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Low-momentum nucleon-nucleon interactions are derived within the framework of a unitary-transformation
theory, starting with realistic nucleon-nucleon interactions. A cutoff momentumL is introduced to specify a
border between the low- and high-momentum spaces. By Faddeev-Yakubovsky calculations the low-
momentum interactions are investigated with respect to the dependence of ground-state energies of3H and4He
on the parameterL. It is found that we need the momentum cutoff parameterLù5 fm−1 in order to reproduce
satisfactorily the exact values of the binding energies for3H and4He. The calculation withL=2 fm−1 recom-
mended by Bogneret al. leads to considerable overbinding at least for few-nucleon systems.
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I. INTRODUCTION

One of the fundamental problems in nuclear structure cal-
culations is to describe nuclear properties, starting with real-
istic nucleon-nucleon(NN) interactions. However, since this
kind of interaction has a repulsive core at a short distance,
one has to derive an effective interaction in a model space
from the realistic interaction, except for the case of precise
few-nucleon structure calculations.

Recently, Bogneret al. have proposed a low-momentum
nucleon-nucleon(LMNN ) interaction which is constructed in
momentum space for the two-nucleon system from a realistic
nucleon-nucleon interaction, using conventional effective in-
teraction techniques or renormalization group ones[1]. In the
construction of the LMNN interaction a cutoff momentumL
is introduced to specify a border between the low- and high-
momentum spaces.

The LMNN interaction is constructed in order to account
for the short-range correlations of the two nucleons interact-
ing in the vacuum. So the question is to what extent the
obtained LMNN interaction is a good approximation also for
describing correlation of nucleons interacting in a nuclear
many-body medium. The medium effect could appear
through the single-particle potential and three-or-more-body
correlations. From a practical point of view it is of high

interest to explore the sensitivity of calculated results to the
cutoff momentumL.

Bogneret al. have constructed their LMNN interaction in
a way to conserve in the low-momentum region not only the
on-shell properties of the original interaction(i.e., phase
shifts and the deuteron binding energy) but also the half-on-
shell T matrix [1]. They found that the LMNN interactions
for L=2.1 fm−1 corresponding toElab.350 MeV become
nearly universal, not(or only weakly) dependent on the
choice of realistic interactions employed. They suggested us-
ing their LMNN interaction directly in nuclear structure cal-
culations, such as shell-model[2] and Hartree-Fock calcula-
tions [3]. They claimed that for the momentum cutoff in the
vicinity of L=2.1 fm−1 the calculated low-lying spectra for
18O, 134Te, and135I are in good agreement with the experi-
mental data and depend weakly onL. Their results have
been found to agree with the data as well as or even slightly
better than the results based upon theG matrix which is
constructed by taking into account the short-range correla-
tions, the Pauli blocking effect, and the state dependence for
each nucleus.

Kuckei et al. [4] investigated the nuclear matter and the
closed-shell nucleus16O by using the LMNN interaction ob-
tained by Bogneret al. They concluded that the LMNN in-
teraction can be a very useful tool for low-energy nuclear
structure calculations, and one should be cautious if the ob-
servable of interest is sensitive to the single-particle spec-
trum at energies above the cutoff momentum.

However, one had better compare with the exact solutions
once for all. In cases of three- and four-nucleon systems we
can directly make such a comparison by solving the
Faddeev-Yakubovsky equations[5].

We investigate the LMNN interaction by means of a uni-
tary transformation using two independent(but equivalent)
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approaches. One approach is based on the unitary transfor-
mation of theŌkubo form[6] in which a LMNN interaction
is obtained from the scattering amplitude in momentum
space[7–9]. Another is the unitary-model-operator approach
(UMOA) [10,11]. In contrast to theG-matrix theory the
UMOA leads to an energy-independent and Hermitian effec-
tive interaction in a many-body system. Contrary to the
LMNN of Ref. [1], we will not require conservation of the
half-on-shellT matrix, which does not represent an observ-
able quantity. Only low-momentum NN observables such as
the on-shellT matrix, phase shifts and binding energies are
guaranteed to remain unchanged under a unitary transforma-
tion. In principle, one could achieve the equivalence of the
half-on-shellT matrix by performing an additional unitary
transformation in the low-momentum space. We, however,
refrain from doing that since we do not see any conceptual or
practical advantage in requiring the equivalence of the half-
on-shellT matrix.

In the present study we first apply the above-mentioned
methods to the two-nucleon system in momentum space to
construct the LMNN interaction. Although both approaches
are based on the same idea of a unitary transformation, the
calculation procedures for deriving the LMNN interaction
are independent and quite different from each other. We cal-
culate selected properties of the two-nucleon system using
both schemes to confirm the numerical accuracy. This cross
check is useful to ensure the reliability of the numerical cal-
culations. Secondly, we investigate theL dependence in
structure calculations of few-nucleon systems, where(nu-
merically) exact calculations can be performed[12,13], and
discuss the validity of the LMNN interaction by comparing
the obtained results with theexactvalues.

This paper is organized as follows. In Sec. II, after the
basic formulation of the unitary transformation is presented,
the two methods are given with emphasis on the different
calculation procedures for deriving the LMNN interaction. In
Sec. III, LMNN interactions are constructed using both
methods from realistic nucleon-nucleon interactions such as
the CD-Bonn[14] and the Nijm-I[15] potentials. Then, the
Faddeev and Yakubovsky equations are solved using the
LMNN interactions for various values of the cutoff param-
eterL. Finally, we summarize our results in Sec. IV.

II. UNITARY TRANSFORMATION OF THE
HAMILTONIAN FOR THE TWO-NUCLEON

SYSTEM IN MOMENTUM SPACE

We consider a quantum mechanical system described by a
HamiltonianH. The Schrödinger equation reads

HC = EC. s1d

Introducing a unitary transformationU with UU†=1 we ob-
tain a transformed Schrödinger equation

H8C8 = EC8 s2d

with the transformed Hamiltonian and state,H8=U†HU and
C8=U†C, respectively. We introduce the concept of the ef-
fective Hamiltonian by means of the partition technique. The
Hilbert space is divided into two subspaces, the model space

(P space) and its complement(Q space), such that the
Schrödinger equation becomes a 232 block matrix equation

FPH8P PH8Q

QH8P QH8Q
GFPC8

QC8
G = EFPC8

QC8
G . s3d

HereP andQ are the projection operators of a state onto the
model space and its complement, respectively, and they sat-
isfy P+Q=1, P2=P, Q2=Q, andPQ=QP=0. The Q-space
state is easily eliminated to produce the projected
Schrödinger equation

FPH8P + PH8Q
1

E − QH8Q
QH8PGsPC8d = EsPC8d.

s4d

In general, the effective Hamiltonian which is given in pa-
rentheses depends on the energyE to be determined. How-
ever, if the decoupling equation

QH8P = 0 s5d

is satisfied, then we have the equation for the energy-
independent effective Hamiltonian in the P space

PH8PsPC8d = EsPC8d. s6d

A unitary transformation can be parametrized as

U = S Ps1 + v†vd−1/2P − Pv†s1 + vv†d−1/2Q

Qvs1 + v†vd−1/2P Qs1 + vv†d−1/2Q
D , s7d

and the wave operatorv satisfies the conditionv=QvP.
Equation(7) is well known as theŌkubo form [6]. Notice
that the unitary transformation given in Eq.(7) is by no
means unique: in fact one can construct infinitely many dif-
ferent unitary transformations which decouple the P and Q
subspaces. For example, performing subsequently any addi-
tional transformation, which is unitary in the P subspace, one
would get a different LMNN interaction[16]. The transfor-
mation in Eq. (7) depends only on the operatorv which
mixes the P and Q subspaces and is in some sense “the
minimal possible” unitary transformation. For more discus-
sion the reader is referred to Ref.[6].

In the present study, the above unitary transformation is
used in two different methods to derive LMNN interactions.
In the following sections, we shall give details of the two
methods.

A. Method 1

Consider a momentum-space Hamiltonian for the two-
nucleon system of the form

HspW ,pW8d = H0spWddspW − pW8d + VspW ,pW8d, s8d

whereH0spWd=pW2/ s2Md with the reduced massM stands for
the kinetic energy, andVspW ,pW8d is the bare two-body interac-
tion. Our aim is to decouple the low- and high-momentum
components of this two-nucleon potential using the method
of unitary transformation. To achieve that, we introduce the
projection operators
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P =E d3pupWlkpW u, upW u ø L,

Q =E d3quqWlkqW u, uqW u . L, s9d

whereL is a momentum cutoff whose value will be specified
later, and P (Q) is a projection operator onto low-
(high-)momentum states. Based on the unitary-
transformation operator given in Eq.(7), the effective Hamil-
tonian in the P space takes the form

PH8P = Ps1 + v†vd−1/2sH + v†H + Hv + v†Hvd

3s1 + v†vd−1/2P. s10d

This interaction is by its very construction Hermitian[6].
The requirement of decoupling the two spaces leads to the

following nonlinear integral equation for the operatorv:

VsqW,pWd −E d3p8vsqW,pW8dVspW8,pWd +E d3q8VsqW,qW8dvsqW8,pWd

−E d3p8d3q8vsqW,pW8dVspW8,qW8dvsqW8,pWd

= sEp − EqdvsqW,pWd, s11d

where we have denoted bypW sqWd a momentum of the P-space
(Q-space) state and byEp sEqd the kinetic energyEp

=p2/ s2Md fEq=q2/ s2Mdg.
Alternatively, one can determine the operatorv from the

following linear equation, as exhibited in Refs.[7,8]:

vsqW,pWd =
TsqW,pW ,Epd
Ep − Eq

−E d3p8
vsqW,pW8dTspW8,pW ,Epd

Ep − Ep8 + ie
. s12d

Here the integration overp8 goes from 0 toL. Consequently,
the dynamical input in this method is theT matrix
TspW1,pW2,Ep2

d. Note that this is not a usual equation of the
Lippmann-Schwinger(LS) type since the position of the pole
Ep in the integration overp8 is not fixed but moves withp. In
solving the integral equation Eq.(12), the second argumentp
in v varies, whereas the first oneq is a parameter.

In this study we have used the linearized equation Eq.
(12) to project out high-momentum components from the
realistic potentials. Since the projection operatorsP and Q
do not carry any angular dependence, the integral equation
Eq. (12) can be solved for each partial wave independently.
In the partial wave decomposed form it reads

vll8
sj sq,pd =

Tll8
sj sq,p,Eqd

Ep − Eq

− o
l̃

E
0

L

p82dp8
v

ll̃

sjsq,p8dTl̃l8

sj sp8,p,Epd

Ep − Ep8 + ie
,

s13d

where Vll8
sj sq,pd;klsj ,quVul8sj,pl and vll8

sj sq,pd
;klsj ,quvul8sj,pl. In the uncoupled casel is conserved and
equalsj . In the coupled cases it takes the valuesl = j ±1.

Equation(12) and, consequently, also Eq.(13) have a so-
called moving singularity, which makes it more difficult to
handle than the LS equation. Indeed, one has to discretize
both p and p8 points in Eq.(13). This does not necessarily
allow one to solve Eq.(13). The differenceEp−Ep8 can be
exactly zero sincep and p8 belong now to the same set of
quadrature points. Thus, one cannot calculate the principal
value integral in the same manner as for the LS equation. To
solve this equation we have used a method proposed by
Glöckle et al. [9].

Another problem arising in solving the linear equation is
caused by the fact that the driving termTll8

sj sq,p,Epd / sEp

−Eqd becomes very large whenp;upW u and q;uqW u go to L.
Consequently, the equation becomes ill defined. To handle
this problem we have regularized this equation by multiply-

ing the original potentialVskW8 ,kWd with some smooth func-
tions fsk8d and fskd which are zero in a narrow neighborhood
of the pointsk8=L andk=L [17]. The precise form of this
regularization does, in fact, not matter[8].

Having determined the operatorv, one can calculate the
effective Hamiltonian in the P space according to Eq.(10).
To evaluate the operatorPs1+v†vd−1/2 entering this equation
we first diagonalize the operators1+v†vd and then take the
square root. Finally, the effective potential can be found by
subtracting the(not transformed) kinetic energy term from
the effective Hamiltonian.

B. Method 2

In Eq. (7), the unitary-transformation operatorU has been
given by the block form with respect to the projection opera-
tors P andQ. We notice here that the operatorU can also be
written in a more compact form as[18]

U = s1 + v − v†ds1 + vv† + v†vd−1/2. s14d

Using the above operatorU, in general, the effective inter-

action Ṽ for a many-nucleon system is defined through

Ṽ = U−1sH0 + VdU − H0, s15d

whereH0 is the kinetic energy of the constituent nucleons in
the nuclear system, andV is the bare two-body interaction
between the nucleons. Here we apply thus defined effective
interaction to the two-nucleon problem. In that caseH0 be-
comes the relative kinetic energy of the two nucleons, andV
the bare two-body interaction between the two nucleons.
Then the LMNN interactionVlow k of interest in the present
work is given by

Vlow k = Plow kṼPlow k, s16d

where Plow k is the projection operator onto the low-
momentum space for relative two-body states, and is the
same asP in Eq. (9) of method 1. In order to obtainVlow k in
the form of the matrix elements using the plane-wave basis
states, we shall present in the following a procedure for the
numerical solution.

We first consider an eigenvalue equation for the relative
motion of a two-nucleon system as
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sH0 + VduCnl = EnuCnl. s17d

The above equation is written also in an integral form con-
cerning relative momentak andk8 as

E
0

`

kk8uH0 + VuklkkuCnlk2 dk= Enkk8uCnl, s18d

where

E
0

`

uklkkuk2 dk= 1. s19d

We here make an approximation for Eq.(18) in a numerical
integral form by introducing the adequate integral mesh
pointski andkj and discretizingk→kj andk8→ki as

o
j

kk̄iuH0 + Vuk̄jlkk̄juCnl = Enkk̄iuCnl, s20d

where uk̄il and uk̄jl represent the plane-wave basis states in
the matrices. Those grids are characterized by the mesh

pointski andkj. Thus,uk̄il is defined as

uk̄il = ki
ÎWiukil s21d

with the plane-wave statesukil and the weight factors for the
numerical integralÎWi. They are normalized as

kk̄iuk̄jl = di,j . s22d

We note here that the eigenvectorsuCnl in Eq. (17) can be
expressed asuCnl= ufnl+vufnl in terms of the operatorv
and the P-space componentsufnl=PuCnl. Thus, the formal
solution ofv is given byv=onuCnlkf̃nu with the biorthogo-

nal statekf̃nu of ufnl. In order to obtain the matrix elements
of v, we first solve Eq.(20) by diagonalizing the matrix

elements, using the basis statesuk̄il. Then, the matrix ele-

mentsv for the basis statesuk̄pl in the P space anduk̄ql in the
Q space are obtained as

kk̄quvuk̄pl = o
n=1

d

kk̄quQuCnlkf̃nuPuk̄pl, s23d

whered is the number of the basis states(the integral points)
in the P space. As shown in Eq.(9) the P space(low-
momentum space) and Q space(high-momentum space) are
defined with a cutoff momentumL as 0,køL and
L,k,`, respectively. The bra stateskf̃nu are obtained

through matrix inversion as fkf̃nu k̄plg;fkk̄p8 ufnlg−1

and satisfy the relationsokp
kf̃nuk̄plkk̄pufn8l=dn,n8 and

onkk̄p8 ufnlkf̃nu k̄pl=dkp8,kp
. It should be noted that the solu-

tion v given in Eq.(23) is ambiguous in the sense that how
to choose the set of eigenvectorshuCnl ,n=1,2, ... ,dj is not
unique. We here selecthuCnlj so that they have the largest

P-space overlapsOn=oi=1
d zkCnuPuk̄ilz2 among all the eigen-

states in Eq.(20). As we will show later, the numerical cal-
culation shows that this selection ofhuCnlj leads to the same
solution obtained from method 1.

In order to obtain the LMNN interaction(P-space effec-
tive interaction), we introduce the eigenvalue equation for
v†v in the P space as

v†vucal = ma
2ucal. s24d

Using the solutions to the above equation, the LMNN inter-
action of a Hermitian type is given by[18,19]

kcauVlow−kucbl =
Îs1 + ma

2dkcauRucbl + Îs1 + mb
2dkcauR†ucbl

Îs1 + ma
2d + Îs1 + mb

2d
,

s25d

where

R= PsV + VvdP s26d

is a low-momentum (effective) interaction of a non-
Hermitian type. Finally, the matrix elements of the LMNN
interaction using the plane-wave basis statesukil and ukjl are
obtained as

kkiuVlow kukjl =

o
a,b

kk̄iucalkcauVlow kucblkcbuk̄jl

kikj
ÎWiWj

. s27d

By an interpolation technique the elements of the potential
are prepared at arbitrary momenta in the P space.

III. RESULTS AND DISCUSSION

As mentioned in the previous section, we have two differ-
ent methods based on the unitary transformation. Here we
make the cross check using both methods.

In Fig. 1, the diagonal matrix elements of the LMNN
interactions for the neutron-proton1S0 and3S1-

3D1 channels

FIG. 1. Comparison of LMNN interactions from the CD-Bonn
potential in the case ofL=2.0 fm−1. The diagonal matrix elements
kkuVlow kukl for the 1S0 (a) and3S1-

3D1 (b) partial waves are shown.
The lines depict method-1(solid) and method-2(long-dashed) re-
sults. Because they coincide very well, one cannot distinguish both
lines by the eye.
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using the CD-Bonn potential[14] are shown in the case of
L=2.0 fm−1. In order to see the off-diagonal matrix ele-
ments, we also illustratekkuVlow ku2kl in Fig. 2. One can see
that the results obtained by the two methods are almost the
same for both the diagonal and nondiagonal matrix elements
within 3–4 digits using typically 100 integral grid points.
Having obtained the same results with high precision using
two very different methods, we have confidence in our nu-
merical results.

In Fig. 3, we show the same matrix elements of the origi-
nal CD-Bonn potential and the LMNN interaction for the
sake of comparison. The LMNN potential is very different
from the original one. Nevertheless, the scattering phase
shifts and the mixing parameter belowElab=300 MeV for

the 1S0 and3S1-
3D1 channels, as shown in Fig. 4, reproduce

exactly the ones obtained from the original interaction. This
has also been shown by Bogneret al. [1].

We now regard deuteron properties. In the light of the
unitary transformation for the two-nucleon system, all the
calculated deuteron binding energies for various values ofL
must reproduce the exact value using the original interaction.
In Table I, calculated deuteron binding energies for various
L using the CD-Bonn[14] and the Nijm-I[15] potentials are
tabulated together with deuteronD-state probabilities. Note
that theD-state probability is not observable[20]. The values
in the last row are the exact values quoted from the original
papers of the CD-Bonn and the Nijm-I potentials. Indeed, we
see that the calculated binding energy for eachL reproduces
the exact value with high accuracy. However, as for the
D-state probability, the difference between the results using
the LMNN interaction and the exact value becomes larger as
the value ofL becomes smaller. If one uses the correspond-
ing effective operator in calculating theD-state probability,
i.e., the unitarily transformed projection operator onto theD
state, then one would reproduce the original value for this
quantity.

As shown in Table I, for the deuteron, the difference of
the wave functions does not affect the binding energy since
we perform the unitary transformation for the two-nucleon
system. However, if we apply the LMNN interaction to the
calculation of the ground-state energies of many-body sys-
tems, the situation will change. This is because the unitary
transformation in the two-nucleon Hilbert space is not uni-
tary any more in the Hilbert space of three and more nucle-
ons. As a consequence, calculated binding energies will de-
pend on L. In order to examine theL dependence, we
perform the Faddeev and Yakubovsky calculations for few-
nucleon systems. Recent precise calculations for few-
nucleon systems are reviewed in Refs.[12,13].

FIG. 2. Comparison of LMNN interactions for the off-diagonal
elementskkuVlow ku2kl. Description is the same as in Fig. 1.

FIG. 3. Comparison of the LMNN interaction in the case ofL
=2.0 fm−1 and the original CD-Bonn potential for the1S0 (a) and
3S1-

3D1 (b) partial waves. The solid and dashed lines depict the
diagonal matrix elements of the LMNN interaction and the original
CD-Bonn potential, respectively.

FIG. 4. Phase shifts for the1S0 (a) and the3S1-
3D1 (b) channels

below Elab=300 MeV. Because the lines from the LMNN interac-
tions and the original CD-Bonn potential coincide, one cannot dis-
tinguish both lines by the eye. In(b) the upper, middle, and lower
lines depict the3S1 phase shift, the mixing parametere1, and the
3D1 phase shift, respectively.
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Figure 5(a) exhibits the energy shiftDEb;EbsLd−Ebs`d
from the ground-state energyEbs`d of 3H as a function ofL
based on the CD-Bonn potential(solid) and the Nijm-I one
(short-dashed) by a 34-channel Faddeev calculation. In the
present study, only the neutron-proton interaction is used for
all the channels for simplicity. The exact valueEbs`d using
the original potential CD Bonn (Nijm I ) is −8.25
s−8.01d MeV. The long-dashed line depicts the Faddeev cal-
culation using the original interaction, where the high-
momentum components beyondL are simply truncated. The
numerical stability is lost within the areaLø1 fm−1. For the
case of the CD-Bonn potential, we needL.8 fm−1 to reach
the exact value if the accuracy of 100 KeV is required for the
case of simple truncation. This situation is greatly improved
if we use the LMNN interaction. Even if we require the
accuracy of 1 keV, we do not need the high-momentum

components beyondL,8 fm−1. However, it should be noted
that the results using the LMNN interaction for the values
smaller thanL,5 fm−1 vary considerably, and there occurs
the energy minimum aroundL,2 fm−1. The cutoff value,
which produces the minimal value ofDEb, is close to the
value proposed by Bogneret al. [1].

We note here that the wave function using the LMNN
interactions is very close to the true wave function if the
Jacobi momentum setsp,qd of the three-nucleon system is
smaller than the adopted value ofL when we takeL
ù4 fm−1.

By solving the Yakubovsky equations we can calculate
the binding energy of4He. A similar tendency of theL de-
pendence for3H can be also seen in the results for4He. In
Fig. 5(b), the L dependence of the energy shiftDEb of the
ground state of4He is illustrated. We demonstrate only the
case of the CD-Bonn potential. Here we adopt theS-wave
[s5+5d-channel] approximation and do not include the Cou-
lomb force for simplicity[12]. We also use only the neutron-
proton interaction for all the channels. The exact valueEbs`d
using the original CD-Bonn potential in the above-mentioned
approximations is −27.74 MeV. The shape of the curve is
similar to that for3H up toL,2 fm−1. The numerical insta-
bility already starts atLø2 fm−1. Here it seems to conserve
the strong correlation relation[12] betweenDEbs4Hed and
DEbs3Hd where the ratio is about 5 in the regionL
ù3 fm−1.

In the case of3H, the energy shiftDEb is about 750 keV
(1 MeV in the case of the Nijm-I potential) at the minimum
point. On the other hand, the difference amounts to about
3 MeV for 4He atL=2.0 fm−1. We remark that the minimal
value of the cutoffL which leads only to small deviations of
the 3H and 4He binding energies from their exact values is
L,5 fm−1. As far as the excitation spectra of low-lying
states from the ground state are concerned, theL dependence
at L,2 fm−1may be weak and the LMNN interactions could
be useful as has been shown in shell-model calculations[2].

It is noted that for LMNN interactions considered as a
purely computational tool, which allows to get rid of the hard
core and thus enables many-body calculations based on real-
istic NN potentials without using theG-matrix formalism,
we recommend the value of the cutoffL of the order of(or

TABLE I. Calculated binding energiesEb sMeVd andD-state probabilitiesPD s%d of the deuteron for
various values ofL. The values in the last row are those quoted from the original papers of the CD-Bonn and
the Nijm-I potentials.

CD Bonn Nijm I

L sfm−1d Eb sMeVd PD s%d Eb sMeVd PD s%d

1.0 −2.224576 1.21 −2.224575 1.24

2.0 −2.224576 3.55 −2.224575 3.83

3.0 −2.224576 4.55 −2.224575 5.12

4.0 −2.224576 4.79 −2.224575 5.53

5.0 −2.224576 4.83 −2.224575 5.64

6.0 −2.224576 4.83 −2.224575 5.66

7.0 −2.224576 4.83 −2.224575 5.66

Quoted −2.224575 4.83 −2.224575 5.66

FIG. 5. Energy shiftsDEb of 3H (a) and4He (b) as a function of
L using the LMNN interaction(solid) from the CD-Bonn potential.
The long-dashed lines in(a) and (b) are plotted for the case of
simple momentum cutoff calculations. The short-dashed line in(a)
depicts the result for the LMNN interaction from the Nijm-I
potential.
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higher than) ,5 fm−1. One then ensures that the binding en-
ergies do not deviate significantly from their exact values in
the case of few-nucleon systems. Further reducing the values
of the cutoff L leads to a significant suppression of the re-
pulsive part of the interaction which becomes visible. In
other words, if one would be able to extend the unitary trans-
formation formalism to more-than-two-nucleon Hilbert
space, additional three- and more-nucleon forces would be
generated through eliminating the high-momentum compo-
nents. These forces would probably be repulsive1 (at least for
the systems discussed in this work) and would restore the
values of the few- and many-nucleon binding energies and
other observables found in calculations with the original, not
transformed, NN forces.

On the other hand, it is well known that all realistic NN
interactions underbind light nuclei such as3H and4He. As a
consequence, attractive three-nucleon forces are needed in
order to reproduce the experimental numbers. It is, therefore,
in principle possible that the repulsive effective many-
nucleon forces generated through elimination of the high-
momentum components compensate, to some extent, these
missing attractive forces, minimizing the total effect of the
many-nucleon interactions. If this oversimplified picture re-
flects the real situation, one would observe a better agree-
ment with the data for calculations based on the LMNN in-
teractions as compared to the ones based on realistic NN
forces. Although the results provided by existing many-body
calculations as well as by the present few-body calculations
with LMNN interactions appear to be quite promising in this
respect,2 and thus might speak in favor of the above-
mentioned tendency of counteracting these two kinds of
many-body forces, to the best of our knowledge, no general
proof of the validity of the above-mentioned picture has yet
been offered.

In addition, one should keep in mind that only restricted
information about many-nucleon forces, which might have
very complicated spin and spatial structures, is provided by
the discrete spectrum. A much better testing ground is served
by a variety of scattering observables. It would therefore be
interesting to test the LMNN forces in the three-nucleon con-
tinuum. Further, we notice that the choice of the LMNN is
not unique. Preserving the half-on-shellT matrix does not
seem to be advantageous in any respect, at least from the
conceptual point of view. If this condition is not required,
infinitely many equivalent LMNN’s can be constructed by
means of a unitary transformation in the low-momentum
subspace. Even if many-body effects appear to be small for
one particular choice of LMNN forces, this might not be the
case for a different choice.

Certainly, the LMNN interactions with small values of the
cutoff, L,2 fm−1, are not disadvantageous compared to ex-
isting realistic NN forces regarding the nuclear structure cal-

culations, if these realistic forces are viewed as purely phe-
nomenological parametrizations with no physical content,
underlying the only requirement of reproducing properly the
low-energy NN data.

IV. SUMMARY

The LMNN interactions have been derived through a
unitary-transformation theory from realistic nucleon-nucleon
interactions such as the CD-Bonn and the Nijm-I potentials.
We have constructed the LMNN interactions by two different
methods which are based on the common unitary transforma-
tion. In order to have a cross check of both computer codes,
we have shown that the LMNN interactions obtained by the
two methods yield the same results. The LMNN interaction
reproduces the low-energy observables in the two-nucleon
system with high precision, which has been confirmed by the
calculation of the deuteron binding energy and the phase
shifts.

The LMNN interaction has been successfully applied to
the Faddeev-Yakubovsky calculations for three- and four-
nucleon systems. The calculated binding energies of the few-
nucleon systems begin to deviate from the values calculated
using the original NN potentials forL smaller than,5 fm−1,
whereas the results obtained by simply cutting off the high
momentum components without performing a unitary trans-
formation deviate considerably even at much higher values
of L. In an appropriately truncated(i.e., with Lù5 fm−1)
low-momentum space the LMNN interaction reproduces the
exact values of the binding energies, at least, for the few-
nucleon systems.

However, we should keep in mind that the calculations of
ground-state energies using the LMNN interaction forL
,2 fm−1 yield considerably more attractive results than the
exact values. We note that as shown in Fig. 1 of Kuckeiet
al.’s work [4] one needs more than 4.0 fm−1 as the cutoff
valueL in order to reproduce at least qualitatively the satu-
ration property of nuclear matter. Thus, the application of the
LMNN interaction to structure calculations should be done
with care, though the LMNN interaction forL,2 fm−1 may
be suitable for the calculation of the excitation spectra of
low-lying states as has been shown in the shell-model calcu-
lations [2].
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1Speaking more precisely, they would have an effect of decreasing
the binding energies.

2Notice, however, the counterexample’s mentioned before.
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