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Davidson potentials of the formb2+b0
4/b2, when used in the E(5) framework bridge the U(5) and O(6)

symmetries, while they bridge the U(5) and SU(3) symmetries when used in the X(5) framework. Using a
variational procedure, we determine for each value of angular momentumL the value ofb0 at which the rate
of change of various physical quantities[energy ratios, intraband B(E2) ratios, quadrupole moment ratios] has
a maximum, the collection of the values of the physical quantity formed in this way being a candidate for
describing its behavior at the relevant critical point. Energy ratios lead to the E(5) and X(5) results, while
intraband B(E2) ratios and quadrupole moments lead to the Es5d-b4 and Xs5d-b4 models. A new derivation of
the Holmberg-Lipas formula for nuclear energy spectra is obtained as a by-product.
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I. INTRODUCTION

The recently introduced E(5) [1] and X(5) [2] models are
supposed to describe shape phase transitions in atomic nu-
clei, the former being related to the transition from U(5)
(vibrational) to O(6) (g-unstable) nuclei, and the latter cor-
responding to the transition from U(5) to SU(3) (rotational)
nuclei. In both cases the original Bohr collective Hamil-
tonian [3] is used, with an infinite well potential in the col-
lective b variable. Separation of variables is achieved in the
E(5) case by assuming that the potential is independent of
the collectiveg variable, while in the X(5) case the potential
is assumed to be of the formusbd+usgd. For brevity we are
going to refer to these two cases of separation of variables as
“the E(5) framework” and “the X(5) framework” respec-
tively, although the former case has been known for a long
time [4]. The selection of an infinite well potential in theb
variable in both cases is justified by the fact that the potential
is expected to be flat around the point at which a shape phase
transition occurs. Experimental evidence for the occurence of
the E(5) and X(5) symmetries in some appropriate nuclei is
growing (Refs.[5–8], respectively).

In the present work we examine if the choice of the infi-
nite well potential is the optimum one for the description of
shape phase transitions. For this purpose, we need one-
parameter potentials which can span the U(5)-O(6) region in
the E(5) framework, as well as the U(5)-SU(3) region in the
X(5) framework. It turns out that the exactly soluble[9,10]
Davidson potentials[11]

usbd = b2 +
b0

4

b2 , s1d

whereb0 is the position of the minimum of the potential, do
possess this property.

Taking into account the fact that various physical quanti-
ties should change most rapidly at the point of the shape
phase transition[12], we locate for each value of the angular
momentumL the value ofb0 for which the rate of change of
the physical quantity is maximized. The collection of the
values of the physical quantity formed in this way should
then correspond to the behavior of this physical quantity at
the critical point. As appropriate physical quantities we have
used energy ratios within the ground state band, as well as
intraband B(E2) ratios and quadrupole moment ratios within
the ground state band, and within excited bands.

The energy ratios within the ground state band lead to
results very similar to these provided by the infinite well
potential in both the E(5) and the X(5) frameworks, thus
indicating that the choice of the infinite well potential in both
cases is the optimum one. Intraband B(E2) ratios and quad-
rupole moment ratios lead to results close to the ones pro-
vided by the Es5d-b4 [13,14] and Xs5d-b4 [15] models,
which use ausbd=b4/2 potential in the E(5) and X(5)
framework, respectively.(It should be noticed at this point
that a quartic anharmonicity has been used earlier in the de-
scription of even nuclei in Refs.[16,17].) Further discussion
of these results is deferred to Sec. VIII.

The variational procedure used here is analogous to the
one used in the framework of the variable moment of inertia
(VMI ) model [18], where the energy is minimized with re-
spect to the(angular momentum dependent) moment of in-
ertia for each value of the angular momentumL separately.
The variational procedure used here also resembles the stan-
dard Ritz variational method of quantum mechanics[19],
since the former utilizes a trial potential containing a free
parameter, while in the latter a trial wave function involving
a free parameter is involved. The main difference between
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the two methods lies in the way in which the value of the
parameter is determined. In the Ritz approach this is
achieved by minimizing the energy, while in the present case
it is done by maximizing the rate of change of the relevant
physical quantity.

L-dependent potentials are also not unheard of in nuclear
physics. They are known to occur in the framework of the
optical model potential[20–22], as well as in the case of
quasimolecular resonances, such as12C+12C [23].

In the framework of the Interacting Boson Model(IBM )
[24], there have been attempts to consider the U(5) to O(6)
transition[13], as well as the U(5) to SU(3) transition[25] in
terms of one-parameter schematic Hamiltonians. In the
present approach, in contrast, Davidson potentials are used
directly in the original Bohr Hamiltonian, without the inter-
vention af any IBM approximations.

On the other hand, exactly soluble models have been con-
structed by using the Coulomb and Kratzer[26] potentials in
the original Bohr Hamiltonian in the E(5) [27] and X(5) [28]
frameworks, while a two-parameter quasiexactly soluble
model[29–31] has been constructed by using[32] the sextic
oscillator with a centrifugal barrier[33] in the E(5) frame-
work. Some of these potentials will be further commented
below.

Spectra and B(E2) transition rates for Davidson potentials
in the E(5) and X(5) frameworks are considered in Sec. II,
while the relevant limiting symmetries are discussed in Sec.
III. The variational procedure is then applied to energy ratios
(Sec. IV), excitation energies(Sec. V), B(E2) ratios (Sec.
VI ), and quadrupole moment ratios(Sec. VII), while finally
Sec. VIII contains a discussion of the present results and
plans for further work. A preliminary version of this work,
limited to the variational study of the spectra of ground state
bands, has been reported in Ref.[34].

II. SPECTRA AND B(E2) TRANSITION RATES

A. The E(5) framework

In the E(5) model it is assumed that the potential appear-
ing in the original Bohr Hamiltonian[3] (in which the col-
lective variablesb andg appear) depends only on the vari-
able b, i.e., Vsb ,gd=Usbd. One can then proceed to
separation of variables in the standard way[3,4], seeking
wave functions of the formCsb ,g ,uid= fsbdFsg ,uid, where
ui si =1,2,3d are the Euler angles describing the orientation
of the deformed nucleus in space. Reduced energiese
=s2B/"2dE and reduced potentialsu=s2B/"2dU [1], where
B is the mass parameter appearing in the original Bohr
Hamiltonian, are introduced for simplicity.

In the equation involving the angles(i.e., g and the Euler
angles), the eigenvalues of the second order Casimir operator
of SO(5) occur, having the formL=t st+3d, wheret=0, 1,
2, …, is the quantum number characterizing the irreducible
representations(irreps) of SO(5), called the “seniority”[35].
This equation has been solved by Bès[36].

As described in more detail in Ref.[34], the “radial”
equation(involving the variableb) can be solved exactly for
the Davidson potentials of Eq.(1), the eigenfunctions being

Laguerre polynomials, and the energy eigenvalues having the
form [9,10] (in "v=1 units)

En,t = 2n + 1 +FSt +
3

2
D2

+ b0
4G1/2

. s2d

For b0=0 the original solution of Bohr[3,37], which corre-
sponds to a five-dimensional(5D) harmonic oscillator char-
acterized by the symmetry Us5d.SOs5d.SOs3d.SOs2d
[38], is obtained. The values of angular momentumL con-
tained in each irrep of SO(5) (i.e., for each value oft) are
given by the algorithm[24] t=3nD+l, wherenD=0,1, . . ., is
the missing quantum number in the reduction
SOs5d.SOs3d, and L=l ,l+1, . . . ,2l−2,2l (with 2l−1
missing).

The levels of the ground state band are characterized by
L=2t andn=0. Then the excitation energies of the levels of
the ground state band relative to the ground state are

E0,L,exc= E0,L − E0,0= 1
2sfsL + 3d2 + 4b0

4g1/2 − f9 + 4b0
4g1/2d.

s3d

The “radial” equation is also exactly soluble forusbd be-
ing a 5D infinite well [usbd=0 if bøbW, usbd=` for
b.bW], in which case one obtains the E(5) model of Iach-
ello [1], the eigenfunctions being Bessel functionsJt+3/2szd
(with z=bk, k=Î2BE/"2), while the spectrum is determined
by the zeros of the Bessel functions, having the formEj,t
=s"2/2Bdkj,t

2 with kj,t=xj,t /bW, wherexj,t is thej-th zero of
the Bessel functionJt+3/2szd. The spectra of the E(5) and
Davidson cases become directly comparable by establishing
the formal correspondencen=j−1.

In what follows the ratios

Rn,L =
En,L − E0,0

E0,2− E0,0
, RI n,L =

En,L − En,0

En,2 − En,0
s4d

with the notationEn,L, will be used. In the former case ener-
gies in all bands are measured relative to the ground state
and normalized to the excitation energy of theL=2 state of
the ground state band(as in Ref.[1]), while in the latter case
energies in each band are measured relative to the bandhead
sL=0d of this band and normalized to the excitation energy
of the L=2 state of this band. From Eq.(2) it is clear that
RI n,L obtains identical values for all bands withL=2t, irre-
spectively ofn. For the ground state bandsn=0d the simpli-
fied notationRL;R0,L will also be used.

The quadrupole operator has the form[4]

Tm
sE2d = tam = tbFDm,0

s2d suidcosg +
1
Î2

fDm,2
s2d suid

+ Dm,−2
s2d suidgsingG , s5d

wheret is a scale factor andDsuid denote Wigner functions
of the Euler angles. The calculation of B(E2) rates proceeds
as in Refs.[1,14].

In what follows, the intraband ratios
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Rn,L
BsE2d =

BfE2;sL + 2dn → Lng
BsE2;20 → 00d

, RI n,L
BsE2d =

BfE2;sL + 2dn → Lng
BsE2;2n → 0nd

s6d

will be used. In the former case the B(E2) intraband transi-
tion rates of all bands are normalized to the B(E2) transition
rate between the two lowest states of the ground state band
(as in Ref.[1]), while in the latter case the B(E2) intraband
transition rates within each band are normalized to the B(E2)
transition rate between the two lowest states of this band.

It should be noted at this point that quadrupole moments
in this framework vanish, if one is limited to the quadrupole
operator of Eq.(5), because of aDt= ±1 selection rule. This
case is reminiscent of the vanishing(to lowest order) of the
quadrupole moments in the O(6) limit of IBM [24]. Nonva-
nishing quadrupole moments can be obtained by including
the next order terms in the quadrupole operator of Eq.(5).

B. The X(5) framework

Starting again from the original Bohr Hamiltonian[3],
one seeks solutions of the relevant Schrödinger equation
having the formCsb ,g ,uid=fK

Lsb ,gdDM,K
L suid, whereui si

=1,2,3d, are the Euler angles,Dsuid denote Wigner func-
tions of them,L are the eigenvalues of angular momentum,
while M and K are the eigenvalues of the projections of
angular momentum on the laboratory-fixedz axis and the
body-fixed z8 axis, respectively. As pointed out in Refs.
[2,39], an approximate separation of variables can be
achieved by assuming that the potential has a minimum
aroundg=0, as well as that it can be separated into two
terms, one depending onb and the other depending ong,
i.e., usb ,gd=usbd+usgd.

As described in more detail in Ref.[34], the “radial”
equation occuring in this case can be solved exactly in the
case of the Davidson potentials of Eq.(1), the energy eigen-
values being(in "v=1 units)

En,L
sKd = 2n + 1 + f 1

3sLsL + 1d − K2d + 9
4 + b0

4g1/2. s7d

The levels of the ground state band are characterized byn
=0 and K=0. Then the excitation energies relative to the
ground state are given by

E0,L,exc
s0d = E0,L

s0d − E0,0
s0d

= f 1
3LsL + 1d + 9

4 + b0
4g1/2 − F9

4
+ b0

4G1/2

, s8d

which can easily be put into the form

E0,L,exc8 =
E0,L,exc

s0d

f 9
4 + b0

4g1/2 = F1 +
LsL + 1d
3s 9

4 + b0
4dG1/2

− 1, s9d

which is the same as the Holmberg-Lipas formula[40]

EHsLd = aHfÎ1 + bHLsL + 1d − 1g, s10d

with aH=1 and bH=1/s27/4+3b0
4d. The Holmberg-Lipas

formula has built in the concept of the variable moment of
inertia (VMI ) model[18] (i.e., the increase of the moment of
inertia as a function of angular momentum), as pointed out in
Ref. [41].

The “radial” equation is also exactly soluble forusbd be-
ing a 5D infinite well potential, similar to the one mentioned
below Eq.(3). In this case the X(5) model of Iachello[2] is
obtained, in which the eigenfunctions are Bessel functions
Jnsks,Lbd with [2,39] n=hfLsL+1d−K2g /3+9/4j1/2, while the
spectrum is determined by the zeros of the Bessel functions,
the relevant eigenvalues beingEb;s,L=s"2/2Bdsks,Ld2 with
ks,L=xs,L /bW, wherexs,L is thesth zero of the Bessel function
Jnsks,Lbd.

The spectra of the X(5) and Davidson cases become di-
rectly comparable by establishing the formal correspondence
n=s−1. In addition to the energy ratiosRn,L andRI n,L, defined
in Eq. (4), which will be used forK=0 bands, the ratios

RI n,L8 =
En,L

s2d − En,2
s2d

En,3
s2d − En,2

s2d , s11d

defined within theK=2 band, will be used below. The quad-
rupole operator is again given by Eq.(5), while the B(E2)
transition rates are calculated in the way described in Refs.
[2,15].

In addition to the intraband B(E2) ratios defined in Eq.
(6), interband B(E2) transition rate ratios

Rn,L,n8,L8
BsE2d =

BsE2;Ln → Ln8
8 d

BsE2;20 → 00d
s12d

will be used. Quadrupole moments are defined by[24]

Qs,L =
4Îp

5
sLsLs2uLs − Ls0dkLsiTsE2diLsl. s13d

In what follows, the ratios

Rn,L
Q =

Qn,L

Q0,2
, RI n,L

Q =
Qn,L

Qn,2
s14d

will be used.

III. LIMITING SYMMETRIES

A. The U(5) and O(6) limits in the E(5) framework

For b0=0 it is clear that in the E(5) framework the origi-
nal vibrational model of Bohr[3,37] (with R4=2) is ob-
tained, while for largeb0 the O(6) limit of the interacting
boson model(IBM ) [24] for large boson numbers, which
coincides with theg-unstable rotator(with R4=2.5) is ap-
proached[9].

The gradual evolution from the U(5) to the O(6) limit, as
b0 is increased, is depicted in Fig. 1, where several energy
ratios RL within the ground state band are depicted, and in
Fig. 2, where the intraband B(E2) ratios R0,L

BsE2d (within the
ground state band) and R1,L

BsE2d (within the n=1 band) are
shown. The limiting values at the right-hand side are in
agreement with the O(6) predictions for large boson num-
bers, given by[24,41] EsLd=ALsL+6d, RL=LsL+6d /16,

BsE2;L + 2→ Ld = a
L + 2

L + 5
, RI n,L

BsE2d =
5

2

L + 2

L + 5
, s15d

where A and a are constants and Eq.(15) is valid for all
values ofn, taking into account the difference between the
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Rn,L
BsE2d andRI n,L

BsE2d ratios, defined in Eq.(6), while at the left-
hand side the U(5) values, corresponding to[14,24] EsLd
=AL, RL=L /2,

BfE2;sL + 2d0 → L0g = asL + 2d, R0,L
BsE2d =

L + 2

2
, s16d

BfE2;sL + 2d1 → L1g = a8
sL + 2dsL + 7d

L + 5
,

s17d

RI 1,L
BsE2d =

5

14

sL + 2dsL + 7d
L + 5

,

whereA, a, a8 constants, are obtained.
It should be noticed that the O(6) limit of IBM (with large

boson numbers) is also obtained[27] by using in the E(5)
framework the exactly soluble Kratzer potential[26], which
has the form

usbd = − 2DSb0

b
−

1

2

b0
2

b2D = −
A

b
+

B

b2 , s18d

whereD is the depth of the minimum of the potential, which
is located atb0, while A=2b0D andB=b0

2D. The O(6) limit
is obtained for large values ofD or large values ofb0. In the
case of the Kratzer potential, however, it is clear that small
values ofD or small values ofb0 lead [27] to the Coulomb
potential.

B. The X„5…-b2 and SU(3) limits in the X(5) framework

In the X(5) framework for b0=0 the exactly soluble
Xs5d-b2 model (with R4=2.646) is obtained, the details of
which can be found in Ref.[15], while for largeb0 the SU(3)
limit of IBM with large boson numbers, which coincides
with the rigid rotator(with R4=3.333) is obtained. In what
follows the occurence of the SU(3) limit will be discussed in
more detail.

It is clear that the Holmberg-Lipas formula gives rota-
tional spectra for small values ofbH, at which one can keep
only the firstL-dependent term in the Taylor expansion of the
square root appearing in Eq.(10), leading to energies propor-
tional to LsL+1d. It is then clear that rotational spectra are
expected for large values ofb0, for which small values ofbH

occur. One can easily verify that theRL ratios for largeb0

approach the predictions of the SU(3) limit of IBM at large
boson numbers, which correspond to the rigid rotator with
EsLd=ALsL+1d and RL=LsL+1d /6, where A is constant
[24], the agreement to the SU(3) results being quite good
already atb0=8. The same can be seen for the ratiosRI 0,L8 ,
regarding then=0, K=2 band, which in the rigid rotator case
correspond to the limiting valuesRI 0,L8 =LsL+1d /6−1.

One can also consider the intraband B(E2) ratios RI 0,L
BsE2d

(within the ground state band, which hasn=0) and RI 1,L
BsE2d

(within the next band, which is characterized byn=1). In the
SU(3) limit (for infinite number of bosons) one has for all
K=0 bands[24]

FIG. 1. (Color online) RL energy ratios for the ground state band
(for L=4, 12, 20) and their derivativesdRL /db0 vs the parameter
b0, calculated using Davidson potentials[Eq. (1)] in the E(5) frame-
work. TheRL curves demonstrate the evolution from the U(5) sym-
metry (on the left) to the O(6) limit of IBM with large boson num-
bers(on the right). See Secs. III A and IV A for further details.

FIG. 2. (Color online) Intraband B(E2) ratios [Eq. (6)] R0,L
BsE2d

(for the ground state band) and R1,L
BsE2d (for the n=1 band) for L

=2, 10, 18, vs the parameterb0. The curves show the evolution
from the U(5) symmetry(on the left) to the O(6) limit of IBM with
large boson numbers(on the right). See Secs. III A and VI A for
further discussion.
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BsE2;L + 2→ Ld = a
sL + 2dsL + 1d

s2L + 3ds2L + 5d
,

s19d

RI n,L
BsE2d =

15

2

sL + 2dsL + 1d
s2L + 3ds2L + 5d

,

wherea is constant, for all values ofn. One can easily verify
that then=0 and n=1 results still differ a little atb0=4,
becoming almost identical to the SU(3) behavior atb0=8.

Interband B(E2) transition rates from then=1 band to the
n=0 band[defined in Eq.(12)], which are forbidden in the
SU(3) framework[24], are shown in Fig. 3(a). The rapid fall
of these transitions towards zero with increasingb0 can be
seen in Fig. 3(a), where the Xs5d-b2 limiting values on the
left are in agreement with the ones given in Ref.[15].

Ratios of quadrupole moments within then=0 andn=1
bands are shown in Fig. 3(b). In the SU(3) limit (for infinite
number of bosons) one has[24] (for all values ofn) Qn,L
=aL/ s2L+3d, where a is constant, corresponding toRI n,L

Q

=7L / s4L+6d. One can easily verify that atb0=4 some dif-
ferences between then=0 andn=1 cases are still visible,
while at b0=8 both cases become almost identical to the
SU(3) values.

The evolution of quadrupole moments from the Xs5d-b2

case to the SU(3) limiting values is clearly seen in Fig. 3(b).
The SU(3) limiting values forn=0 andn=1 on the right do
converge with increasingb0 [taking into account the differ-
ence between the ratiosRn,L

Q and RI n,L
Q , defined in Eq.(14)].

Since no results for quadrupole moments for the Xs5d-b2

case are given in Ref.[15], they are reported here in Table I.
Quadrupole moments for the X(5) model, as well as for the
Xs5d-b4, Xs5d-b6, and Xs5d-b8 models(defined in Ref.[15])
are also listed in Table I as a by-product.

It should be noted that the SU(3) limit of IBM (at large
boson numbers) is also obtained[28] by using in the X(5)
framework the exactly soluble Kratzer potential[26] of Eq.
(18). The SU(3) limit is obtained for large values ofB. In the

case of the Kratzer potential, however, it is clear that small
values ofB lead [28] to the Coulomb potential.

IV. VARIATIONAL PROCEDURE APPLIED
TO ENERGY RATIOS

A. E(5) framework

We first consider the ratiosRL within the ground state
band, since these ratios are well-known indicators of collec-
tivity in nuclear structure[42]. As seen in Fig. 1, these ratios
increase withb0, the increase becoming very steep at some
value b0,msLd of b0, where the first derivativedRL /db0

reaches a maximum value, while the second derivative
d2RL /db0

2 vanishes. Numerical results forb0,m are shown in
Table II, together with the values ofRL occuring at these
points, which are compared to theRL ratios occuring in the
ground state band of the E(5) model [1]. Very close agree-
ment of the values determined by the procedure described
above with the E(5) values is observed in Table II, as well as
in Fig. 4(a), where these ratios are also shown, together with
the corresponding ratios of the U(5) and O(6) limits. Finally,
the potentials obtained for different angular momentaL are
depicted in Fig. 5.

It is worth mentioning at this point that the consequences
of replacing in the E(5) framework the infinite well potential
by a well of finite depth have been studied in detail[43], the
main conclusion being that many key features of E(5) remain
essentially unchanged, even if the depth of the potential is
radically changed. This observation implies that the E(5) pre-
dictions, reassured above through the variational procedure,
are stable and do not depend sensitively on any parameter
like the depth of the potential.

The success of the variational procedure when applied to
energy ratios within the ground state band encourages its use
for excited bands as well. Since it is reasonable to treat each
band as a separate entity, the ratiosRI n,L [defined in Eq.(4)]
should be used for this purpose. From Eq.(2) it is clear,

FIG. 3. (Color online) (a) In-
terband B(E2) ratiosR

1,L,0,L8
BsE2d [Eq.

(12)] from then=1, K=0 band to
the ground state band vsb0. (b)
Quadrupole moment ratios[Eq.
(14)] R0,L

Q (for the ground state
band) and R1,L

Q (for the n=1, K
=0 band) for L=4, 12, 20, vsb0.
In all cases the curves show the
evolution from the X(5)-b2 model
(on the left) to the SU(3) limit of
IBM with large boson numbers
(on the right). See Secs. III B,
VI B, and VII for further
discussion.
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however, that in the case of the Davidson potentials and for
bands withL=2t theRI n,L ratios will be identical toRL for all
values ofn. This is a special feature of the Davidson poten-
tials, due to their oscillatorlike spectrum. This feature is
lifted when one considers generalized Davidson potentials of
the form

usbd = b2n +
b0

4n

b2n, n = 2,3,4, . . ., s20d

which will be briefly discussed in Sec. VIII.

B. X(5) framework

The steps of the previous subsection have been repeated
in the X(5) case, shown in Table III. Very close agreement
with the ground state band of the X(5) model[2] is observed,
while the relevant potentials form a figure similar to Fig. 5.

For excitedK=0 bands the ratiosRI n,L should be consid-
ered. However, because of Eq.(7), it is clear that all these
ratios for allK=0 bands are identical toRL for all values of
n, due to the oscillatorlike form of the spectrum of Davidson
potentials. This is lifted when using the generalized David-
son potentials of Eq.(20), which will be further discussed in
Sec. VIII.

For K=2 bands the ratiosRI n,L8 [defined in Eq.(11)] should
be used. The relevant results for then=0, K=2 band are
reported in Table III and Fig. 6(a). Not only the energy ratios
obtained through the variational procedure are very close to
the X(5) results[15,39], but in addition theb0,m values ob-
tained for the even values ofL are very close to the corre-
sponding ones obtained from the application of the varia-
tional procedure to the ground state band, discussed above.

V. VARIATIONAL PROCEDURE APPLIED TO
EXCITATION ENERGIES

A. E(5) framework

It is instructive to apply the variational procedure devel-
oped in the previous section to isolated energy levels instead
of energy ratios. For this purpose the excitation energies
E0,L,exc of the levels of the ground state band, given by Eq.
(3), will be used. The valuesb0,m where the absolute value of
the first derivative(since the first derivative is negative in
this case) becomes maximum are reported in Table II, to-
gether with the correspondingE0,L,exc values. Using the
E0,L,exc values obtained in this way, one can calculate the
relevantRL ratios. As seen in Table II, the results obtained in
this way are very close to the U(5) results.

This result is easy to explain: From the experimental data
(see Ref.[44], for example) it is known that excitation ener-

TABLE I. Quadrupole moments[Eq. (13)] of the X(5)-b4, X(5)-
b6, and X(5)-b8 models, compared to the predictions of the X(5)
and X(5)-b2 models for someK=0 bands. See Sec. II B for details.

band L X(5)-b2 X(5)-b4 X(5)-b6 X(5)-b8 X(5)

s=1

0 0.000 0.000 0.000 0.000 0.000

2 1.000 1.000 1.000 1.000 1.000

4 1.466 1.413 1.391 1.380 1.358

6 1.823 1.699 1.648 1.622 1.572

8 2.127 1.925 1.842 1.800 1.719

10 2.395 2.114 2.000 1.941 1.828

12 2.638 2.277 2.132 2.058 1.913

14 2.862 2.422 2.247 2.158 1.982

16 3.070 2.552 2.348 2.245 2.038

18 3.266 2.671 2.439 2.322 2.086

20 3.450 2.781 2.522 2.391 2.127

22 3.626 2.884 2.598 2.454 2.162

24 3.794 2.980 2.669 2.512 2.193

26 3.954 3.070 2.734 2.565 2.221

28 4.109 3.155 2.795 2.615 2.245

30 4.258 3.236 2.853 2.661 2.268

s=2

0 0.000 0.000 0.000 0.000 0.000

2 1.245 1.107 1.034 0.991 0.894

4 1.742 1.521 1.411 1.346 1.197

6 2.095 1.796 1.655 1.573 1.379

8 2.387 2.012 1.840 1.743 1.508

10 2.643 2.191 1.992 1.880 1.608

12 2.875 2.347 2.120 1.995 1.689

14 3.088 2.486 2.233 2.095 1.756

16 3.287 2.612 2.333 2.182 1.813

18 3.473 2.727 2.423 2.260 1.863

20 3.651 2.833 2.505 2.331 1.906

TABLE II. Parameter valuesb0,m, where the absolute value of
the first derivative of a physical quantity has a maximum, while the
second derivative vanishes, for theRL energy ratios and theE0,L,exc

excitation energies[Eq. (3)] of the ground state band of the David-
son potentials in the E(5) framework, together with the correspond-
ing values of each physical quantity(labeled by “var”), which are
compared to appropriate E(5) or U(5) results. In the case ofE0,L,exc,
the correspondingRL ratios are also shown. See Secs. IV A and V A
for further details.

L b0,m

RL

var
RL

E(5) b0,m

E0,L,exc

var
RL

var
RL

U(5)

2 1.399 0.709 1.000 1.000

4 1.421 2.185 2.199 1.538 1.423 2.008 2.000

6 1.522 3.549 3.590 1.658 2.142 3.021 3.000

8 1.609 5.086 5.169 1.766 2.862 4.037 4.000

10 1.687 6.793 6.934 1.866 3.583 5.054 5.000

12 1.759 8.667 8.881 1.960 4.303 6.070 6.000

14 1.825 10.705 11.009 2.049 5.022 7.084 7.000

16 1.888 12.906 13.316 2.135 5.739 8.096 8.000

18 1.947 15.269 15.799 2.217 6.455 9.105 9.000

20 2.004 17.793 18.459 2.297 7.168 10.111 10.000
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gies within a series of isotopes drop very rapidly in the re-
gion of the vibrational limit, as one moves away from the
pure vibrational behavior(see, for example, the chains of the
Sm, Gd, Dy isotopes), while the changes near the rotational
limit as one moves from one isotope to the next are minimal
(see, for example, the Th, U, Pu isotopes). Trying then to
identify a series of energy levels corresponding to the most

rapid changes in the excitation energies, one naturally ends
up with the vibrational limit. Therefore the application of the
variational procedure to isolated energy levels just demon-
strates the effectiveness of the method, leading to results
physically expected.

B. X(5) framework

The steps of the previous subsection are repeated using
the excitation energies of Eq.(8). Numerical results are
shown in Table III, and are seen to be very close to the
results provided by the X(5)-b2 model [15], which corre-
sponds to a Davidson potential withb0=0 and represents the
most vibrational behavior possible within the realm of the
model used, which spans the X(5)-b2 to SU(3) region.

VI. VARIATIONAL PROCEDURE APPLIED
TO B(E2) RATIOS

A. E(5) framework

The success of the variational procedure when applied to
the energy ratiosRL also encourages its use for intraband
B(E2) ratios. Considering each band as a separate entity, it is
reasonable to use the ratiosRI n,L

BsE2d, defined in Eq.(6). It
should be emphasized that the different choice of the de-
nominator in the ratiosRn,L

BsE2d andRI n,L
BsE2d is not a trivial matter

of normalization, since one divides in each case by a differ-
ent function ofb0, being led in this way to different results
when the variational procedure is applied.

As we have seen in Fig. 2, the B(E2) ratios go down from
their U(5) values atb0=0 to the O(6) limiting values at large
b0. Therefore in this case we are going to determine the
valuesb0,m at which the absolute value of the first derivative,
udRI n,L

BsE2d /db0u, has a maximum, while the second derivative

FIG. 4. (Color online) Energy
ratiosRL for the ground state band
(a), and intraband B(E2) ratios
RI 1,L

BsE2d [Eq. (6)] (b) for the n=1
band, obtained through the varia-
tional procedure (labeled by
“var” ) using Davidson potentials
in the E(5) framework, compared
to the values provided by the
U(5), O(6), E(5), and E(5)-b4

models. See Secs. IV A and VI A
for further details.

FIG. 5. (Color online) Davidson potentials[Eq. (1)] obtained for
different angular momentaL through the application of the varia-
tional procedure to energy ratios within the ground state band in the
E(5) framework. Theb0 values corresponding to these potentials
are listed in Table II. See Sec. IV A for further discussion.
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vanishes. Results for then=1 band are depicted in Fig. 4(b),
where the U(5) and O(6) results, calculated from Eqs.(17)
and(15) , are shown for comparison. In addition, the results
given by the original E(5) model[1], as well as by the E(5)-
b4 model [13,14], which uses ausbd=b4/2 potential in the
E(5) framework instead of an infinite well potential, are ex-
hibited. It is clear that the variational procedure leads to re-
sults which are quite close to the E(5)-b4 case. One can
easily verify that the same fact is seen for the ground state
band (with n=0). We defer further discussions of these re-
sults to Sec. VIII.

It should be mentioned at this point that the first deriva-
tive of the BsE2:L+2→Ld values with respect tob0 does
not exhibit a maximum, while the second derivative does not
vanish at any value other thanb0=0. Therefore the varia-

tional procedure cannot be applied to isolated B(E2) values,
being applicable to B(E2) ratios only.

B. X(5) framework

The steps of the previous subsection are repeated in the
X(5) case. It is found that for both the ground state band
(n=0, K=0) and then=1, K=0 band the variational proce-
dure leads to results which are quite close to the X(5)-b4

case[15], which uses ausbd=b4/2 potential in the X(5)
framework instead of an infinite well one. Further discussion
of these results is deferred to Sec. VIII. As in the E(5) case,
the variational procedure cannot be applied to isolated B(E2)
values.

FIG. 6. (Color online) Energy
ratios RI

8
0,L [Eq. (11)] (a) for the

n=0, K=2 band, and quadrupole
moment ratiosRI 0,L

Q [Eq. (14)] (b)
for the ground state band, ob-
tained through the variational pro-
cedure (labeled by “var”) using
Davidson potentials in the X(5)
framework, compared to the val-
ues provided by the U(5), SU(3),
X(5), X(5)-b2, and X(5)-b4 mod-
els. See Secs. IV B and VII for
further details.

TABLE III. Parameter valuesb0,m where the absolute value of the first derivative of a physical quantity
has a maximum, while the second derivative vanishes, for theRL energy ratios and theE0,L,exc

s0d excitation
energies[Eq. (8)] of the ground state band, as well as for theR8I 0,L energy ratios[Eq. (11)] of the n=0, K
=2 band of the Davidson potentials in the X(5) framework, together with the corresponding values of each
physical quantity(labeled by “var”), which are compared to appropriate X(5) or X(5)-b2 results. In the case
of E0,L,exc, the correspondingRL ratios are also shown. See Secs. IV B and V B for further details.

L b0,m

RL

var
RL

X(5) b0,m

E0,L,exc
s0d

var
RL

var
RL

X(5)-b2 L b0,m

R8I 0,L

var
R8I 0,L

X(5)

2 1.329 0.397 1.000 1.000

4 1.334 2.901 2.904 1.470 1.055 2.655 2.646 4 1.339 2.157 2.163

6 1.445 5.419 5.430 1.604 1.804 4.540 4.507 5 1.404 3.454 3.472

8 1.543 8.454 8.483 1.726 2.591 6.517 6.453 6 1.463 4.881 4.919

10 1.631 11.964 12.027 1.840 3.394 8.539 8.438 7 1.517 6.431 6.497

12 1.711 15.926 16.041 1.947 4.206 10.582 10.445 8 1.567 8.101 8.205

14 1.785 20.330 20.514 2.049 5.022 12.634 12.465 9 1.614 9.886 10.037

16 1.855 25.170 25.437 2.146 5.839 14.690 14.494 10 1.658 11.786 11.994

18 1.922 30.442 30.804 2.240 6.656 16.745 16.529

20 1.985 36.146 36.611 2.330 7.472 18.798 18.568
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VII. VARIATIONAL PROCEDURE APPLIED
TO QUADRUPOLE MOMENTS

The variational procedure can also be applied to quadru-
pole moments. Since quadrupole moments in the E(5) frame-
work vanish to lowest order, as mentioned in Sec. II A, we
are limited here to the X(5) case. Treating each band as a
separate entity, one should use the ratiosRI n,L

Q , defined in Eq.
(14), which involve quadrupole moments of only one band,
in contrast to the ratiosRn,L

Q , defined also in Eq.(14), which
involve quadrupole moments from two different bands, ex-
cept in the case of the ground state band. Results for the
ground state bandsn=0d are plotted in Fig. 6(b), where the
SU(3) results(given in Sec. III B) are shown for comparison.
In addition, the results provided by the X(5), X(5)-b2 and
X(5)-b4 models, given in Table I, are shown. It is clear that
the results of the variational procedure are close to the X(5)-
b4 values. One can easily see that the same holds for then
=1 band. These results will be further discussed in the next
section.

VIII. DISCUSSION

The main results obtained in the present work are summa-
rized here.

(1) A variational procedure for determining the values of
physical quantities at the point of shape phase transitions in
nuclei has been suggested. Using one-parameter potentials
spanning the region between the two limiting symmetries of
interest, the parameter values at which the rate of change of
the physical quantity becomes maximum are determined for
each value of the angular momentum separately and the cor-
responding values of the physical quantity at these parameter
values are calculated. The values of the physical quantity
collected in this way represent its behavior at the critical
point.

(2) The method has been applied in the shape phase tran-
sition from U(5) to O(6), using one-parameter Davidson po-
tentials [11] and considering the energy ratiosRL
=EsLd /Es2d within the ground state band as the relevant
physical quantity, leading to a band which practically coin-
cides with the ground state band of the E(5) model[1]. It has
also been applied in the same way in the shape phase tran-
sition from U(5) to SU(3), leading to a band which practi-
cally coincides with the ground state band of the X(5) model
[2]. Energy ratios within the lowestK=2 band in the latter
case also lead to the relevant X(5) results[15,39].

(3) The method has also been applied to intraband B(E2)
ratios of the ground state band and the first excited band in
the U(5)-O(6) transition region, leading to results very close
to the ones provided by the E(5)-b4 model [13,14], which
uses ausbd=b4/2 potential instead of an infinite well poten-
tial in the E(5) framework. It has also been applied to intra-
band B(E2) ratios and ratios of quadrupole moments of the
ground state band and the first excited band in the U(5)-
SU(3) transition region, leading to results very similar to the
ones provided by the X(5)-b4 model [15], which uses a
usbd=b4/2 potential instead of an infinite well potential in
the X(5) framework.

(4) The method has also been applied to isolated excita-
tion energies of the ground state band, leading to a U(5) band
in the E(5) framework and to a X(5)-b2 [15] band in the X(5)
framework.[The U(5) and X(5)-b2 models correspond to the
use of a harmonic oscillator potentialusbd=b2/2 in the E(5)
and X(5) frameworks, respectively.] These results are ex-
pected, since it is known[44] that the most rapid change
(drop) of the excitation energies in a series of isotopes occurs
as one starts moving away from the vibrational limit towards
the rotational limit.

(5) It should be emphasized that the application of the
method was possible because the Davidson potentials cor-
rectly reproduce the U(5) and O(6) symmetries of IBM(with
large boson numbers) in the E(5) framework(for small and
large parameter values, respectively), as well as the relevant
X(5)-b2 [15] and SU(3) symmetries in the X(5) framework
(for small and large parameter values, respectively). The oc-
curence of SU(3) (with large boson numbers) in the X(5)
framework is a new result, which has been proved by con-
sidering energy, intraband and interband B(E2), and quadru-
pole moment ratios, while the occurence of O(6) in the E(5)
framework has essentially been observed earlier[9] and has
been corroborated here by considering energy and intraband
B(E2) ratios.

(6) As a by-product, a derivation of the Holmberg-Lipas
formula [40] has been achieved using Davidson potentials in
the X(5) framework.

(7) As another by-product, quadrupole moments for the
X(5) model and the X(5)-b2n models[15] for n=1, 2, 3, 4
have been calculated.

The following comments are now appropriate.
(i) The fact that the application of the variational proce-

dure to energy ratios within the ground state band in the E(5)
and X(5) frameworks leads to results very close to the
ground state bands of the E(5) and X(5) models suggests that
the selection of the infinite well potential is the optimum one
in both cases.

(ii ) The fact that the application of the variational proce-
dure to intraband B(E2) transition ratios and to quadrupole
moment ratios leads to results close to the E(5)-b4 [13,14]
and X(5)-b4 [15] models in the E(5) and X(5) frameworks,
respectively, suggests that further studies are needed. In par-
ticular, it is of interest to apply the variational procedure
using the generalized Davidson potentials of Eq.(20) as
“trial potentials” in both the E(5) and X(5) frameworks.
These potentials withb0=0 are known to smoothly approach
the E(5) and X(5) models from the U(5) direction[14,15], as
the power ofb in the b2n term increases. It is expected that
these potentials withb0Þ0 will be smoothly approaching
the E(5) and X(5) models from the O(6) and SU(3) direc-
tions, respectively. Then the results of the variational proce-
dure could converge towards the E(5) and X(5) results with
increasingn.

(iii ) The application of the variational procedure to energy
ratios involving levels of excited bands withn.0 is trivial
in the case of the Davidson potentials, because of their har-
monic oscillator features, but it becomes nontrivial in the
case of the generalized Davidson potentials, and therefore
this task should be undertaken.

(iv) The generalized Davidson potentials are known to
possess the appropriate limiting behavior forb0=0 [14,15]
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and are expected to approach the appropriate limits[near
O(6) and SU(3) in the E(5) and X(5) frameworks, respec-
tively] for large values of b0. Any other potential/
Hamiltonian bridging the relevant pairs of symmetries[U(5)-
O(6) and U(5)-SU(3)] could be equally appropriate.

(v) It is interesting that the most general(up to two-body
terms) IBM Hamiltonian appropriate for the U(5) to O(6)
transition leads[13] to the E(5)-b4 model, in agreement to
the results mentioned in(ii ). It will also be interesting to

examine if appropriate symmetry-conserving higher order
terms[45–48], when added to this Hamiltonian, modify this
conclusion.
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