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E(5) and X(5) critical point symmetries obtained from Davidson potentials
through a variational procedure
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Davidson potentials of the forrﬁ2+,86‘/,82, when used in the ) framework bridge the (5) and Q6)
symmetries, while they bridge the(®) and SU3) symmetries when used in the(3§ framework. Using a
variational procedure, we determine for each value of angular momelntilva value off3, at which the rate
of change of various physical quantitipmergy ratios, intraband(B2) ratios, quadrupole moment ratidsas
a maximum, the collection of the values of the physical quantity formed in this way being a candidate for
describing its behavior at the relevant critical point. Energy ratios lead to thedad X5) results, while
intraband BE2) ratios and quadrupole moments lead to ttiB)EB3* and X(5)-B* models. A new derivation of
the Holmberg-Lipas formula for nuclear energy spectra is obtained as a by-product.
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. INTRODUCTION , B
up) =p+ rd (1)

The recently introduced(®) [1] and X5) [2] models are
supposed to describe shape phase transitions in atomic nu- . . - .
clei, the former being related to the transition frong5y where 3y |s_the position of the minimum of the potential, do
(vibrationa) to O(6) (y-unstablg nuclei, and the latter cor- possess this property.

. s : Taking into account the fact that various physical quanti-
responding to the transition from(6) to SU3) (rotationa) ties shogld change most rapidly at the poipntyof theq shape
nuclei. In both cases the original Bohr collective Hamil-

. . ; e L phase transitiofil2], we locate for each value of the angular
tonl_an [3] is _used, with an_mflnlte W_eII potgnnal in the _col- momentuni_ the value of@, for which the rate of change of
lective g variable. Separation of variables is achieved in they,q physical quantity is maximized. The collection of the

E(S) case by assuming that the potential is independent Qfajyes of the physical quantity formed in this way should
the collectivey variable, while in the X5) case the potential then correspond to the behavior of this physical quantity at
is assumed to be of the form(B) +u(y). For brevity we are  the critical point. As appropriate physical quantities we have
going to refer to these two cases of separation of variables aged energy ratios within the ground state band, as well as
“the E(5) framework” and “the X5) framework” respec- intraband BE?2) ratios and quadrupole moment ratios within
tively, although the former case has been known for a longhe ground state band, and within excited bands.
time [4]. The selection of an infinite well potential in th& The energy ratios within the ground state band lead to
variable in both cases is justified by the fact that the potentiatesults very similar to these provided by the infinite well
is expected to be flat around the point at which a shape phagwtential in both the &) and the X5) frameworks, thus
transition occurs. Experimental evidence for the occurence dhdicating that the choice of the infinite well potential in both
the E5) and X5) symmetries in some appropriate nuclei is cases is the optimum one. Intraban(EB) ratios and quad-
growing (Refs.[5-8], respectively. rl_JpoIe moment ratios lead to results close to the ones pro-
In the present work we examine if the choice of the infi-Vided by the E5)-p* [13,14 and _)((5)-[34 [15] models,
nite well potential is the optimum one for the description of Which use au()=g*/2 potential in the B) and X5)
shape phase transitions. For this purpose, we need onfBamework, respectivelylt should be noticed at this point
parameter potentials which can span th&)D(6) region in tha.t a quartic anharmo.n.|0|ty has been used earlller in t_he de-
the E5) framework, as well as the (8)-SU(3) region in the scription of even nuclei in Ref§16,17.) Further discussion

X(5) framework. It turns out that the exactly soluj@ 10| of Ephese re.SltJ.ItS "QI’ deferrded to Se%‘ xm' . | o th
Davidson potential§11] e variational procedure used here is analogous to the

one used in the framework of the variable moment of inertia
(VMI) model[18], where the energy is minimized with re-
spect to thgangular momentum dependgmoment of in-

*Email address: bonat@inp.demokritos.gr ertia for each value of the angular momentunseparately.
"Email address: lenis@inp.demokritos.gr The variational procedure used here also resembles the stan-
*Email address: nminkov@inrne.bas.bg dard Ritz variational method of quantum mechan(t$],
SEmail address: petrellis@inp.demokritos.gr since the former utilizes a trial potential containing a free
'Deceased. parameter, while in the latter a trial wave function involving
"Email address: terziev@inrne.bas.bg a free parameter is involved. The main difference between
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the two methods lies in the way in which the value of theLaguerre polynomials, and the energy eigenvalues having the
parameter is determined. In the Ritz approach this iform [9,10 (in Zw=1 unity
achieved by minimizing the energy, while in the present case
it is done by maximizing the rate of change of the relevant _ {( 3>2 }1/2
; . En,=2n+1+||7+=| +83| . 2)

physical quantity. ‘ 2

L-dependent potentials are also not unheard of in nuclear
physics. They are known to occur in the framework of theFor 8,=0 the original solution of Bohf3,37], which corre-
optical model potentia[20-23, as well as in the case of sponds to a five-dimensionésD) harmonic oscillator char-
quasimolecular resonances, suchts+%C [23]. acterized by the symmetry (8) D SQ(5) D SQ(3) D SQ(2)

In the framework of the Interacting Boson ModéBM)  [38], is obtained. The values of angular momentuncon-
[24], there have been attempts to consider tlig)Wo O6)  tained in each irrep of S@) (i.e., for each value of) are
transition[13], as well as the (b) to SU(3) transition[25] in  given by the algorithni24] 7=3v,+\, wherev,=0,1,...,is
terms of one-parameter schematic Hamiltonians. In théhe missing quantum number in the reduction
present approach, in contrast, Davidson potentials are usésO(5) DSO(3), and L=\ ,A+1,...,2-2,2\x (with 2x-1
directly in the original Bohr Hamiltonian, without the inter- missing.
vention af any IBM approximations. The levels of the ground state band are characterized by

On the other hand, exactly soluble models have been corl-=27 andn=0. Then the excitation energies of the levels of
structed by using the Coulomb and Kratf26] potentials in  the ground state band relative to the ground state are
the original Bohr Hamiltonian in the(B) [27] and X(5) [28]
frameworks, while a two-parameter quasiexactly soluble Eoy exc=Eo — Eo o= 3([(L + 3)2+ 48512 - [9 + 485]%2).
model[29-3] has been constructed by usifRf] the sextic (3)
oscillator with a centrifugal barrief33] in the E5) frame-
work. Some of these potentials will be further commented The “radial” equation is also exactly soluble fof3) be-
below. ing a 5D infinite well [u(B)=0 if B<pBw, u(B)== for

Spectra and BE2) transition rates for Davidson potentials 8> By], in which case one obtains thé3 model of lach-
in the E5) and X5) frameworks are considered in Sec. Il, ello [1], the eigenfunctions being Bessel functiahss»(2)
while the relevant limiting symmetries are discussed in Sec(with z= gk, k=\2BE/#?), while the spectrum is determined
llIl. The variational procedure is then applied to energy ratiosby the zeros of the Bessel functions, having the fdm
(Sec. V), excitation energiegSec. V), B(E2) ratios (Sec. :(ﬁZ/ZB)kgTwith Ke - =X¢ -/ Bw, Wherex, . is the &-th zero of
V1), and quadrupole moment rati¢Sec. VII), while finally ~ the Bessel functionl,,,(z). The spectra of the (&) and
Sec. VIII contains a discussion of the present results anghavidson cases become directly comparable by establishing
plans for further work. A preliminary version of this work, the formal correspondenae=£-1.
limited to the variational study of the spectra of ground state |n what follows the ratios
bands, has been reported in Rgf4].
En,L - EO,O _ En,L - En,O

Eo2—Eoo e En2—Eno

Ry = (4)

Il. SPECTRA AND B(E2) TRANSITION RATES
A. The E(5) framework vv_ith the notationE, |, will be used. In t_he former case ener-
gies in all bands are measured relative to the ground state
In the §5) model it is assumed that the potential appear-and normalized to the excitation energy of the?2 state of
ing in the original Bohr Hamiltonia3] (in which the col-  the ground state bar@s in Ref[1]), while in the latter case
lective variabless and y appeay depends only on the vari- energies in each band are measured relative to the bandhead
able g, i.e., V(B,7)=U(B). One can then proceed to (L=0) of this band and normalized to the excitation energy
separation of variables in the standard way4], seeking of the L=2 state of this band. From E¢Q) it is clear that
wave functions of the form¥ (8, v, 6)=f(B)®(v, 6), where R, obtains identical values for all bands with27, irre-
6, (i=1,2,3 are the Euler angles describing the orientationspectively ofn. For the ground state barid=0) the simpli-
of the deformed nucleus in space. Reduced energies fied notationR =R, will also be used.
=(2B/#?)E and reduced potentials=(2B/A%)U [1], where The quadrupole operator has the fof)
B is the mass parameter appearing in the original Bohr
Hamiltonian, are introduced for simplicity.
In the equation involving the anglése., y and the Euler

1
TE = tq, = tB[Dif,)o( g)cosy+ ,—E[Dﬁf)z( )
. L Al
angles, the eigenvalues of the second order Casimir operator

of SQ(5) occur, having the form\ =7 (7+3), wherer=0, 1, @ (a\lei

2, ..., is the quantum number characterizing the irreducible + DA B)lsiny |, ®
representationdrreps of SQ(5), called the “seniority'T35].

This equation has been solved by B&§]. wheret is a scale factor an@(6;) denote Wigner functions

As described in more detail in Ref34], the “radial”  of the Euler angles. The calculation of ) rates proceeds
equation(involving the variableB) can be solved exactly for as in Refs[1,14].
the Davidson potentials of E@l), the eigenfunctions being In what follows, the intraband ratios
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BE2) B[E2;(L+2),— L] RE(E2) B[E2;(L+2),— L] ' The “rgdi'al.” equation is glso gxgctly soluble fofB) b.e-
L B(E2;2,— 0y Sn,L B(E2:2,— 0,) ing a 5D infinite We_II potential, similar to the one ment|_oned
below Eq.(3). In this case the ¥) model of lachell2] is
(6) obtained, in which the eigenfunctions are Bessel functions

will be used. In the former case thaB®) intraband transi-  Ju(Ks.B) With [2,39 »v={[L(L+1)-K?]/3+9/4'? while the

tion rates of all bands are normalized to th€EB) transition ~ Spectrum is determined by the zeros of the Bessel functions,

rate between the two lowest states of the ground state barifie relevant eigenvalues beirfs =(7%/2B) (ks )* with

(as in Ref.[1]), while in the latter case the(B2) intraband  Ks.=Xs/Bw, Wherexs is thesth zero of the Bessel function

transition rates within each band are normalized to tte2B ~ J.(Ks.B).

transition rate between the two lowest states of this band. ~ The spectra of the ) and Davidson cases become di-
It should be noted at this point that quadrupole momentgectly comparable by establishing the formal correspondence

in this framework vanish, if one is limited to the quadrupole n=s-1. In addition to the energy rati¢%,; andR,, defined

operator of Eq(5), because of &7=+1 selection rule. This in Eq. (4), which will be used forK=0 bands, the ratios

case is reminiscent of the vanishi(tg lowest ordey of the

(2 _ @
guadrupole moments in the(€ limit of IBM [24]. Nonva- R, = EnL B2 (11
. . . . . -n, E(Z) _ E(Z) !
nishing quadrupole moments can be obtained by including n3~ En2
the next order terms in the quadrupole operator of&l.  yefined within thek =2 band, will be used below. The quad-
B. The X(5) framework rupole operator is again given by E@), while the BE2)
transition rates are calculated in the way described in Refs.

Starting again from the original Bohr HamiltonigB],
one seeks solutions of the relevant Schrodinger equatio
having the formW¥ (8, ¥, )= (5, 7)Dy (), whered (i g) interband BE2) transition rate ratios
=1,2,3, are the Euler angles)(6;,) denote Wigner func-
tions of them,L are the eigenvalues of angular momentum, BE2) B(E2;L,—L/,)
while M and K are the eigenvalues of the projections of Rn,L,n’,L’:m (12)
angular momentum on the laboratory-fixedaxis and the ' 0
body-fixed z axis, respectively. As pointed out in Refs. will be used. Quadrupole moments are defined 24}
[2,39, an approximate separation of variables can be —
achieved by assuming that the potential has a minimum QS,L:M(LSLSZH—S_LSO)<LS||T(E2)||LS>' (13)
around y=0, as well as that it can be separated into two 5
terms, one depending o8 and the other depending op
i.e.,u(B,y)=u(B)+u(y).

2,15.
[1 In addition to the intraband @2) ratios defined in Eq.

In what follows, the ratios

As described in more detail in Ref34], the “radial’ RQ _QnL RQ _QnL (14)
equation occuring in this case can be solved exactly in the "L Qo2 ™ Qua
case of the Davidson potentials of K@), the energy eigen- ' '
values beingdin Aw=1 unity will be used.
EQ=on+ 1+[3LL+D-K)+2+ B2 (@) IIl. LIMITING SYMMETRIES
The levels of the ground state band are characterized by A. The U(5) and O(6) limits in the E(5) framework
=0 andK=0. Then the excitation energies relative to the For 8,=0 it is clear that in the &) framework the origi-
ground state are given by nal vibrational model of Boh(3,37 (with R,=2) is ob-
EO  _EO _EgO tained, while for largeB, the Q6) limit of the interacting
OL.exc™ =L 0,0 " boson modelIBM) [24] for large boson numbers, which
9 coincides with they-unstable rotatofwith R,=2.5) is ap-
=[3L+ 1)+ 3+ B5]%- {Z + ﬁé] ) proached9]. 4 ‘ =29 P
The gradual evolution from the(®) to the Q6) limit, as
which can easily be put into the form B, is increased, is depicted in Fig. 1, where several energy
(0) 1/2 ratios R_ within the ground state band are depicted, and in
v _ Bolexe _ L(L+T) . -  OBED) i
EoLexc= [9 +ﬂ4]1/2_ 1 +m -1, (9 Fig. 2, where the intraband(B2) ratios Ry~ (within the
4™ Po 2™ Po ground state bandand R{\™ (within the n=1 band are
which is the same as the H0|mberg-|_ipas form48] shown. The I|m|t|ng values at the right—hand side are in
R — agreement with the @) predictions for large boson num-
En(L) =an[V1 +byL(L +1) - 1], (10)  bers, given by24,41 E(L)=AL(L+6), R =L(L+6)/16,
with ay=1 and b,=1/(27/4+333). The Holmberg-Lipas L+2 ey 5L+2
formula has built in the concept of the variable moment of B(E2;L+2—1L) =a o Ro? = oL+ (15

inertia(VMI) model[18] (i.e., the increase of the moment of
inertia as a function of angular momentyras pointed outin where A and a are constants and E@l5) is valid for all
Ref. [41]. values ofn, taking into account the difference between the
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energy ratios R

FIG. 1. (Color onling R_ energy ratios for the ground state band =2, 10, 18, vs the parametg,.

(for L=4, 12, 20 and their derivativesiR /dBy vs the parameter
Bo, calculated using Davidson potenti@isg. (1)] in the E5) frame-
work. TheR, curves demonstrate the evolution from thé&lsym-
metry (on the lefy to the Q6) limit of IBM with large boson num-
bers(on the righj. See Secs. Ill A and IV A for further details.

RYE andRE™ ratios, defined in Eq(6), while at the left-
hand side the (b) values, corresponding tfil4,24 E(L)
=AL, R =L/2,

B[E2;(L +2)o— Lol =a(L +2), RE,(LEZELZZ, (16)
L+2)(L+7
B[EZQ(L"'Z)l—)Ll]:a'%,
17

peE2 - 5 (L+2(L+7)
Y
14 L+5

whereA, a, 8’ constants, are obtained.

It should be noticed that the(6) limit of IBM (with large
boson numbeisis also obtained27] by using in the E5)
framework the exactly soluble Kratzer potentiab], which
has the form

A

Bo_1B\__A_ B
B B

B2 19

up) =- ZD(

whereD is the depth of the minimum of the potential, whic

is located aiB,, while A=28,D andB=g3D. The Q6) limit
is obtained for large values @ or large values of3,. In the

PHYSICAL REVIEW C 70, 024305(2004)

12 T T T T T T T T

— 452
----12,->10,
20,->18,

—_
o
1
-
-

intraband B(E2) ratios R *“*

FIG. 2. (Color onling Intraband BE?2) ratios [Eq. (6)] RgfLEz)
(for the ground state bamndgnd Ri(LEZ) (for the n=1 band for L
The curves show the evolution
from the U5) symmetry(on the lef) to the Q6) limit of IBM with
large boson number®n the righj. See Secs. Il A and VI A for

further discussion.

B. The X(5)-8? and SU(3) limits in the X(5) framework

In the X(5) framework for 8,=0 the exactly soluble
X(5)-? model (with R,=2.646 is obtained, the details of
which can be found in Ref15], while for larges, the SU3)
limit of IBM with large boson numbers, which coincides
with the rigid rotator(with R,=3.333 is obtained. In what
follows the occurence of the $B) limit will be discussed in
more detail.

It is clear that the Holmberg-Lipas formula gives rota-
tional spectra for small values of;, at which one can keep
only the firstL-dependent term in the Taylor expansion of the
square root appearing in E@.0), leading to energies propor-
tional to L(L+1). It is then clear that rotational spectra are
expected for large values @, for which small values oy
occur. One can easily verify that th ratios for largeg,
approach the predictions of the &)Y limit of IBM at large
boson numbers, which correspond to the rigid rotator with
E(L)=AL(L+1) and R =L(L+1)/6, where A is constant
[24], the agreement to the $8) results being quite good
already atB,=8. The same can be seen for the ratRfs,
regarding then=0, K=2 band, which in the rigid rotator case

h correspond to the limiting valueR) =L(L+1)/6-1.

One can also consider the intrabancEB) ratios R,

B(E2)

(within the ground state band, which has0) and R}

B(E2)

case of the Kratzer potential, however, it is clear that smal{within the next band, which is characterizedby1). In the

values ofD or small values of3, lead[27] to the Coulomb
potential.

SU3) limit (for infinite number of bosonsone has for all
K=0 bandg[24]
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1.4 — T T T T T i .

1.2+ FIG. 3. (Color online (a) In-

terband BE2) ratios R?(LE ?L, [Eq.
(12)] from then=1, K=0 band to
the ground state band v&y. (b)
Quadrupole moment ratio$Eq.
(14)] R§, (for the ground state
band and R, (for the n=1, K
=0 band for L=4, 12, 20, vsBp.
In all cases the curves show the
evolution from the X5)-82 model
(on the lefy to the SY3) limit of
IBM with large boson numbers
(on the righy. See Secs. Il B,
VIB, and VII for further

1.0+

0.8+

0.6+

0.4

interband B(E2) ratios R_, . *®?
n,L,n,L'
. Q
quadrupole moment ratios RmL

0.2

L, discussion.
0.0 — T 1.0 ——— T —
0 1 2 3 4 5 0 1 2 3 4 5
@ B, (5) B,
(L+2)(L+1) case of the Kratzer potential, however, it is clear that small
BE2]L+2—1)= 2L +3)(2L+5)’ values ofB lead[28] to the Coulomb potential.
(19
pea 15 (L+2)(L+1) IV. VARIATIONAL PROCEDURE APPLIED
-nb T 2 2L+ 3)(2L+5)’ TO ENERGY RATIOS
wherea is constant, for all values af. One can easily verify A. E(5) framework
that then=0 andn=1 results still differ a little atgo=4, We first consider the ratioR®_within the ground state
becoming almost identical to the &) behavior ay3,=8. band, since these ratios are well-known indicators of collec-

Interband BE?) transition rates from the=1 band to the  tjyjty in nuclear structurg42). As seen in Fig. 1, these ratios
n=0 band[defined in Eq(12)], which are forbidden in the jycrease withs,, the increase becoming very steep at some
SU(3) framework[24], are shown in Fig. @). The rapid fall \3)ue Bom(L) Of Bo, Where the first derivativedR, /dg,
of these transitions towards zero with increasfgcan be  o5ches a maximum value, while the second derivative
seen in Fig. &), where the X5)-p2 limiting values on the 2R /42 vanishes. Numerical results fgk,, are shown in
left are in agreement with the ones given in Réf). Table II, together with the values d® occuring at these

Ratios of quadrupole moments within the'O andn=1  \5ints, which are compared to tfR ratios occuring in the
bands are shown in Fig(l3. In the SU3) limit (for infinite  4round state band of the(® model[1]. Very close agree-
number of bosonsone has[24] (for all values ofn) Q. ment of the values determined by the procedure described
=alL/(2L+3), wherea is constant, corresponding 8. above with the B5) values is observed in Table II, as well as
=7L/(4L+6). One can easily verify that g,=4 some dif- i Fig. 4a), where these ratios are also shown, together with
ferences between the=0 andn=1 cases are still visible, the corresponding ratios of the(s) and Q6) limits. Finally,
while at ;=8 both cases become almost identical to thethe potentials obtained for different angular momelntare
SU(3) values. depicted in Fig. 5.

The evolution of quadrupole moments from thé5x 8> It is worth mentioning at this point that the consequences
case to the S(3) limiting values is clearly seen in Fig(9.  of replacing in the B5) framework the infinite well potential
The SU3) limiting values forn=0 andn=1 on the right do by a well of finite depth have been studied in def4B], the
converge with increasing, [taking into account the differ- main conclusion being that many key features @)Eemain
ence between the ratid®}, andR}, defined in Eq(14)].  essentially unchanged, even if the depth of the potential is
Since no results for quadrupole moments for th€&)X3>  radically changed. This observation implies that tiig)pre-
case are given in Refl5], they are reported here in Table I. dictions, reassured above through the variational procedure,
Quadrupole moments for the(® model, as well as for the are stable and do not depend sensitively on any parameter
X(5)-B8% X(5)-85, and X5)-8% models(defined in Ref[15]) like the depth of the potential.
are also listed in Table | as a by-product. The success of the variational procedure when applied to

It should be noted that the $8) limit of IBM (at large  energy ratios within the ground state band encourages its use
boson numbeypsis also obtained28] by using in the X5)  for excited bands as well. Since it is reasonable to treat each
framework the exactly soluble Kratzer potentjdb] of Eq.  band as a separate entity, the ratiys [defined in Eq(4)]

(18). The SU3) limit is obtained for large values @&. Inthe  should be used for this purpose. From EB) it is clear,

024305-5



DENNIS BONATSOSet al. PHYSICAL REVIEW C 70, 024305(2004)

TABLE I. Quadrupole momentiEq. (13)] of the X(5)-8% X(5)- TABLE II. Parameter valueg, , where the absolute value of
B8, and X5)-B8% models, compared to the predictions of th€5)X  the first derivative of a physical quantity has a maximum, while the
and X(5)-% models for somé& =0 bands. See Sec. Il B for details. second derivative vanishes, for tRe energy ratios and thBg | exc
excitation energiefEq. (3)] of the ground state band of the David-
band L X(5)-82 X((5)-B* X©B)-B5 X(B-B2 X(O5) son potentials in the ) framework, together with the correspond-
ing values of each physical quantifiabeled by “var’, which are
compared to appropriatg(® or U(5) results. In the case &y exo

the correspondin®,_ ratios are also shown. See Secs. IVAand V A
0.000 0.000 0.000 0.000 0.000 for further details.

1.000 1.000 1.000 1.000 1.000
1.466 1.413 1.391 1.380 1.358 R R EoLexc R R

s=1

o oo N O

1.823 1.699 1.648 1622 1572 L Bom var  E®S)  Bom var var U5
10 2.395 2.114 2.000 1.941 1828 4 1421 2185 2199 1538 1.423 2.008 2.000
12 2.638 2.277 2132 2058 1913 g 1522 3549 3590 1.658 2.142 3.021 3.000
14 2.862 2.422 2.247 2158 1982 g 1609 5086 5169 1.766 2.862 4.037 4.000

16 3.070 2.552 2.348 2245 2038 10 1687 6.793 6.934 1.866 3.583 5.054 5.000
18 3.266 2671 2.439 2322 2086 12 1759 8667 8.881L 1960 4.303 6.070 6.000
20 3.450 2.781 2.522 2391 2127 14 1825 10.705 11.009 2.049 5022 7.084 7.000
22 3.626 2.884 2.598 2454 2162 16 1888 12906 13.316 2.135 5739 8.096 8.000
24 3.794 2.980 2.669 2512 2193 13 1947 15269 15799 2217 6.455 9.105 9.000

26 3.954 3.070 2.734 2565 2221 509 2004 17.793 18.459 2.297 7.168 10.111 10.000
28 4.109 3.155 2.795 2.615 2.245

30 4.258 3.236 2.853 2.661 2.268

For excitedK=0 bands the ratioR, should be consid-
<=2 ered. However, because of HJ), it is clear that all these
ratios for allK=0 bands are identical t, for all values of
0.000 0.000 0.000 0.000 0.000 n, due to the oscillatorlike form of the spectrum of Davidson
1245 1107 1.034 0991 0.894 potentials. This is lifted when using the generalized David-
1.742 1521 1411 1.346  1.197 son potentials of Eq20), which will be further discussed in
2.095 1.796 1.655 1.573 1.379 Sec. VIII.
2.387 2.012 1.840 1.743 1.508 ForK=2 bands the ratioR), [defined in Eq(11)] should
10 2.643 2191 1.992 1.880 1.608 be used. The relevant results for the0, K=2 band are
12 2875 2347 2120 1995 1.689 reb;:;o'rte((dj |tnhTain It|r|1 and Elgt]_.(é). INot ongl the energy ra;uos t
obtained through the variational procedure are very close to
14 3088 2486 2233 2095 1756 0y 5) results[15,39, but in addition theg, , values ob-
16 3.287 2612 2.333 2182 1813 (3ined for the even values &f are very close to the corre-
18 3473 2727 2423 2260 1863 gponding ones obtained from the application of the varia-
20 3.651 2.833 2.505 2.331 1.906 tional procedure to the ground state band, discussed above.

o oo N O

however, that in the case of the Davidson potentials and for V. VARIATIONAL PROCEDURE APPLIED TO

bands withL =27 the R, ratios will be identical tdR,_for all EXCITATION ENERGIES

values ofn. This is a special feature of the Davidson poten-

tials, due to their oscillatorlike spectrum. This feature is A. E(5) framework

lifted when one considers generalized Davidson potentials of It is instructive to apply the variational procedure devel-

the form oped in the previous section to isolated energy levels instead
g of energy ratios. For this purpose the excitation energies
u(g) = g2+ _f2>, n=234,. . . (20) Eo L exc of the levels of the ground state band, given by Eg.
B (3), will be used. The valueg, ,, where the absolute value of

the first derivative(since the first derivative is negative in
this cas¢ becomes maximum are reported in Table I, to-
gether with the corresponding, e Vvalues. Using the
Eo, exc Values obtained in this way, one can calculate the
The steps of the previous subsection have been repeateelevantR_ ratios. As seen in Table Il, the results obtained in
in the X(5) case, shown in Table IIl. Very close agreementthis way are very close to the(b) results.
with the ground state band of th&5§ model[2] is observed, This result is easy to explain: From the experimental data
while the relevant potentials form a figure similar to Fig. 5. (see Ref[44], for examplg it is known that excitation ener-

which will be briefly discussed in Sec. VIII.

B. X(5) framework
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35_ T T T T T T T T T T i T T T T T T T T T
—m—U(5) o 84 1
— @ 0(6) /
30 - » E(5) // 4
1 |—w—var . g
1]
251 /o = 64 i |
/ o FIG. 4. (Color online Energy
o o 8 ratiosR, for the ground state band
@ 20 - / . © (@), and intraband BE2) ratios
= Jf S 4 | RYE” [Eq. (6)] (b) for the n=1
g 15 / ‘/ | = band, obtained through the varia-
o ° v ° tional procedure (labeled by
@ )’ c o : David tential
S / ‘/ S var”) using Davidson potentials
104 e 7 P @ in the E5) framework, compared
/ /‘ /./' £ 27 8 to the values provided by the
. /:/"'/./' U®s), O6), E®5), and E5)-5*
i /?./' il 1 o ] models. See Secs. IV A and VI A
‘/ 1 for further details.
0 — T T T T T T T 0 T T
0 4 8 12 16 20 0 4 8 12 16 20
(a) angular momentum L (b) angular momentum L

gies within a series of isotopes drop very rapidly in the re-rapid changes in the excitation energies, one naturally ends
gion of the vibrational limit, as one moves away from the up with the vibrational limit. Therefore the application of the
pure vibrational behavigisee, for example, the chains of the variational procedure to isolated energy levels just demon-
Sm, Gd, Dy isotopes while the changes near the rotational strates the effectiveness of the method, leading to results
limit as one moves from one isotope to the next are minimaphysically expected.

(see, for example, the Th, U, Pu isotopebrying then to

identify a series of energy levels corresponding to the most B. X(5) framework

L S B B The steps of the previous subsection are repeated using
the excitation energies of Eq8). Numerical results are
shown in Table Ill, and are seen to be very close to the
results provided by the (§)-3? model [15], which corre-
sponds to a Davidson potential wiy=0 and represents the
most vibrational behavior possible within the realm of the
model used, which spans th&5%-5? to SU(3) region.

VI. VARIATIONAL PROCEDURE APPLIED
TO B(E2) RATIOS

A. E(5) framework

The success of the variational procedure when applied to
the energy ratiod, also encourages its use for intraband
B(E2) ratios. Considering each band as a separate entity, it is
reasonable to use the ratié€™”, defined in Eq.(6). It
should be emphasized that the different choice of the de-
. . . . nominator in the ratio®>=? andR® is not a trivial matter
10 15 20 25 30 35 of normalization, since one divides in each case by a differ-

B ent function ofB,, being led in this way to different results
when the variational procedure is applied.

FIG. 5. (Color onling Davidson potential§Eq. (1)] obtained for As we have seen in Fig. 2, the ) ratios go down from
different angular momenta through the application of the varia- their U(5) values atB,=0 to the @6) limiting values at large
tional procedure to energy ratios within the ground state band in théo. Therefore in this case we are going to determine the
E(5) framework. Theg, values corresponding to these potentials Valuesp,  at which the absolute value of the first derivative,
are listed in Table II. See Sec. IV A for further discussion. AR /dB,|, has a maximum, while the second derivative
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TABLE Ill. Parameter valueg, , where the absolute value of the first derivative of a physical quantity

has a maximum, while the second derivative vanishes, folRthenergy ratios and thEg’)L exc EXCitation

energiegEq. (8)] of the ground state band, as well as for &g, energy ratioEq. (11)] of then=0, K
=2 band of the Davidson potentials in th&5X framework, together with the corresponding values of each
physical quantitylabeled by “var)j, which are compared to appropriatg€sXor X(5)-82 results. In the case

of Eg | exo the correspondin@ ratios are also shown. See Secs. IV B and V B for further details.

g©

RL RL 0,L,exc RL RL R_’O,L F\_’,O,L

L Bom var  X(5  Bom var var X582 L Bom var  X(5)

2 1.329 0.397 1.000  1.000

4 1334 2901 2904 1470 1.055 2655 2646 4 1339 2157 2.163

6 1.445 5419 5430 1604 1.804 4540 4507 5 1.404 3454  3.472

8 1543 8454 8483 1726 2591 6517 6453 6 1.463 4.881  4.919
10 1.631 11.964 12.027 1.840 3.394 8539 8438 7 1517 6431  6.497
12 1711 15926 16.041 1.947 4206 10582 10.445 8 1567 8.101  8.205
14 1.785 20.330 20.514 2049 5022 12634 12465 9 1614 9.886 10.037
16 1.855 25170 25437 2146 5839 14.690 14.494 10 1.658 11.786 11.994
18 1.922 30.442 30.804 2240 6.656 16.745  16.529
20 1985 36.146 36.611 2.330 7.472 18.798  18.568

vanishes. Results for the=1 band are depicted in Fig(1®),
where the 5) and Q6) results, calculated from Eq§l7)
and(15) , are shown for comparison. In addition, the results
given by the original B5) model[1], as well as by the ()-
B* model[13,14, which uses ai(3)=%/2 potential in the
E(5) framework instead of an infinite well potential, are ex-
hibited. It is clear that the variational procedure leads to re- The steps of the previous subsection are repeated in the
sults which are quite close to the(3-3* case. One can X(5) case. It is found that for both the ground state band
easily verify that the same fact is seen for the ground statén=0, K=0) and then=1, K=0 band the variational proce-
band (with n=0). We defer further discussions of these re-dure leads to results which are quite close to th&)>g*
sults to Sec. VIII. case[15], which uses au(B8)=3*2 potential in the X5)

It should be mentioned at this point that the first deriva-framework instead of an infinite well one. Further discussion
tive of the B(E2:L+2—L) values with respect t@, does of these results is deferred to Sec. VIII. As in th€bEcase,
not exhibit a maximum, while the second derivative does nothe variational procedure cannot be applied to isolatéeB

tional procedure cannot be applied to isolatg&® values,
being applicable to B2) ratios only.

B. X(5) framework

vanish at any value other tha8,=0. Therefore the varia- values.
18'_ —'—g& °o | 3.5 | —m—X(5)-p .
®
16| 2 e ] o X "
| (9) | o, A X(5) /
—w—var 3.0 - '
144 X(5)-G2 d 1 ol 397 |—w—-SU@) / FIG. 6. (Color onling Energy
] (5)-B 3 var /' e ratios ROt [Eq. (11)] (a) for the
o 124 ¥ 1 © u ad n=0, K=2 band, and quadrupole
i 1 . / £ 2.51 _/ o 1 moment ratiosRs, [Eq. (14)] (b)
o 10+ ” ] GE) PN for the ground state band, ob-
® ] / o o i A tained through the variational pro-
S 8 ® ¥ m {1 E AA “ -
> / o g 201 /n/ A . cedure (labeled by “var) using
% 6- » o™ <] N/ A Davidson potentials in the (%)
S i ® /. i ~ /" A N framework, compared to the val-
4_' /*/' i § 1.5 I/A v/V/'”' ! ues provided by the (3), SU@3),
] /3/" ) v X(5), X(5)-82 and X5)-8* mod-
o a/“ | /V els. See Secs. IVB and VIl for
| / 1.04 « § further details.
01 N v T v T T T T T Y T
2 4 6 8 10 0 4 8 12 16 20
(@) angular momentum L (b) angular momentum L
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VII. VARIATIONAL PROCEDURE APPLIED (4) The method has also been applied to isolated excita-
TO QUADRUPOLE MOMENTS tion energies of the ground state baznd, leading tq% band
- . in the E5) framework and to a ¥6)-3- [15] band in the X5
The varlatlonql procedure can also be applled to quadruframevi(or)k.[The Us) and )(5)_53?”'180(1[62 correspond?[g){he
pole moments. Since quadrupole moments in % #ame- ;s of 4 harmonic oscillator potentialg)=82/2 in the E5)
Work_ vgnlsh to lowest order, as menthned in Sec. Il A, wegpq X(5) frameworks, respectively.These results are ex-
are limited here to the (6) case. Treating each band as @pected, since it is knowii44] that the most rapid change
separate entity, one should use the raBfs, defined in Eq.  (drop) of the excitation energies in a series of isotopes occurs
(14), which involve quadrupole moments of only one band,as one starts moving away from the vibrational limit towards
in contrast to the ratioR,?L, defined also in Eq14), which  the rotational limit.
involve quadrupole moments from two different bands, ex- (5) It should be emphasized that the application of the
cept in the case of the ground state band. Results for thenethod was possible because the Davidson potentials cor-
ground state banth=0) are plotted in Fig. @), where the rectly reproduce the () and Q6) symmetries of IBM(with
SU(3) results(given in Sec. Il B are shown for comparison. large boson numbeysn the E5) framework(for small and
In addition, the results provided by the(5, X(5)-82 and large parameter values, respectiyelys well as the relevant
X(5)-B* models, given in Table I, are shown. It is clear that X(5)-8% [15] and SU3) symmetries in the ¥5) framework
the results of the variational procedure are close to tf-x (for small and large parameter values, respectivélie oc-
B* values. One can easily see that the same holds fon the curence of SB) (with large boson numbersn the X(5)

=1 band. These results will be further discussed in the nexf@mework is a new result, which has been proved by con-
section. sidering energy, intraband and interban@&B), and quadru-

pole moment ratios, while the occurence gbpin the E5)
framework has essentially been observed eaffigand has
VIII. DISCUSSION been corroborated here by considering energy and intraband
B(E2) ratios.
The main results obtained in the present work are summa- (6) As a by-product, a derivation of the Holmberg-Lipas
rized here. formula[40] has been achieved using Davidson potentials in
(1) A variational procedure for determining the values ofthe X(5) framework.
physical quantities at the point of shape phase transitions in (7) As another by-product, quadrupole moments for the
nuclei has been suggested. Using one-parameter potentiaié5) model and the ¥6)-5*" models[15] for n=1, 2, 3, 4
spanning the region between the two limiting symmetries of?@ve been calculated. _
interest, the parameter values at which the rate of change of 1h€ following comments are now appropriate.

; ; ; ; i) The fact that the application of the variational proce-
the physical quantity becomes maximum are determined for, () ) o :
each value of the angular momentum separately and the co‘fj-ure to energy ratios within the ground state band in % E
d X5) frameworks leads to results very close to the

responding values of the physical quantity at the_se parame_t round state bands of the and X(5) models suggests that
values are cal_culated. The valugs of the. physical qu_aput?he selection of the infinite well potential is the optimum one
collected in this way represent its behavior at the critical

. in both cases.
point.

(i) The fact that the application of the variational proce-

_(2) The method has been applied in the shape phase tragye 'to intraband EB2) transition ratios and to quadrupole
sition from U5) to O(6), using one-parameter Davidson po- moment ratios leads to results close to th&)EB* [13,14
tentials [11] and considering the energy ratioR and X(5)-8* [15] models in the B) and X5) frameworks,
=E(L)/E(2) within the ground state band as the relevantrespectively, suggests that further studies are needed. In par-
physical quantity, leading to a band which practically coin-ticular, it is of interest to apply the variational procedure
cides with the ground state band of th6Emodel[1]. It has  using the generalized Davidson potentials of E20) as
also been applied in the same way in the shape phase trafirial potentials” in both the B) and X5) frameworks.
sition from U5) to SUQ3), leading to a band which practi- These potentials witl,=0 are known to smoothly approach
cally coincides with the ground state band of théXmodel  the H5) and X(5) models from the \(5) direction[14,15, as
[2]. Energy ratios within the lowes{=2 band in the latter the power ofg in the 82" term increases. It is expected that
case also lead to the relevan(SX results[15,39. these potentials with3,+ 0 will be smoothly approaching

(3) The method has also been applied to intrabatE2B  the H5) and X5) models from the @) and SU3) direc-
ratios of the ground state band and the first excited band iflons, respectively. Then the results of the variational proce-
the U5)-O(6) transition region, leading to results very close dure could converge towards thé5E and X5) results with
to the ones provided by the(B-3* model [13,14, which increasingn.
uses au(B)=B*/2 potential instead of an infinite well poten- iii) The application of the variational procedure to energy
tial in the E5) framework. It has also been applied to intra- ratios involving levels of excited bands witi>0 is trivial
band RE?2) ratios and ratios of quadrupole moments of thein the case of the Davidson potentials, because of their har-
ground state band and the first excited band in th{)U monic oscillator features, but it becomes nontrivial in the
SU(3) transition region, leading to results very similar to the case of the generalized Davidson potentials, and therefore
ones provided by the (6)-8* model [15], which uses a this task should be undertaken.
u(B)=p* 2 potential instead of an infinite well potential in  (iv) The generalized Davidson potentials are known to
the X(5) framework. possess the appropriate limiting behavior gy=0 [14,15
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and are expected to approach the appropriate lifmezar examine if appropriate symmetry-conserving higher order
0O(6) and SU3) in the E5) and X5) frameworks, respec- terms[45-48, when added to this Hamiltonian, modify this
tively] for large values of B,. Any other potential/ conclusion.
Hamiltonian bridging the relevant pairs of symmetiielgs)-
O(6) and U5)-SU(3)] could be equally appropriate.

(v) It is interesting that the most gene(alp to two-body ACKNOWLEDGMENTS
termg IBM Hamiltonian appropriate for the @) to O(6)
transition leadg13] to the E5)-8* model, in agreement to Partial support through the NATO Collaborative Linkage
the results mentioned ifii). It will also be interesting to Grant No. PST.CLG 978799 is gratefully acknowledged.
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