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Hidden evidence of nonexponential nuclear decay
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The framework to describe natural phenomena at their basics being quantum mechanics, there exist a large
number of common global phenomena occurring in different branches of natural sciences. One such global
phenomenon is spontaneous quantum decay. However, its long time behavior is experimentally poorly known.
Here we show, that by combining two genuine quantum mechanical results, it is possible to infer on this large
time behavior, directly from data. Specifically, we find evidence for nonexponential behavior of alpha decay of
8Be at large times from experiments.
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I. INTRODUCTION Il. DENSITY OF STATES

We start by noting that one important result originating

The decay law in guantum mechanics is necessarily non- - .
y d y nfrom statistical mechanics seems to have been overlooked, at

exponentia[1] and deviates from a simple exponential form least in connection with unstable states. In calculating the
at small and large timeg¢for reviews see[2—4]). Though ) 9

there exists some experimental evidence of the deviatioﬁecond virial coefficient8 andC for the equation of states

— 2
from exponential behavior at short timgs], this is not the "; a gas,p\I/— ZT£1+?/V+dCt/th+tr.1. .]aieth andburglenbectﬁ
case for the large time behavior which is often not directly[ ] (see alsg9-11)) foun at the difierence between the

. . . . 0
observable[6] (indeed, we are not aware of any such suc-density of states with interactiom, and without,n,”, is

cessful experiment The information about resonance time 91Ven by the derivative of the scattering phase sbifas

evolution, in general, and the long time behavior, in particu- 2l + 1d8(Egpy)
lar, should as a matter of principle be encoded in the resonant (ke = N2 (Kgr) = T 4E. 2
scattering dataéA+a— resonance-B+b. The survival am- ™ Eem

plitude, Ay(t), (related to the survival probabilityPy(t)  wherel is the angular momentum of th& partial wave and
=|Ay(t)|*/|A(0)]?) can be written as a Fourier transform k., andE, are the momentum and energy in the center-of-
[7], namely mass(cm) system of the scattering particles, respectively. If
a resonance is formed during the scattering prodesspe-
comes the energy of the resonance in its rest frame. Cer-
* ) tainly, the density of states and the probability density men-
Ay(t)=|  dEpy(E)e™, (1) tioned above are connected. Switching off the interaction
En. (by, say, letting the coupling constants go to 2enpwill not
become zero, but tend r¢0) from above. Therefore, as long

_0— o . )
(whereEy, is the minimum sum of the masses of the decayas =, 0 (this is always the case for asolatedreso

nance, we can write for the continuum probability density of
product$ of an energy dependent quantjthe spectral func- .
. . . states of the decay products in a resonance
tion, py(E)] which can be constructed on the premises of the

scattering matrixS. Since theS-matrix itself for a resonant dProby, (E.y) d&(E)
reaction can be extracted from experiment, the information d—l = constd—c, (3
encoded in the scattering allows us to infer on the time evo- Eem Eem

lution of the resonance produced as an intermediate state {ghich is the sought after connection between data, here in
the process. The spectral functipg(E), is the probability  the form of &, and the survival amplitude. This method is a
density to find the eigenstatéi) of the decay products in general(i.e., without any further restrictions with the excep-
|¥), or, in other words, it is the continuum probability den- tion of our belief in quantum mechanicéeasible tool for
sity of states in a resonance which can hence be written astudying the time evolution of isolated resonances from data.
pw(E)=dProhy(E)/dE=(E| )| In reality, overlapping resonances can cau%/'dE,, to

In the present work, we attempt to extrgsi(E) from  have several maxima and minirtgee Fig. 1, even negative.
experimental data and Fourier transform it to conclude, nowAs noted by Wigner, the negative regions are bound to ap-
from experiment, on the long tail of the survival amplitude of pear between resonandd®]. The realistic situation of sev-
the resonance under consideration. This is probably the clogral overlapping resonances implies that the identifica@pn
est that one can ever come to pinning down the large times iis operative starting from threshold and extending over one
a decay directly from experiment albeit by an indirectresonance region, but often not beyond. However, one very
method. useful feature remains when we restrict ourselves to large
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FIG. 2. D-wave phase shifupper halj and its derivativelower

FIG. 1. D-wave phase shif@pper halj in a-« elastic scatter-  half) in a-a elastic scattering as a function Bfm—Egresnolg in the
ing from Ref.[15], polynomial fit to these datesolid line) and the  region of the first 2 level of ®Be. The dashed line shows the fit
derivative of phase shiftower half) calculated from the fit showing mentioned in the text. The inset displays the accuracy of the fit near
all establishedBe(2*) levels, as a function of the excitation energy the threshold energy region which is crucial for the large time be-
Eex=Ecm=E8ge(ground stag@nd plotted here in arbitrary unit@rb.  havior of the decay law.
units). The negative region in derivative of phase sfiiftver half)
between 5 and 15 MeV, due to the slowly falling phase shift is not I'(E..)
obvious in the plot due to the scale of the vertical axis. S(Eqm) = tan_1|:—ci|e_t8Ecm’ (4)

0~ Ecm

times. Since large times correspond to small energies, in or- .
der to experimentally extract information on this region, al™!
we need to know isj at threshold and in the vicinity of the
resonance. The exact form of hgw(E) falls off at largeE, [(E,)=T (
well beyond the resonance region, is not important to con- ¢ 0
clude on the behavior ofl(t) ast— .

To see the connection betweeg(E) and d§/dE as in  which is valid for the elastic case. In particular 2y+2 and
(3), we note that starting from the Breit-Wigner form of the the resonance pole is highlighted by the expegiet] peak
amplitude, one get§13], do/dE=[T'/2]/[(Eg-E)?+3I'2].  structure(see Fig. 2 We fitted x, B, T'o, and E, simulta-
The right-hand side, up to a constant, is commonly taken aBeously taking the error bars into consideration. Our best fit
py(E) to display the fact that a one-pole approximation forgives «=6.36, 8=0.003 59 GeV*, I';=0.0009 GeV, and

the amp"tude leads to the exponentia| decay [aﬂ E0=7458 38 GeV and is S-hOWn also |n Flg 2. In the flttlng
procedure, special attention was paid to the mandatory

threshold. Taking the derivative of the parametrization and

l1l. THE LONG TAIL OF QUANTUM DECAY FROM numerically performing the integration to obtain the survival
EXPERIMENT amplitude, we get our main result depicted in Fig. 3. We

conclude that at large times, the survival probability of the

With the aim of making a fit to the data on phase shifs, 3 . N
with a reasonable scan of the threshold/resonance regi&%g\slteib:aesBe(z) state at 3.04 MeV excitation energy, be-

which would determine the large time behaviour of the deca
law, we opted for an experiment with many data points at

threshold and relatively small error bars. We chose dhe Peg(t) ~ i_ (6)
-a D-wave resonant scattering in nuclear phys[d$], B t6:36

namely, a+a— ®Be(2*) — a+a. In Fig. 1 we display the

phase shift and its derivative over a wide region, using &ne could in principle use the fit along with some known
simple polynomial fit to the phase shift. We find the estab-mathematical formulas for survival amplitudsee the Ap-
lished ®Be levels, shown in the figure. Motivated by a pendix to arrive at the above conclusion.

Lorentzian form [16] with an energy dependent width Theoretically we would expect that near threshfil@],
I'(E.y), we parametrized the data in the region of the fifst 2 tan &(Egy) ~k2*%, which implies, d&(Ecmy)/dEcm~ (Ecm

resonance, in the following form: -Ey)' Y2 also near threshold.
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FIG. 3. Survival probabilityP(t) of the decay’Be(2*)— a+a,
as a function of the number of lifetimes after decByt) is evalu-
ated numerically usingls/dE., of Fig. 2 as the spectral density.
The dashed linge™™) shows that the decay law for tHBe(2*)
state(solid line) is exponential up to about 30 lifetimes after which
it proceeds as %38 ez andI" are the resonance mass and width,
respectively.

This amounts to saying thatis expected to bel2 1. For
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phase shif{2) to be proportional to the continuum probabil-
ity density of states. Using experimental phase shifts, the
method allowed us to compute the nonexponential long time
behavior(inverse power law to be specifiof an unstable
quantum system, namefiBe, which decays to twax par-
ticles. Asked as to why the above method has been over-
looked so far, we can only speculate by noting that even the
old results by Eisenbu¢ll8], Wigner [12] and Smith[19]
concerning the phase shift derivative have been neglected for
a long time and came back into vogue only recef2y—24.

We close by quoting fronf25]; “Thus it seems unlikely
that nuclear decays will show deviations from the exponen-
tial decay law which they made famous.” We have shown
that it is possible, as the information on the time evolutions
is encoded in the scattering data.

APPENDIX: THEORETICAL SURVIVAL AMPLITUDE

Parametrizing the spectral function to account for the
threshold behavior, we havey(E)=G(E)(E-Ey, )", where
v(l) is an integer. Imposing standard conditions G(E)
[17,2§ the survival probability can be computed by going to
the complex plane. Though this method of finding the sur-
vival probability is standard and knowg,4], we describe it

the ®Be(2") resonance, one then gets an inverse power lafi€re as it is not exactly equivalent to thaf#4,27. Choos-

t-5 for the survival probability. The data on the phase shift doind the closed patlCg=C;+Cx

+ Cl/4

= » along the real axis

not seem to follow the standard threshold behaviour andCw) attaching to it a quarter of a circle with radius(Rg")
hence we get6). The discrepancy, however, does not lookin the clockwise direction and completing the path by going

serious. Indeed, re-calculated tHe'-value of the fittedx is

upward the imaginary axis up to ze(€;), using Cauchy’s

2.68. Interestingly, the exponent 6.36 is close to the theoretheorem and considering the conditions imposedGoB),

ical prediction of 7 for the case d=2 made in[2]. The

one can see thaIélq,l(t):AE,I(t)+A\'¥,l(t), with AE,I(t) and

deviation from the exponential decay law starts around 3045, (t) given by,
lifetimes after the onset of the decay. By this time, one could '

say that the sample with which one started has depleted by AE

about 13 orders of magnitude-e 3%, making a direct mea-
surement of such a phenomenon not feasible. The above

the case of a strong decay with short lifetime. In the case of
weak decays, the onset of the nonexponential law at large

times is expected to be much lati,3] making the direct
measurement even less feasible.
In summary, we combined the Fock-Krylov methd

v (1) =e7Ent lim

R—s00

g

‘Agﬁ(t) = Cze_iEth.t f
0

dze—iztzyg(z+ Eth.) - Cle—iERte—FIZt
. R
IS
o0

dxe™X"G(— ix + Ey,)

C r
= tw—irw 1)e Enl(Ey,),

calculate the survival amplitude of an unstable state in terms
of the Fourier transform of a spectral functjpwith a result ~ wherel'(x) is the Euler’s gamma function ari andC, are
in statistical mechanics of Beth and Uhlenbeck. This resultonstants. The approximation is valid for large tinite$he
identifies the energy derivative of the two body scatteringgeneral cas§4] of nonintegery leads to the same result.
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