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The nuclear incompressibilityK` is deduced from measurements of the isoscalar giant monopole resonance
(ISGMR) in medium-heavy nuclei, and the resulting value turns out to be model dependent. Since the consid-
ered nuclei have neutron excess, it has been suggested that the model dependence is due to the different
behavior of the symmetry energy in different models. To clarify this issue, we make a systematic and careful
analysis based on new Skyrme forces, which span a wide range of values forK`, for the value of the symmetry
energy at saturation and for its density dependence. By calculating, in a fully self-consistent fashion, the
ISGMR centroid energy in208Pb, we reach three important conclusions:(i) the monopole energy, and conse-
quently the deduced value ofK`, depend on a well-defined parameter related to the shape of the symmetry
energy curve and calledKsym; (ii ) Skyrme forces of the type of SLy4 predictK` around 230 MeV, in agreement
with the Gogny force(previous estimates using Skyrme interactions having been plagued by a lack of full
self-consistency); (iii ) it is possible to build forces which predictK` around 250 MeV, although part of this
increase is due to our poor knowledge of the density dependence and effective mass.
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I. INTRODUCTION

The question about the proper value of the nuclear incom-
pressibility K` is still open. The model dependence of this
quantity amounts to a difference of the order of,10–20%
among the values obtained within different theoretical mod-
els. There is a renewed interest in this issue, motivated both
by the improved quality of the recent experimental measure-
ments of the isoscalar giant monopole resonance(ISGMR),
and by the progress of relativistic mean-field models(RMF),
which are to be confronted with more traditional nonrelativ-
istic models based on Skyrme or Gogny effective forces.

Skyrme energy functionals have been widely used in
nuclear structure calculations since the 1970’s. The first
Skyrme effective forces were built in the pioneering work of
Vautherin and Brink [1], by fitting their parameters to
nuclear matter properties(the saturation point) and to se-
lected observables(binding energies and charge radii) of
closed-shell nuclei calculated in the Hartree-Fock(HF) ap-
proximation. Later, many improvements of the Skyrme en-

ergy functional were devised. These have been possible also
because the mean-field approach was extended to the time-
dependent case[time-dependent HF(TDHF)] and to its
small amplitude limit[random phase approximation(RPA)].
Within this scheme, it is possible to calculate the collective
nuclear excitations and to explore the correlations between
their properties and the force parameters, or some physically
meaningful combinations of them. The relation between the
ISGMR and the nuclear incompressibility is one of such re-
lations.

The introduction of reliable RMF effective Lagrangians is
more recent. However, the progress in this field has been
quite fast[2], and we can nowadays discuss the properties of
the RMF parametrizations on the same footing as the Skyrme
[3] and Gogny[4] functionals.

The nuclear incompressibilityK` is related to the curva-
ture of the energy per particleE/A in symmetric nuclear
matter around the minimum%0, i.e., at the saturation point

K` ; U9%0
2 d2

d%2

E

A
U

%0

. s1d

The interest of determining the value ofK` stems also from
its impact on the physics of supernovas and neutron stars.

Until a year ago, the status of the nuclear incompressibil-
ity problem could be summarized as follows. From calcula-
tions based on Skyrme functionals, different groups have ex-
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tracted values ofK` of the order of 210–220 MeV. Using
the Gogny functionals, a value ofK` around 230 MeV was
obtained. Finally, the relativistic calculations predicted val-
ues in the range 250–270 MeV. All these results made use of
the measured value of the ISGMR, e.g., in208Pb, as ex-
plained below.

This situation for the nuclear incompressibility “puzzle”
has been reviewed in Ref.[5]. There, it was shown that the
accuracy of the ISGMR data obtained at Texas A&M[6]
allows for extractingK` with an experimental error of no
more than ±12 MeV. Moreover, a rather important conclu-
sion was reached. The previous works based on the Skyrme
forces consisted of not fully self-consistent HF plus RPA
calculations in which the two-body residual Coulomb and
spin-orbit forces were neglected. These terms are rather
small since they affect the monopole energy in208Pb by only
4–5%, but this produces a change of 8–10% in the extracted
value of the nuclear incompressibility. By considering this
effect, the value ofK` from the Skyrme functionals turns out
to be 235 MeV, in very good agreement with that extracted
from the Gogny calculations. Consequently, there is no dis-
crepancy between the results of the different nonrelativistic
calculations. On the other hand, the gap with the relativistic
results remains significant.

The most recent attempts in the literature[7–11] to attack
this problem are focused on the possible relation(s) between
the monopole energy in systems with a neutron excess, like
208Pb, and the density dependence of the symmetry energy
Ss%d. In fact, one of the clear differences between the
Skyrme and RMF functionals concerns the behavior of the
symmetry energy around the saturation point%0. The
Skyrme energy functionals are characterized by smaller val-
ues of the symmetry energy at saturation, and of the corre-
sponding slope, as compared with the RMF functionals. In
this sense it may be said that the RMF functionals are “stiff”
compared with the “soft” nonrelativistic ones.

In Ref. [7] some effective Lagrangians whose symmetry
energy has different density dependences are built. This is
easy to achieve, since, by adjusting ther-meson coupling
constant, one can at the same time soften the symmetry en-
ergy Ss%d and lower its value at the saturation point,J
;Ss%0d. It is thus found that the extracted values ofK`

indeed differ and can even become close to the Skyrme force
values ifJ is around 28 MeV. However, in Ref.[7] no sys-
tematic treatment of finite nuclei is attempted. In Ref.[8] it is
pointed out that RMF parametrizations withJ lower than
32 MeV cannot describe satisfactorily theNÞZ nuclei. The
authors conclude from their calculations that the lower limit
for the RMF value ofK` is around 250 MeV. In Ref.[10],
using a markedly improved version of the model of Ref.[7],
this lower limit is confirmed sinceK` results to be 248 MeV.

While in the relativistic framework it seems impossible to
push the value ofK` below this lower limit, the recent re-
sults of Ref. [11] suggest that one can build at least one
Skyrme-type interaction havingK`=255 MeV and reproduc-
ing the correct ISGMR energy in208Pb. This is at variance
with all other nonrelativistic calculations quoted in Ref.[5].
Moreover, the origin of the result of Ref.[11] is unclear.
Does it correspond to an effective force with a symmetry
energy, which is as stiff as that associated with the RMF

Lagrangians? Or is some other parameter playing a role?
It seems necessary to make a systematic analysis of what

is the upper limit forK` within the nonrelativistic frame-
work. The value of 230 MeV is extracted from a subset of
the existing Skyrme parametrizations. Our main goal is to
answer the question of whether it is possible to build inter-
actions in such a way thatK` becomes closer to the RMF
value, as well as to study what the crucial quantities are that
control this variation ofK`. In particular, we would like to
understand the(so far, singular) result of Ref.[11].

The structure of the paper is the following. In Sec. II we
review how the nuclear incompressibility is extracted from
the microscopic calculations using the ISGMR experimental
data, and what are the plausible quantitative arguments in
favor of the idea that the density dependence of the symme-
try energy plays a role. In Sec. III we describe our fitting of
new Skyrme interactions suitable for the microscopic IS-
GMR calculations, and in Sec. IV we describe the results
obtained and the implications for the value ofK`. In Sec. V
we present our conclusions.

II. DEDUCING THE NUCLEAR INCOMPRESSIBILITY
FROM MONOPOLE DATA AND THE ROLE OF

THE SYMMETRY ENERGY

In all the discussions of the relationship between the
nuclear matter incompressibility and the ISGMR in finite
nuclei, the starting point is the definition given by Blaizot
[12] of the finite nucleus incompressibilityKA as

KA =
mkr2l0EISGMR

2

"2 , s2d

wherem is the nucleon mass andkr2l0 is the ground-state
mean-square radius. This expression has a well-defined
meaning in medium-heavy nuclei, where the ISGMR is as-
sociated to a single peak at the energyEISGMR<80 A−1/3. In
light nuclei the monopole strength is very much fragmented,
and many states show up whose microscopic structure does
not correspond to the simple picture of the radial “breathing
mode” according to theoretical calculations(see, for ex-
ample, Ref.[13]). In the case of the nuclei studied in[6], the
existence of a single, collective monopole state is quite evi-
dent from the measured cross sections. In particular, in the
case of208Pb, which is the object of our present study, the
experimental peak energy and the centroid energiesE0 and
E−1 (defined, respectively, asm1/m0 andÎm1/m−1, wheremk
is thekth moment of the strength function) essentially coin-
cide, leaving out any ambiguity about the correct value of
EISGMR to be used for determining the experimental value of
KA.

However, finding a theoretical relation betweenKA and
K` is less simple. In Ref.[12], the generic expression of the
energy functional associated with Skyrme HF has been writ-
ten in the case of a finite spherical system. At variance with
that of infinite matter, the density is not uniform and cannot
be reduced to a simple number. Therefore, to minimize the
energy functional and find its second derivative around the
minimum, one has to resort to various simplifying hypoth-
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eses. The main one is the use of the so-called scaling model,
in which a simple shape of the ground-state density%0 is
assumed and its changes are associated to a single parameter
l, i.e., they are of the type%0srWd→%lsrWd=s1/l3d%0srW /ld. In
this way, the expression for the finite system incompressibil-
ity can be found. By isolating the terms corresponding to the
volume, surface, symmetry, and Coulomb contributions, the
result can be written as

KA = K` + KsurfA
−1/3 + Ksymd2 + KCoul

Z2

A4/3, s3d

whered;sN−Zd /A (cf. Sec. 6.2 of Ref.[12]).
We recall here that, in the past, many authors have used

the formula (3) as an ansatz and have tried to obtain the
parameters of the right-hand side(r.h.s.) from a numerical fit,
using as input the experimental values ofKA in different
nuclei. This procedure is not stable and leads to ill-defined
values of the parameters[14], so that it is nowadays aban-
doned.

Instead, the microscopic method to deduceK` relies on
the fact that RPA calculations of the ISGMR can be per-
formed by using functionals characterized by different values
of K`. If the calculations done with a given functional repro-
duce the experimental ISGMR energy, the associated value
of K` should be chosen as the best one. Let us examine this
in more detail.

Mainly one nucleus has been used so far, that is,208Pb. In
the first work in which the microscopic procedure has been
applied[15], the RPA values forKA obtained from the RPA
centroid energiesE−1 have been plotted versus theK` of the
force used. Then, an empirical linear fit of the results was
performed, namely

KA = aK` + b. s4d

This relation allows us to extract the best value forK` by
inserting the experimentalKA. In [15] the explicit form of
Eq. (4) in the case of208Pb isKA=0.64K`−3.5 fMeVg. The
second term of the r.h.s. is much smaller than the first term.
Consequently, even if in principle the last formula together
with Eq. (2) would lead toEISGMR=1.16Î0.64K`−3.5, this
equation can be approximated by 0.928ÎK` (neglecting the
second term under the square root). This explains why, in
many of the works quoted in[5], a successful interpolation
of the type

EISGMR = a8ÎK` + b8 s5d

was done: in practice, Eqs.(4) and (5) are equivalent. It is
from either of these relations, using the experimental ISGMR
energy in208Pb which is 14.17±0.28 MeV, that the values
for K` mentioned in Sec. I were obtained.

The uncertainity of the value ofK`, which is deduced, is

dK`

K`

= 2
dEISGMR

EISGMR
.

The experimental error on the monopole energy, plus a the-
oretical error of the same order(see[5]), produce a global
error bar of ±12 MeV onK`.

One may argue why the linear relations just introduced
are valid. So far, Eq.(3) has not played, in fact, any explicit
role in the deduction ofK`. However, this expression can be
taken as a rather useful guideline. Given a microscopic func-
tional, the different termsKsurf, KsymandKCoul (in addition to
K`) entering this formula can be calculated as described
shortly below. The resulting value ofKA differs from the
microscopic outcome of RPA, as a rule, by about 5%. There-
fore, we make in the rest of this section a detailed analysis of
the role of the different terms in Eq.(3). If, for a family of
functionals,KA depends linearly onK` as written in Eq.(4),
it means that the other terms do not vary significantly. This is
what happens for a large subset of the Skyrme and Gogny
parametrizations, as it is evident from Fig. 6 of Ref.[15].
However, the role of the surface, symmetry, and Coulomb
terms should be critically reexamined if new functionals, in-
cluding relativistic ones, enter into the discussion.

The expression for these terms have been given in Ref.
[12]. Ksurf cannot be calculated analytically, but numerical
estimates are possible within both the quantal and semiclas-
sical scheme. We refer the reader to Ref.[16] for an example
of a quantal derivation(which is a scaled Hartree-Fock cal-
culation of semi-infinite nuclear matter). The most recent
semiclassical, i.e., extended Thomas-Fermi(ETF) calcula-
tions, have been performed both in the nonrelativistic and in
the relativistic scheme and have shown that the quantityKsurf
is well approximated bycK` with c<−1 (however, it should
be noted thatc tends to grow withK`) [17]. We have
checked that this approximation is valid in the case of all the
forces used in this work: we have seen that, e.g.,c=−1.03 if
K`=230 MeV andc=−1.07 if K`=250 MeV.

In order to studyKsym, we first give some necessary defi-
nitions of the symmetry energy and of the parameters related
to its density dependence. We define the symmetry energy by
writing the total energy densityE as the sum of an isoscalar
part E0s%d which depends only on the total density%;%n

+%p, and an isovector part,

Es%,%−d = E0s%d + %Ss%dS%−

%
D2

, s6d

where%−;%n−%p. We remind in this context that in a ho-
mogeneous system,E/A=E /%. The symmetry energySs%d
can be expanded up to second order around%0,

Ss%d = Ss%0d + S8s%0ds% − %0d +
1

2
S9s%0ds% − %0d2. s7d

The value of the symmetry energy at saturationSs%0d is often
denoted asJ and we are following the use the same notation
in this paper. Other notations, likeat or a4, are also em-
ployed in the literature. The first and second derivatives of
Ss%d at the saturation point have been written many times in
terms of the so-called parametersL andKsym (see, e.g., Ref.
[18]), as S8s%0d=L /3%0 and S9s%0d=Ksym/9%0

2. It is quite
unfortunate that the symbolKsymhas been used in the litera-
ture with such different meanings, either in connection with
S9s%0d or in Eq. (3). Here, we will always useKsym to mean
the symmetry term ofKA in Eq. (3).

The expression ofKsym is
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Ksym= 9%0
2S9s%0d + 9%0S8s%0d − U81%0

3S8s%0d
K`

d3E
d%3U

%0
,

s8d

and from this expression it is evident that this parameter
contains some relevant information about the density depen-
dence of the symmetry energy.

The values ofJ are, as a rule, larger in the case of the
RMF functionals than for the Skyrme ones. A larger value of
J is correlated with a larger value ofS8s%0d, which is usually
a positive quantity, although it may sometimes become nega-
tive (cf. [19] and Fig. 4 of[8], as well as Tables I and II in
this paper). In the next section we show that a largerJ is also
correlated with a more negative value ofKsym, at least for the
forces we have studied. The explanation which is given for
the correlation betweenJ andS8s%0d is that the fits to finite
nuclei observables constrain the symmetry energy at some
average densityk%l lower than%0 (see, e.g., Ref.[20], and
references therein). In the case of one set of forces intro-
duced in this paper(see Sec. III), this typical behavior of the
symmetry energy is shown in Fig. 1. In a narrow region
around%=0.10 fm−3 s±0.001 fm−3d all curves cross one an-

other at a valueSs%d=25±1 MeV. When the symmetry en-
ergy at saturation is larger, the slope is also larger. The other
sets of forces show qualitatively the same trend.

The last term of Eq.(3) is the Coulomb contribution,
which is unlikely to be very much model dependent. It is
written as

KCoul =
3

5

e2

r0
S1 −U27%0

2

K`

d3E
d%3U

%0
D , s9d

wherer0 is the average interparticle spacing.
In summary, if we want to compare two models, say I and

II (they could be, for instance, a nonrelativistic and a RMF
functional, respectively), we will write, by usingKsurf=cK`,

KA , K`
sIds1 + cA−1/3d + Ksym

sId d2 + KCoul
sId Z2

A4/3,

KA , K`
sII ds1 + cA−1/3d + Ksym

sII d d2 + KCoul
sII d Z2

A4/3. s10d

We have already mentioned thatKsym is negative, and the
same is true forKsurf andKCoul. All can be viewed as correc-
tions to the leading termK`. It is clear that a more negative
value ofKsurf or Ksymleads to extracting from the experimen-
tal KA a larger value ofK`. We will develop this argument in
Sec. IV.

TABLE I. Nuclear matter properties calculated with the differ-
ent Skyrme parameter sets characterized bya=1/6 and by different
values ofK` andJ (these two quantities identify the parameter set
and are shown in the first column). All quantities are defined in the
text. In the last column, thex2 per point is displayed.

%0

sfm−3d
E/A

(MeV) m* / m
L

(MeV)
Ksym

(MeV)
KCoul

(MeV) x2

230/26 0.161 −15.89 0.69 −39.06 −178.95 −4.92 4.38

230/28 0.162 −15.96 0.70 −11.23 −228.62 −4.91 4.50

230/30 0.161 −15.98 0.70 22.88 −281.05 −4.90 5.67

230/32 0.161 −16.03 0.70 36.22 −314.95 −4.90 5.24

230/34 0.161 −16.06 0.70 56.15 −354.24 −4.89 5.86

230/36 0.161 −16.10 0.71 71.55 −389.53 −4.88 6.46

230/38 0.161 −16.14 0.71 87.60 −424.86 −4.88 7.15

230/40 0.161 −16.16 0.71 106.07 −462.20 −4.87 8.28

240/26 0.160 −15.91 0.63 −15.95 −176.41 −5.05 7.36

240/28 0.161 −15.94 0.63 3.97 −202.07 −5.04 7.04

240/30 0.159 −15.95 0.63 34.05 −273.93 −5.04 7.75

240/32 0.166 −16.15 0.65 34.43 −300.39 −5.00 12.41

240/34 0.164 −16.12 0.65 62.60 −350.02 −5.01 10.22

240/36 0.164 −16.15 0.65 75.67 −384.99 −5.00 11.17

240/38 0.163 −16.19 0.65 98.62 −429.77 −5.00 11.28

240/40 0.165 −16.24 0.65 108.15 −460.88 −4.99 13.76

250/28 0.165 −16.10 0.59 32.99 −238.76 −5.13 14.33

250/30 0.164 −16.09 0.59 30.02 −255.78 −5.13 11.65

250/32 0.164 −16.14 0.59 43.59 −293.94 −5.12 13.02

250/34 0.163 −16.14 0.59 60.33 −334.94 −5.12 12.30

250/36 0.162 −16.17 0.59 80.19 −379.80 −5.12 12.78

250/38 0.162 −16.20 0.59 97.50 −421.63 −5.12 13.36

250/40 0.162 −16.25 0.59 112.18 −460.37 −5.11 15.30

TABLE II. The same as Table I for the different Skyrme param-
eter sets characterized bya=0.3563.

%0

sfm−3d
E/A

(MeV) m* / m
L

(MeV)
Ksym

(MeV)
KCoul

(MeV) x2

250/30 0.153 −15.87 0.77 12.66 −339.16 −5.09 14.49

250/32 0.152 −15.89 0.77 36.57 −377.81 −5.09 11.58

250/34 0.151 −15.91 0.77 58.81 −415.36 −5.08 14.03

250/36 0.150 −15.92 0.77 72.00 −447.51 −5.09 16.69

250/38 0.149 −15.95 0.77 95.20 −485.39 −5.08 20.75

250/40 0.148 −15.96 0.77 110.19 −518.58 −5.08 22.35

250/42 0.148 −15.97 0.77 126.53 −552.32 −5.08 25.80

260/28 0.157 −15.96 0.67 −7.30 −318.87 −5.20 5.57

260/30 0.157 −16.00 0.68 16.92 −326.92 −5.19 6.42

260/32 0.159 −16.08 0.69 29.53 −362.73 −5.17 5.63

260/34 0.159 −16.13 0.70 46.05 −399.70 −5.16 6.50

260/36 0.160 −16.19 0.71 64.11 −437.67 −5.15 7.60

260/38 0.160 −16.25 0.72 78.40 −471.97 −5.14 8.96

260/40 0.161 −16.30 0.73 90.97 −505.06 −5.13 11.13

270/28 0.157 −15.97 0.58 −4.60 −262.94 −5.32 9.43

270/30 0.157 −16.01 0.58 21.47 −311.34 −5.31 9.87

270/32 0.157 −16.05 0.58 43.36 −355.80 −5.30 10.40

270/34 0.157 −16.10 0.59 63.76 −398.68 −5.29 11.10

270/36 0.157 −16.14 0.59 81.41 −438.67 −5.29 11.75

270/38 0.158 −16.19 0.60 98.06 −477.62 −5.28 12.47

270/40 0.157 −16.21 0.60 115.06 −516.21 −5.27 13.48

270/42 0.157 −16.23 0.60 133.90 −556.22 −5.27 14.53
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III. CONSTRUCTION OF NEW SKYRME
PARAMETER SETS

The different forces used in this study have been built
using a procedure that is quite similar to the one discussed in
Ref. [21]. The starting point is the standard form of a Skyrme
interaction as given in Eq.(2.1) of [21].

In the case of the first set of forces that we have con-
structed, the density-dependent term has%a=%1/6. The spin-
gradient terms occuring in the Skyrme functional are ne-
glected and the Coulomb exchange term is included within
the Slater approximation. The center-of-mass motion is taken
into account with the usualA/ sA−1d correction in the kinetic
term, which means that only the one-body part of the center-
of-mass(c.m.) energy is subtracted before variation.

The parameters of the forces have been determined by
minimizing ax2 built on:

(1) the infinite nuclear matter properties%0, E/As%0d
(while K`, J, and the enhancement factork of the Thomas-
Reiche-Kuhn sum rule are kept constant; this latter is always
set at 0.25);

(2) the following finite nuclei properties: binding ener-
gies and charge radii of40,48Ca,56Ni, and208Pb together with
the binding energy of132Sn;

(3) the spin-orbit splitting of the neutron 3p shell in
208Pb;

(4) the surface energy, calculated in the ETF approxima-
tion and fitted to the value of the SkM* force in order to
obtain good mean-field properties at large deformations(es-
pecially a good fission barrier of the240Pu nucleus).

Furthermore, the parameterx2 is fixed to −1 in order to en-
sure the stability of the fully polarized neutron matter in a
simple but tractable way[22]. Unlike the case of the SLy4
force, the equation of state of neutron matter is checked but
not fitted in order to have a large enough variational space of
parameters when the nuclear incompressibility and the sym-
metry energy are varied. The forces which have been built
haveK` equal to 230, 240, and 250 MeV, whereasJ is var-
ied between 26 and 40 MeV. In Fig. 2 we show the accuracy

of the present forces in reproducing the ground-state observ-
ables(binding energies and charge radii).

Motivated by the comparison with Ref.[11], we have also
built another set of forces with a similar protocol, but with
the density-dependent term%a having the same exponenta
=0.3563 as the force SK255 introduced in Ref.[11]. The
forces of this set haveK` equal to 250, 260, and 270 MeV,
while J is varied between 28 and 42 MeV. Figure 3 gives an
idea of the accuracy of this set, in the same way as for the
previous one.

The nuclear matter properties associated to all the new
forces introduced in this paper are summarized in Tables I
and II. By looking at the values of the effective mass, one
can recognize the well-known correlation betweenK`, a,
andm* / m (see, e.g., Fig. 2 of Ref.[21]). In the last column
of Tables I and II we provide the values of thex2 per point
associated with the forces. It can be noted that in most cases
the present interactions have the same quality of those intro-
duced in Ref.[21] (see Fig. 5 of that work). As far as the
comparison with the work of other authors is concerned, we
should call that the meaning of thex2 values must be judged
in relation to the quantities chosen for the fit. Since there is
not a universal protocol to determine an effective nucleon-
nucleon interaction, in different cases the values of thex2

can vary simply because of a markedly different choice of
the reference observables. Therefore, the values in the tables
are a useful tool but should be taken with the proper caution.
Figures 2 and 3 may be more illustrative as the reader is able
to compare with corresponding values, e.g., in Refs.[8,11].

IV. RESULTS AND DISCUSSION

Using these new Skyrme interactions, the ISGMR cen-
troid energiesE−1=Îm1/m−1 in 208Pb have been calculated in
a fully self-consistent manner. The energy-weighted sum rule
m1 is obtained from the well-known double commutator ex-
pectation value, while the inverse energy-weighted sum rule
m−1 is extracted by means of a constrained HF(CHF) calcu-

lation [23]. Adding to the Hamiltonian a termlM̂, whereM̂

FIG. 1. Density dependence of the symmetry
energy for one of the set of forces(a=1/6 and
K`=240 MeV). The symmetry energyJ is varied
from 26 to 40 MeV.
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is in this case the monopole operatoroi=1
A ri

2 and l.0 (to
avoid an Hamiltonian without lowest bound), the value of
m−1 can be extracted in two different ways, that is,

m−1 = −
1

2

dkMl0

dl
=

1

2

d2kHl0

dl2 . s11d

By varying the steps inl and by comparing the outcome of
these two different expressions, numerical tests concerning
the accuracy ofm−1 can be performed. We have come to the
conclusion that this quantity can be determined with an ac-
curacy of ±3% or better. This is definitely more reliable than

the result of usual RPA calculations made using a basis ex-
pansion, since the convergence ofm−1 with the basis size can
be quite slow. Moreover, as already discussed in Sec. I, the
Skyrme RPA calculations of the ISGMR performed so far
lack full self-consistency since part of the residual interaction
(the two-body Coulomb and two-body spin-orbit terms) are
dropped. This has been shown to lead to a systematic error in
the monopole centroid energies[5].

In Figs. 4 and 5 we show the results for the monopole
energyE−1 obtained with the present interactions, as a func-
tion of the associated values ofK` andJ. Figure 4 refers to

FIG. 2. Difference between experimental binding energies(left) or experimental charge radii(right) with the predictions of forces
characterized bya=1/6 and by different values ofK` andJ, for typical spherical nuclei. Note that the binding energies of40,48Ca, 56Ni,
132Sn, and208Pb, as well as the charge radii of40,48Ca, 56Ni, and 208Pb are used in the fit of the force parameters.

FIG. 3. Same as Fig. 2 in the case of the forces witha=0.3563.
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the forces witha=1/6, whereas Fig. 5 is for those witha
=0.3563. In the case of the forces witha=0.3563, we have
used the same procedure of Ref.[11], that is, we have ne-
glected the Coulomb exchange and we have omitted the c.m.
correction in the HF variation, by subtracting it afterwards
from the total energy, in the harmonic-oscillator approxima-
tion sEc.m.=

3
441A−1/3d. We have checked that this lowers the

monopole energy by about 150 keV. The straight lines in the
figures are linear fits of the CHF results corresponding to the
different symbols, whereas the experimental range for the
monopole energy[6] is delimited by the horizontal lines.
These figures can be compared with Fig. 5(upper panel) of
Ref. [8]. The results for the monopole energy are, as ex-
pected, much less sensitive toJ than toK`. By varying K`

by 10 MeV, i.e., by about 4%, the monopole energy changes
by 0.5 MeV. In order to obtain the same change,J should be
varied from 26 to 40 MeV, which is about 50%. The RMF
results show qualitatively the same pattern.

We have to stress that the existence of a definite, yet not
strong, dependence onJ is in agreement with the discussion
in Sec. II, where the role ofKsym as one of the crucial pa-

rameters governing the monopole energy has been empha-
sized. It is clear from Figs. 4 and 5, and from Tables I and II,
that the monopole energies do depend on the parameterKsym,
associated with the density dependence of the symmetry en-
ergy. With increasingKsym, the monopole energy increases(a
change of about 300 MeV inKsym, produces a variation of
0.5 MeV in the monopole energy). On the other hand, in the
forces we have built, there is a strong correlation between
Ksym and J, essentially independent ofK` but not of a. In
fact, according to the numbers displayed in Tables I and II,
the modification of the exponenta in the Skyrme functional,
allows us to change the value ofKsym keeping fixed the val-
ues ofK` andJ. According to the argument developed at the
end of Sec. II, this should allow us to change the value ofK`

extracted from the experimental ISGMR data.
By considering only the set witha=1/6, weconfirm the

previous result of Ref.[5] that K`=230–240 MeV is the
preferred value for the nuclear incompressibility. This is not
fully compatible with the RMF result. In fact, extrapolating
from Fig. 4, one can see that a hypothetic Skyrme parametri-
zation having that associated value ofK`, would reproduce
the experimental monopole energy only with an unrealistic

FIG. 4. The 208Pb ISGMR centroid energy
E−1 calculated with the Skyrme parameter sets
with a=1/6, as afunction of J. The different
symbols correspond to the values ofK` (see in-
set). Lines are numerical fits and are simply in-
tended to guide the eye. The area delimited by the
two horizontal lines correspond to the experimen-
tal value.

FIG. 5. Same as Fig. 4, for the Skyrme pa-
rameter sets witha=0.3563.
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value of J above 50 MeV. On the other hand, the set of
forces with a=0.3563 allows us to extract a value ofK`

around 250 MeV, in agreement with the outcome of the
RMF calculations.

We should at this point stress that the more negative val-
ues of Ksym which characterize the forces witha=0.3563
cannot, alone, explain the extraction of a largerK`. The
forces which better reproduce the experimental monopole
energy are those with(a, K`, J) given either by (1/6,
230 MeV, 28 MeV) or by (0.3563 250 MeV, 30 MeV). We
can apply Eq.(10) to the case of these two forces, by insert-
ing the values given in the Tables I and II and by taking into
account thatc,−1 for K`=230 MeV but ,−1.1 for K`

=250 MeV. This gives for the two forces, respectively,

KA = 154.16 = 230 − 38.82 − 10.23 − 26.79sMeVd

and

KA = 160.64 = 250 − 46.41 − 15.18 − 27.77sMeVd,

where the four numbers on the r.h.s. correspond, respec-
tively, to the volume, surface, symmetry, and Coulomb con-
tributions. It is clear that most of the gain of 20 MeV inK`

comes from the increase of the surface terms8 MeVd, and
the more negativeKsymwhich, multiplied by the tiny value of
d2 for 208Pb, contributes 5 MeV. A small contribution of
1 MeV results from the increase ofKCoul. Finally, Eq. (10)
does not consider that, in the calculations done by employing
the forces with a=0.3563, the Coulomb exchange and
center-of-mass corrections are neglected. As mentioned
above, this lowers the ISGMR energies by about 150 keV
and henceKA by about 5 MeV. This brings the two results
for KA rather close to each other.

V. CONCLUSION

Until recently, the extraction of the nuclear incompress-
ibility from the monopole data was plagued by a marked
model dependence: the Skyrme energy functionals seemed to
point to 210–220 MeV, the Gogny functionals to 235 MeV,
and the relativistic functionals to 250–270 MeV. It has been
shown in Ref.[5] that the result of the Skyrme functionals is,
in fact, consistent with that of Gogny, i.e., 235 MeV using
the 208Pb data. The previous value of 210–220 MeV was
derived using non-fully-self-consistent calculations, neglect-
ing the residual Coulomb and spin-orbit interactions. The
discrepancy between the nonrelativistic value of 235 MeV
and the relativistic prediction remained, since relativistic cal-
culations confirmed the lower bound of about 250 MeV.

The work of Agrawalet al. [11] suggests that it is possible
to build Skyrme forces that fit nuclear ground states and lead
to the correct monopole energy, withK`=255 MeV. In the
present work we systematically explore the conditions that

lead to such different results forK` within the Skyrme
framework.

To this aim, we build classes of Skyrme forces which span
a wide range of values forK` and for the symmetry energy at
saturationJ. All these forces reproduce the ground-state ob-
servables with good accuracy. We use them to calculate the
monopole energy in208Pb, defined asE−1=Îm1/m−1. We
stress again that we can obtain this quantity without any lack
of self-consistency, and with a numerical error that is not
larger than the experimental uncertainity.

A first class of forces are built using the SLy4 protocol
and have a density dependence characterized by the exponent
a=1/6. With these forces, a value ofK` around
230–240 MeV is obtained, confirming the previous results
of [5]. To obtain the correct monopole energy with larger
values ofK` would require an unrealistically large value of
J, sinceEISGMR increases withK` and decreases withJ. We
understand this latter dependence as a consequence of the
direct relation between theK` and thedensity dependenceof
the symmetry energySs%d, and of the unavoidable correla-
tion betweenSs%d andJ.

To solve the discrepancy with the result of Agrawalet al.,
we have built a second class of forces which have the density
dependencea=0.3563. Using this class of forces we can
arrive at K` between 250 and 260 MeV. Actually, we can
reproduce very accurately the results of Ref.[11], if we use
the same approximations made in that work, namely, if we
neglect the Coulomb exchange and c.m. corrections in the
HF mean field. This shows that the differences between Ref.
[11] and our work in the detailed protocol used to determine
the forces, are unimportant. We have observed that the dif-
ferences between the results of the two classes of Skyrme
forces built in the present paper, come both from the surface
and symmetry contributions, as a consequence of the change
in the exponenta, and from the neglect of Coulomb ex-
change and c.m. corrections, which affect the monopole en-
ergy by about 150 keV and, therefore,K` by about 5 MeV.

In conclusion, within the nonrelativistic framework there
is not a unique relation between the value ofK` associated
with an effective force and the monopole energy predicted by
that force. Bona fide Skyrme forces can either predict
230–240 MeV forK` or arrive at 250 MeV if a different
density dependence is adopted and if one excludes some
terms from the energy functional. This latter procedure, al-
though it may mimic the relativistic case, is not conceptually
well justified.
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