+d→a+a. In Fig. 1 we display the
phase shift and its derivative over a wide region, using a
simple polynomial fit to the phase shift. We find the estab-
lished 8Be levels, shown in the figure. Motivated by a
Lorentzian form [16] with an energy dependent width
GsEcmd, we parametrized the data in the region of the first 2+

resonance, in the following form:

dlsEcmd = tan−1F GsEcmd
E0 − Ecm

Ge−bEcm, s4d

with

GsEcmd = G0SEcm
2 − Eth.

2

E0
2 − Eth.

2 Dk/2

s5d

which is valid for the elastic case. In particular,k=2g+2 and
the resonance pole is highlighted by the expected[17] peak
structure(see Fig. 2). We fitted k, b, G0, and E0 simulta-
neously taking the error bars into consideration. Our best fit
gives k=6.36, b=0.003 59 GeV−1, G0=0.0009 GeV, and
E0=7.458 38 GeV and is shown also in Fig. 2. In the fitting
procedure, special attention was paid to the mandatory
threshold. Taking the derivative of the parametrization and
numerically performing the integration to obtain the survival
amplitude, we get our main result depicted in Fig. 3. We
conclude that at large times, the survival probability of the
unstable8Bes2+d state at 3.04 MeV excitation energy, be-
haves as,

P8Bestd ,
1

t6.36. s6d

One could in principle use the fit along with some known
mathematical formulas for survival amplitude(see the Ap-
pendix) to arrive at the above conclusion.

Theoretically we would expect that near threshold[16],
tan dlsEcmd,kcm

2l+1, which implies, ddlsEcmd /dEcm,sEcm

−Eth.dl−1/2 also near threshold.

FIG. 1. D-wave phase shifts(upper half) in a-a elastic scatter-
ing from Ref.[15], polynomial fit to these data(solid line) and the
derivative of phase shift(lower half) calculated from the fit showing
all established8Bes2+d levels, as a function of the excitation energy
Eex=Ecm−E8Besground stated and plotted here in arbitrary units(arb.
units). The negative region in derivative of phase shift(lower half)
between 5 and 15 MeV, due to the slowly falling phase shift is not
obvious in the plot due to the scale of the vertical axis.

FIG. 2. D-wave phase shift(upper half) and its derivative(lower
half) in a-a elastic scattering as a function ofEcm−Ethreshold, in the
region of the first 2+ level of 8Be. The dashed line shows the fit
mentioned in the text. The inset displays the accuracy of the fit near
the threshold energy region which is crucial for the large time be-
havior of the decay law.
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This amounts to saying thatk is expected to be 2l +1. For
the 8Bes2+d resonance, one then gets an inverse power law
t−5 for the survival probability. The data on the phase shift do
not seem to follow the standard threshold behaviour and
hence we get(6). The discrepancy, however, does not look
serious. Indeed, re-calculated the “l ”-value of the fittedk is
2.68. Interestingly, the exponent 6.36 is close to the theoret-
ical prediction of 7 for the case ofl =2 made in[2]. The
deviation from the exponential decay law starts around 30
lifetimes after the onset of the decay. By this time, one could
say that the sample with which one started has depleted by
about 13 orders of magnitudes,e−30d, making a direct mea-
surement of such a phenomenon not feasible. The above is
the case of a strong decay with short lifetime. In the case of
weak decays, the onset of the nonexponential law at large
times is expected to be much later[2,3] making the direct
measurement even less feasible.

In summary, we combined the Fock-Krylov method(to
calculate the survival amplitude of an unstable state in terms
of the Fourier transform of a spectral function), with a result
in statistical mechanics of Beth and Uhlenbeck. This result
identifies the energy derivative of the two body scattering

phase shift(2) to be proportional to the continuum probabil-
ity density of states. Using experimental phase shifts, the
method allowed us to compute the nonexponential long time
behavior(inverse power law to be specific) of an unstable
quantum system, namely8Be, which decays to twoa par-
ticles. Asked as to why the above method has been over-
looked so far, we can only speculate by noting that even the
old results by Eisenbud[18], Wigner [12] and Smith[19]
concerning the phase shift derivative have been neglected for
a long time and came back into vogue only recently[20–24].

We close by quoting from[25]; “Thus it seems unlikely
that nuclear decays will show deviations from the exponen-
tial decay law which they made famous.” We have shown
that it is possible, as the information on the time evolutions
is encoded in the scattering data.

APPENDIX: THEORETICAL SURVIVAL AMPLITUDE

Parametrizing the spectral function to account for the
threshold behavior, we have,rCsEd=GsEdsE−Eth.dgsld, where
gsld is an integer. Imposing standard conditions onGsEd
[17,26] the survival probability can be computed by going to
the complex plane. Though this method of finding the sur-
vival probability is standard and known[2,4], we describe it
here as it is not exactly equivalent to that in[2,4,27]. Choos-
ing the closed pathCR=CI+CR+CR

1/4, along the real axis
sCRd attaching to it a quarter of a circle with radius RsCR

1/4d
in the clockwise direction and completing the path by going
upward the imaginary axis up to zerosCId, using Cauchy’s
theorem and considering the conditions imposed onGsEd,
one can see thatACl

std=ACl

E std+ACl

P std, with ACl

E std and
ACl

P std given by,

ACl

E std = e−iEth.t lim
R→`

R
CR

dze−iztzgGsz+ Eth.d = C1e
−iERte−G/2t

ACl

P std = C2e
−iEth.tE

0

`

dxe−xtxgGs− ix + Eth.d

.
C2

tg+1Gsg + 1de−iEth.tsEth.d,

whereGsxd is the Euler’s gamma function andC1 andC2 are
constants. The approximation is valid for large timest. The
general case[4] of nonintegerg leads to the same result.
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