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We carry out Faddeev calculations of three-aljjBa) and two-alpha plus\ (aaA) systems, using two-
cluster resonating-group method kernels. The input includes an effective two-nucleon force faw the
resonating-group method and a new effectivid force for the A« interaction. The latter force is a simple
two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of
the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric
guantum mechanics. Owing to the exact treatment of the Pauli-forbidden states betweerclvsters, the
present three-cluster Faddeev formalism can describe the mutually retatefly, andaaA systems, in terms
of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which descriles the
phase shifts quite accurately, the ground-state and excitation energié\Beofare reproduced within
100-200 keV accuracy.
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I. INTRODUCTION A possible resolution of this overbinding problem of the

In spite of much effort to incorporate microscopic features3¢ Model is found in our new three-cluster Faddeev formal-
of the alpha-alphdaa) interaction, a consistent description ISM, Which —uses singularity-free T-matrices (RGM
of the three-alph&3a) and two-alpha plud (eaA) systems T-matrices genera_ted from_ the two-cluster RGM kernels
has not yet been obtained in the Faddeev formalism. ThEL4: In this formalism, solving the Faddeev equation auto-
most favorable description of thew system is theaa  Matically guarantees the elimination of the three-cluster re-
resonating-group method®GM) [1]. Although some of the —dundant components from the total wave function. The ex-
previous works deal with thew RGM kernel explicitly in ~ plicit energy dependence inherent in the exchange RGM
the 3a-cluster Faddeev formalism, they usually yield a largekernel is self-consistently treated. We first applied this for-
overbinding for the ground state and sometimes involve spumalism to the three-dineutron andr3ystems, and obtained
rious states because of an incomplete treatment of the Pautomplete agreement between the Faddeev calculations and
forbidden states in thea3model spacg2-5|. Various types variational calculations using the translationally invariant
of 3a orthogonality condition model§OCM) [6—8] also  harmonic-oscillatofh.o) basis[14,15. Next, this formalism
yield a similar overbinding for the ground state, although thewas applied to a Faddeev calculation of the three-nucleon
effect of the Pauli principle between clusters is satisfacto- bound state [16], which employs complete off-shell
rily treated in each framework. Only one exception to thisT-matrices derived from the non-local and energy-dependent
rule is the 3 OCM in Refs.[9,10, in which the Pauli for- RGM kernels of the quark-mod&IN interactions, FS$17]
bidden components described by the bound-state solu- and fss2[18]. The fss2 model yields a triton binding energy
tions of the deep Buck, Friedrich, and Wheat{®FW) po-  B,=8.519 MeV in the 50 channel calculation, when the
tential [11] are completely eliminated. The result is ratherinteraction is employed for all thaIN pairs in the isospin
similar to the traditional @ Faddeev calculation using Ali- basis[19]. The effect of the charge dependence of the two-
Bodmer phenomenologicaka potential with a repulsive body NN interaction is estimated to be —0.19 MeV for the
core[12]. In these calculations, the ground-state energy ofriton binding energy20]. This implies that our result is not
the 3 system is less than 1.5 MeV, and a simultaneous degverbinding in comparison with the empirical valug{™®
scription of the compact shell-model-like ground state and=8.482 MeV. If we attribute the difference, 0.15 MeV, to the
the excited 0 state with well-developed cluster structure is effect of the three-nucleon force, it is by far smaller than the
not possible. The origin of the different conclusions in Refs.generally accepted values, 0.5—-1 M¢¥1], predicted by
[8-10Q is spelled out in Ref[13], in which the existence of many Faddeev calculations employing modern realistic
almost forbidden Faddeev components inherent to this 3 meson-theoreticalN interactions. We have further applied
OCM using the bound-state Pauli-forbidden states of thehis three-cluster Faddeev formalism to the hypertriton sys-
BFW potential is essential. tem [22], in which the quark-model hyperon-nucle¢viN)
interactions of fss2 yield a reasonable result of the hypertri-
ton properties similar to the Nijmegen soft-core potential
*Electronic address: fujiwara@ruby.scphys.kyoto-u.ac.jp NSC89 [23]. Most mathematical details for the Faddeev
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equations, employed in this calculation, are given in thecluster Faddeev formalism with two identical clusters, in or-

present paper.

der to apply it to more complex three-cluster systems like the

Here we apply the present three-cluster Faddeev formahypertriton interacting via quark-model baryon-baryon inter-

ism to theaaA model foriBe. This hypernucleus plays an
important role to study the\N interaction in thep-shell

actions. In the hypertriton system, we have to deal with the
ANN-XNN coupled-channel system which involves a Pauli-

A-hypernuclei. From the early time of the hypernuclearforbidden state at the quark level in theN-%N subsystem.

study,gABe is considered to be a prototype@ftluster struc-
ture, in which the twax clusters form a loosely bound sub-
system by the effect of the extra hyperon[24]. Since the
Y Ninteraction is usually weaker than theN interaction, this

Since the baryon-baryon interactions in the quark model are
formulated in the two-cluster RGM formalism, the present
three-cluster formalism is most appropriate to correlate the
baryon-baryon interactions with the structure of few-baryon

system is suitable for studying a subtle structure change afystems. The second purpose is to make a consistent descrip-

the two system from®Be. In fact, in addition to the 1/2
ground state [25-28 with the A-separation energy
BA(iBe):6.7110.04 MeV[29], the recenty-ray spectros-

tion of the aer, 3a andaaA systems using effectivN and
AN interactions. This attempt is beyond the scope of the
usual OCM framework and the Faddeev formalism assuming

copy [30,3]] has revealed the existence of two narrow reso-only inter_-cluster potentials. A (_:omparison of the presemt 3
nances in the excited states, which are supposed to be 5/esults with the fully microscopic@RGM or GCM[38-4(
and 3/2 states generated from the small spin-orbit splittingis useful to examine the approximations involved in the

in the weak coupling picture diBe(2") X A (spin S=1/2).

From a theoretical point of view, this is the simplest non-

present three-cluster formalism. The third purpose is to
present a tractable effectiveN force for cluster calculations

trivial system which requires the Faddeev formalism withof variousp-shell hypernuclei, which is not purely phenom-
two identical particles, involving three Pauli-forbidden statesenological but derived microscopically from quark-model
between two clusters. Several model calculations were alaryon-baryon interactions. In particular, this effectit®l
ready done with various frameworks and two-body potenforce should be able to reproduce the corrdeseparation

tials. Hiyamaet al. [7] used the OCM for thexe, 3 and
aal systems and discussed not only the ground staiBef
but also the spin-orbit splitting of the 572and 3/2 states

energy ofiHe; B,(He)=3.12+0.02 MeV. Such A« inter-
action is indispensable for, e.g..AaA « Faddeev calculation
using the quark-model A interaction[41]. In this paper, we

[32]. They employed simple three-range Gaussian potentialderive an effectiveAN force of two-range Gaussian form

for the AN interaction based o8-matrix calculationg33] of
various Nijmegen and JilichYN one-boson-exchange-
potential (OBEP) models. TheA« potentials are generated
from theseAN effective potentials by the folding procedure
with respect to thé¢0s)* h.o. wave function of ther cluster.
They introduced a three-force and adjusted théN param-
eters to reproduce the binding energies of @ andgABe
ground states. Filikhin and G§B4] used the Faddeev and
Faddeev-Yakubovsky formalisms to calculate f{ige and
10 Be ground states. They used the Ali-Bodnaer potential
[12] and the so-called Isle potentigd5] for the A« interac-
tion. They included onlyS wave in the calculation, and re-

from the phase-shift behavior of the quark-mod inter-
action, fss2, by using an inversion method based on super-
symmetric quantum mechani¢42].

This paper is organized as follows. In the next section, the
three-cluster Faddeev formalism with two identical clusters
is given, together with expressions to calculate the expecta-
tion values of the two-cluster Hamiltonian with respect to the
solutions resulting from the Faddeev equations. The proce-
dure to calculate thd « andaa T-matrices is also discussed,
as well as the treatment of the cut-off Coulomb force em-
ployed in this paper. In the third section, we first briefly
discuss the results of thew3Faddeev calculation, and then

produced thaBe ground_state energy Correcﬂy_ However, if those of theaaA Faddeev calculation. The final section is

one includes higher partial waves the Ali-Bodmet poten-
tial yields overbinding foﬁBe by more than 0.5 MeV. Oryu
et al. [36] carried out anreaeA Faddeev calculation by using
the e RGM kernel and various types dfa potentials in the
separable expansion method. Their energy spectruﬁBef
is reasonable, but the treatment of the twauli principle

devoted to a summary. Appendix A gives a brief comment on
the rearrangement factors of three-body systems with two
identical particles. The most general case with explicit spin-
isospin degrees of freedom is discussed. In Appendix B, we
derive a compact formula to calculate the: Born kernel for
arbitrary types ofAN interactions. Energies are in MeV and

in the aaA system is only approximate. Since they neglectedengths in fm throughout, unless otherwise specified.

the Coulomb force, a detailed comparison between their cal-

II. FORMULATION

culated results and experiment is not possible. Cravo, Fon-

seca, and Koiké¢37] performedaaA and aan Faddeev cal-
culations by using manyva and A« potentials with the
Coulomb force included between the twioparticles. From
the comparison of the results for ti@e and®Be systems,

A. Faddeev equation for systems with two identical clusters

In order to formulate the Faddeev equation for systems
with two identical particles, we follow the notation of Refs.
[43,44 as much as possible. The Jacobi-coordinate vectors

they found an interesting sign change of the quadrupole mogre specified by the permutatida3y), which is acyclic

ments and the magnetic moments for some excited state§ermutation of(123). For example, the momentum vectors
They also pointed out a possibility of negative parity reso-o; the coordinate system in the unit of# are defined by

nances witty He +a cluster structure in this threshold region.
Our purpose for thevaA Faddeev calculations usingu

RGM kernels is threefold. First, we develop a general three- By

_ Mgk, —mKg
Com,+mg
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1 the quantum numbers similar to those of fehannel. The
a,= M[(ma +mgk, —m,(k, +kg)], partial-wave decomposed Faddeev equation for the two com-
ponentsy and ¢ in Eq. (2) is given by

P:ka+kﬁ+k,},, (1) 2 8 é, -1 o’}
wherek,, kg, k, are single particle momenta of particles yp.0) = {E_ M(ph 4—§q2>] fo q'*dqf
B, v with the massesn,, mg, m,, respectively, and=m,
+mgz+m, is the total mass. Three different sets of the Jacobi ! ~ f2 8+¢

S dina XJ dﬂmT<E———"——ﬂ28)m>
coordinates(p;,dy), (p2,9,), and(ps,qs), are related to each . A My 47 T 1

other in the standard relationship for the rearrangement. We

choose the coordinate systepr3 as the standard set of 1 s 1 ,
Jacobi coordinates and assume that particles 1 and 2 are the x % pl)\g.,,g(q,q X) p2€1¢ﬂ(p2’q ), (58
two identical particles with a common masg=m,. We in-

corporate the symmetry property for the exchange of par-

ticles 1 and 2 into the Faddeev formalism by assuming the ~ h? (A+¢ , 8+L L\ [TL (T,
total wave functior¥(p,q) as ¢p(p.0) = E- sM\ ¢ ¥ Y4V 2 . q'“dq
W (p3,03) = #(P3,03) £ (= P1,Ga) + @(P2,Gp) 1 W2 8+L )\
. Xf dxq{ (p[Te, B Mg+ ")
with (= ps3,0a) = + Pz, 0a), (2 1 N
where the uppeflower) sign is applied for identical bosons 1 N
(fermiong. The requiremen®(-p,q)=+W¥(p,q) is satisfied 2;‘ piflg/”(q’q ) ps* ¥(P2d")

from this ansaz.
In the application to theraA system, twoa clusters are +(p|T (E
numbered 1 and 2, and the hyperon is numbered 3. Since G

h? 8+¢

- —252|%
8MN4+§q)m0

the technique to handle the rearrangement of the Jacobi co- 1 1
ordinates in the Faddeev formalism is well knoy48], we x> = 980,00 05 (P2q') ¢, (5b)
only give the specification scheme of channels and the final g Pyt 52”1

Faddeev equation after partial-wave decomposition. We give

expressions both in theS-coupling andj-coupling schemes  where/=(M, /M) is the mass ratio oA to the nucleon and
for later convenience. For thiBe system, they channel is

specified byy=3 with (yaB)=(312 in Eq. (1). A set of 1 ¢

guantum numbers in they-channel is specified byy PL= p(q :ECIiX), P2= P(q,—q ;X>,

4
=[(\€)L1/2]3J, in the LScoupling scheme and e
[N(£1/2)j]33, in the jj-coupling scheme with the angular-
spin wave functions PR VR S U
o pl_p q 14_+é,qrx ’ p2_p q!Eq X

(Pa,8a]»)

s [Yoo(Pa.G2)€1/2(3) 153, (LS-coupling 4 .

) Pa, [Yx(ﬁs)[Y(’(Q:i)§1/2(3)]1]JJZ (jj-coupling. p.= p(q v4+§q;X), p= p(q,4+§q ;X), (5¢)

)

Here, Yoo, (P, @ =[YA(P)Ye(@]iL, &1/2(3) is the spin wave
function of A, and ¢,, is the internal wave function of the
cluster. Similarly, we define thg channel byB=2 with
(Byx)=(23), and a set of quantum numberg
=[(€,€2)L1/2]3J, (LS-coupling and [(£;1/2)1€5]3],

with p(g,q’;x) = Vo2+q'2+2qq'x. The T-matrices, T, and
Ty, are discussed in Secs. Il D and Il C. The rearrangement
factors for theys— ¢ or ¢— 1 cross terms are given by

9,5(0,9":X) = 9p,(a",0;X)

(jj-coupling with SIS q7\1+)‘2q’)‘1+}\é<l))\2< l )Aé
(P2, G2l BY AN N L=y 2/ \4+{
o [Yie e (P2,G2)1/2(3) 155, (LS-coupling xS (2K + 1)g%"5kPk(x), (6)
xrag k

[[Ye,(P2)€1/2(3)]1Y¢,(G2) 155, (jj-coupling.
(4)  wherePy(x) is the Legendre polynomial of rark The re-

The « channel is specified bw=1 with (e¢8y)=(123, and  duced rearrangement fac gik is expressed as
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(- DG (LS-coupling
Aghik
9pt = . I U : , ()
— JHL+0+15 2 2 2 N\ kL B :
2. D L) Laoalle o Gilileye, (i-coupling

with ]:V’Zj +1, etc., and the spatial angular-momentum faﬁw)i"&lez) in Eqg. (A9). For thee- ¢ type rearrangement, these

factors are given by

’ ’ 4 )\2+)\é "k
Op (@)= 2 X q*l*”Zq’*l“z( ) > (2k+ gL PUX), ®
MA=01 \Ins=e) 4+ k
with
g+ AMAKL .
. (D" 16(6162)](%%) (LS-coupling
MR = 1 1 . (9)
o EPNETRORIPY I L3k . .
>, DL ool Gt ety (jj-coupling
[
B. Calculation of £, and &g (mg+m)h,+(m,+m,)hg+(m,+mgh, =MH,.
In this section, we derive some formulas to calculate ex- (12

pectation values of the two-cluster Hamiltonianh,,

+VI;€GM(8y) andhg+V,, whereh is the kinetic-energy op- For two identical particles withm,=myg, this relationship

erator of they pair, etc. In the present applicatiod;, >*(z ) yields
is theawa RGM kernel and/;; is the Aa kernel. We deal with h +h.= M Ho - 2mg h 13)
the energy dependence of thea RGM kernel self- a’ B mg+m, 0 mg+m, v
consistently by calculating
and
RGM
(~37:<\I’|h,/+V7 (,)[¥) (10) M m
. . . (Wlhg|W) = 5 ————(W[Ho| W) - —E—(W|h,|¥).
for the normalized Faddeev solutidn The potential term of 2(mg+m,) mg+m,

the matrix element in Eq.10) is most easily obtained from (14)
various matrix elements of the kinetic-energy operators. Sup- i
pose¥ is a sum of three Faddeev componentss i, + i, Thus we find, for thevaA system,
+1i,. Then the Faddeev equatidE—Hg) ¢, =V, ¥ with V 8+ 4
= %GM(SY) andHo=h + h;yields(‘lf|vy|\P>y:<</fyy|E—H0|\If)y. ep=E(y V) + 2(4—fo<%lHol‘1’> + 4__'_g[<¢B|H0|‘I’>
Thus EQq.(10) becomes

- (¥|h,|¥)]. (15

£y = B W) = (4 Hol ) + (W[, ). (19 We need to calculate the overlap matrix eleme(mt§| ),
We can write a similar equation also for tjfepair. We cal-  (#5|¥), and (¢, |Ho|W)=(,|Holth,) + 2(ts,|Holihg),
culates, although the self-consistent procedure is not nec{y|Ho| W)=y, |Ho|t/p) + (g Hol g+ i), (¥|h,|¥)
essary for theAa interaction. The kinetic energy term =(y. |h |y.)+4&(y|h, e +2(gglh | g+ ih,). These are cal-
(V[hgW) is obtained from{W|h,|¥) as follows. Using the culated fromy and ¢ by using the recoupling techniques
momentum Jacobi coordinates in Efy), we can easily show developed in Appendix A. The final result is

hidw=3 [ apdaa 9+ 55 o+ [ daaia [ oo
yIFo - op p q4MN p 4§q ARG o g aqq-aq ) P14 AM

0 —

8+¢ 5\ 1 oy L ,
X<p12+ quz>agyﬁ(q,q ,X)@wﬁ(pz.q )s (163
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2

4+ h
(PalHol ¥y = > J prdpcfdag ( Lpes O )[«pﬁ(pq)]2 E J qPdqq 2dg’ f dxwﬁ(pl,q)

4 4+€
4+{~, 8+( , * o 2
X(Tpl 4—+§q> =~ 9ss(0.0"; X)~2 -0 (P20') + 723 g°dqq*dq f_ldxwy(pl,q)m
8+¢, 1 ,
X(pf 2 ) 9,509 )pzfl%(pz,q). (16b)

The overlap integrals are obtained by setthig— 1. Furthermore(¥|h |¥) is given by

o hZ % 1 ﬁZ
(h|w) =2 i pzdpqqumpz[%(p,q)]“E o’dqq’%dg’ f 1d><¢y(p1,q)2M o, Agws(q q X) ‘PB(pZ a’)
Y Vs -

870

. #? 8+§)2 ] 28+9)
2 . 2 - > 2
+E, JO pdpqquwﬁ(p,q)SMNHp +<4+§ o0 |+ 5 : ——pqfgp (@p(p.0)
2

16My

+E f o?dqq %dg’ f dxe4(ps,0) (9®+a'?-2qq X)—gﬁ,;f(qq ><)~ ,cpﬁf(pz,q) (17

P1 pz
Here, fs4 is given by

fgp = f dpodEx(BP202) (B2 - B2)(P20l B') = (- 1)51”%1(?2({’101(161'0><€201QK2’O)

€1 €2 L .
4 5, (LS-coupling
y 6, ¢ 1 .
> (=) JLzl Ll Gl (jj-coupling
L G 1 Gl 1 oG 1 '

C. Aa T-matrix and effective AN potentials

1 o 3 1+P,[lu 2-u
) . . van=|v(‘E) +0(°E) 5t Pl
The A« T-matrices are obtained by solving the 2 2 2 2
Lippmann-Schwinger equation (21)

4 2 wherev(*E) andv(°E) are simple two-range Gaussian poten-
To(p,p";E) = Vi(p,p’) - 77 —'“J k2dkV,(p,k) tials generated from thJeSO and3Sl phase shifts predicted by

(2m)® h2 the quark-modelAN interaction, fss2. We use the inversion
method based on supersymmetric quantum mechanics, de-

2T€(k p'";E), (19) veloped in Ref[42], to derive phase-shift equivalent local
72 k potentials. These potentials are then fitted by two-range

Gaussian functions. These are given by
where u=[4,/(4+{)]My is the Aa reduced mass ané e 5 5
=—(h2/2u)7? is a negative energy. The partial-wave compo- v('Sy) = - 128.0 expp- 0.89087) + 1015 exip- 5.3837),
nentsV,(p,p’) for the Aa Born kernelV(p,p’) are defined
through v(®s)) = - 56.31 exp(— 0.7517%) + 1072 exp— 13.742),

(22)
V(p,p') =472 Ve(p,p) 2 YD) YemP), (200 wheref=1 andr is the relative distance betwednandN. In
¢ m the following, we call this effectiveAN potential the SB

potential. Figure 1 shows that these potentials fit the low-
and the(p|T((E)|p’) in Eq.(5b) is related toT¢(p,p’;E) with  energy behavior of thtS, and®S, AN phase shifts obtained

an extra factor 4/(2m)3. by the full AN-XN coupled-channel RGM calculations of
For the effectiveAN potential, we assume a Minnesota- fss2. In the?’Sl state, only the low-energy region is fitted,
type central forcg45] since the cusp region cannot be fitted in a single-channel

024002-5
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FIG. 1. AN-2N 1$J (@ and3Sl (b) phase shifts for the isospin
1=1/2 channel, calculated with fs§26] (solid and dashed curves

and with the SB potentiglircles.

calculation. This potential overestimates ﬁ% phase shift
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TABLE Il. Bound-state energies for thea system,E(iHe) (in
MeV), calculated by the original SB potential wifte1. The h.o.
width parametersp=0.275 fnT? and »=0.257 fm? are assumed
for the (0s)* a-cluster. The experimental value Ee"p(/s\He)z
-3.12+0.02 MeV.

u v=0.275 fn2 v=0.257 fm?
1 -4.975 -4.747
0.6 -4.946 -4.728

1+P,
2

}e—“’ﬁi)z. (24)

3
UAN= 2 {[Ug)even"' US'ZT even(o'l 0]
i=1

1-P,
2

+[08 oga+ Vo oad 01+ 02)]

Since the spin-spin term does not contribute to the spin satu-
rated a-cluster, the spin-isospin factors in E@3) (with «;
—1/(B)?, i=1-3) are given by

X:d = 2(Ug)even+ vg)odd) ’

xie = Z(Ug)even_ Ug)odcb' (25

The explicit values fonvg)even and vg>0dd (i=1-3 generated

from Nijmegen models, NS, ND, NF, and Julich potentials,

in the higher energy region. The procedure to calculate thdA: JB, are given in Ref7]. [Table V of Ref.[7] includes a

Aa Born kernel for the simpl¢0s)* a-cluster wave function

misprint for NS: the width parameteys for this potential

is discussed in Appendix B. Here we only give the final&r€¢ 1.50—-1.0-0.55, instead of 1.50-0.90-0.50 for the other
result for the partial-wave components:

4

Vo(dna) = 2 [XVE(ar, G ) + XV 0 k). (23)
i=1

Here, X}, and X, are spin-isospin factors defined in E§:10)

potentials}

The binding energy of thd « bound state depends on the
h.o. width parameter of the a-cluster. Table Il shows that
the SB potential of Eq(22) overbinds theiHe energy by
more than 1.6 MeV. It also shows that thedependence is
very weak, which implies thatHe is anS-wave dominated
system. It is well known that a central single-chanAd\
effective force that fits the low-energyN total cross sec-
tions and the ground-state energies;éf, 1H and {He al-

and tabulated in Table | for the present two-range Gaussia@ys Overestimates thigHe binding energy by more than

potentials. The explicit functional form ofY(qgs,q;; <) and

V&(as,qi; k;) are given in Eq(B11).

2 MeV, due to a lack ofA-X mixing and the tensor force
[47-50Q. In order to circumvent this difficulty, we introduce a
reduction factoff in the attractive part of th&S, potential in

In this paper, we also examine theN effective forces
[33] used by Hiyamaet al. [7] for comparison. These poten-
tials are generated from ti& matrix calculations of various

OBEP potentials. They are parametrized as

Eq. (22) for the following Faddeev calculations. The choices
f=0.8821 for »=0.275fm? and f=0.8923 for v
=0.257 fm? reproduce the desired valueE(3He)=

TABLE I. Aa spin-flavor coefficients for the Minnesota-type

SB potential Withv:voe_”z.

[ X} X,
1,2 (u/2vy(*s) (1-u/2)vy(*s)
3,4 (3u/2)ve(®9) 3(1-u/2)uy(%s)

-3.120 MeV, when the pure Serber type SB potential with
u=1 is used. The\a bound-state energies predicted by the
NS-JB effectiveAN potentials deviate from the original fit in
Ref. [7] by 110-170 keV(-3.23 to -3.29 MeV. This is
because they used a slightly different expression from ours
for the exchange term of thA« potential. For theaaA
Faddeev calculations using the Minnesota three-range force
for the aa RGM kernel (»=0.257 fm?), we readjusted the
strength of the original NS-JBN potentials in order to fit
the preciseiHe energy, —3.120 MeV. This is achieved by
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slightly (less than 0.36% modifying the strength of the 47 WMy (© . = Un(p’)
short-range repulsive tertthe third componenbf the origi- Una(p) = 2 )37f p’ dp'Tx(p,p';E,S)m,
nal G-matrix potentials. T 0 P

The Aa phase shifts are also calculated, although there is (28)

no experimental information. Th&wave phase shift shows
a monotonic decrease from 180° similar to Fig. 9 of Ref.for n=0, 1 (\=0) andn=0 (A=2). Owing to this relation-

[36]. In the energy regiofit; ,(Aa)=0-20MeV, the phase  ghip, we can prove the orthogonality of the total wave func-
shifts of the higher partial waves rapidly decrease, startingion Eq.(2) to the Pauli-forbidden statas, (p).
from 20°~30° for the P wave. This implies that the\« For the effectiveNN force, we mainly use the three-range
potential is very much of the Wigner type, and our lack of pinnesota(MN) force [45] with the exchange-mixture pa-
knowledge of the\ « interaction in higher partial waves may rameter, u=0.946 87, and the h.o. width parameter,
not become a serious problem in the Faddeev calculations=q 257 fn2, for the (0s)* a-clusters. We also use the two-
range Volkov No.1(VN1) and No.2(VN2) forces[52], in
D. aa T-matrix and effective NN potentials order to comapre ourdresults with the microscopic RGM
[38,53 and GCM[39] calculations. The Majorana param-
The aa T-matrices used for thea3and aaA Faddeev etersm of the Volkov forces and the h.o. width parameters
calculations are generated from thee RGM kernel which  arem=0.575 andv=0.2515 fm? for VN1, andm=0.59 and
uses an effectiveNN potential similar to Eq(21). In the  1»=0.275 fm? for VN2. The aa RGM calculations using
notation used in Ref[51], the aa RGM kernel, VR®M(e)  these effective\NN forces and the complete Coulomb kernel
=Vp+Vp '+ G+GC+¢K consists of the direct potentidl,,  reasonably reproduce the empirieat phase shifts of th&-,
the direct Coulomb potentiaYDC', the sum of the exchange D-, andG-waves, as well as th&wave resonance near the
kinetic-energy and interaction kernel6=GX+GV, the ex-  aa threshold. However, the best fit to the experiment is ob-
change Coulomb kern@&®, and the exchange normalization tained by the three-range MN force. For the VN2 force, the
kernelK. We have to eliminate redundant components froms-wave resonance appears as a bound state with the binding
the  energy-dependent  partial ~ wave T-matrices, energyB,,=245 keV. Although the VN1 force reproduces
T\(p,p’;E,¢), which satisfy the Lippmann-Schwinger equa- this resonance, the overall fit to thex phase shifts is less
tion similar to Eq.(19). This is necessary only for tf®wave  impressive compared to the MN force. In the RGM calcula-
(A=0) andD-wave (\=2) components, for which there exist tion, the precise determination of the resonance energy is not
two and one h.o. Pauli redundant staigg(p), respectively. easy even in the twe- system, because of the presence of
Here, u,,(p) are essentially the h.o. wave functions in thethe Coulomb force. In the present Lippmann-Schwinger for-
momentum representation with the total h.o. quaKta2n malism in the momentum representation, the method by Vin-
+\=0 and 2, satisfyindCu,, =uy,. They are explicitly given ~cent and Phatal4] is used for solving the scattering prob-

by lem with full Coulomb force at the nucleon level. We find
that the 0 resonance energy is 0.18 and 0.14 MeV for VN1
(2m)3"? 1 force and the MN force, respectively. This should be com-
Up(p) = (- HN——= Rm(lo,—) (26)  pared with the experimental value 0.092 MeV.
V4w Ay For the Coulomb force in theadand aaA Faddeev cal-

culations, we use the cut-off Coulomb force at the nucleon
with x=2, in terms of the standard three-dimensional h.olevel
radial wave functionR,.(r,v) in the coordinate representa-

tion. The RGMT-matrices defined in Ref14] are calculated 1+70i) 1+ 7)) €
by v = ——""=——5"—0(Rc 1), (29)
2 2 r
2 2 12
TR(D,D' :E,e)=T\(p,p";E,¢) + A2 (Y +p )(72; ) with the cut-off radiudR, although an exact treatment of the
4My (¥ + 1) point Coulomb force exists for bound-state nuclear three-

21 Uro(P)Uo(D) body problems with two charged particlggb]. Here 6(x) is
n=0 UnoP)tno( P the Heaviside step function. For the most compacg8und
Ug2(P)UoA(P’) state, this approximation witRc=10 fm is good enough to

obtain 1-2 keV accuracy. The exchange Coulomb kernel for

Eqg. (29) is calculated analytically. The partial-wave decom-

0 position of theaa RGM kernel is carried out numerically

for ={ ' (27) using the Gauss-Legendre 20-point quadrature formula,
when the Coulomb force is not included. When the cut-off
. Coulomb force with &-=14 fm is employed, it is increased
where y*=—(4MyE/%%) and «*=(4Mye/h?). Eor the higher to the 30-point quadrature formula to obtain an accuracy
partial waves with \=4, we define T\(p,p’;E,e)  within 1 keV for the exchange Coulomb kernel. The direct
=T\(p,p’;E,&). The RGMT-matrices in Eq(27) satisfy the  Coulomb term is separately integrated with a sufficient num-
orthogonality condition ber of numerical integration points.
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IIl. RESULTS TABLE lIl. Results of 3x Faddeev calculations, using tley
RGM kernel, with and without the Coulomb effect. The parenthe-

To solve the Faddeev equation, we discretize the continusized numbers indicate the results when the cut-off Coulomb force
ous momentum variablp (q) for the Jacobi coordinate vec- with R.=10 fm are included at the nucleon level. Partial waves up
tors, using the Gauss-Legendngpoint (n,-point) quadra-  to Ay are included inxe and(2a)-« channels. The heading,, is
ture formula, for each of the three intervals of 0—1"¥n the expectation value of the twe-Hamiltonian with respect to the
1-3 fmi! and 3-6 fm’. The small contribution from the 3a bound state solutiorEs, the 3x bound-state energy, arg,,
intermediate integral ovep beyondp,=6 fm™L in the aa the overlap between thex3bound-state wave function and tB&);
T-matrix calculation is also taken into account by using the(04) shell-model configuration. For the MN force, the result of the
Gauss-Legendrans-point quadrature formula through the variational_ calculati_on using the tra_nslationally invariant h.o. basis
mappingp=py+tan{m(1+x)/4}. We neech; =10 andn;=5, (h.o. var) is also given for comparison, where h.o. quanta up to
so that 35 points are at least necessary to follow up the innd=60 are included.
oscillations of the twar bound-state wave function and the

necessaryT-matrices for solving the Faddeev equation. FOrC€ Amax 82a Eaa Clog
Thesen; points forp>6 fm™* are, however, not included for

solving the Faddeev equation, since it causes a numerical 4  9.657(10.88% -10.751(-5.206 0.900(0.879
instability for the interpolation. The momentum region VN1 6 9.531(10.779 -10.926(-5.365 0.896(0.875

=6 fm - is also discretized by the; point formula just as 8  9.530(10.779 -10.927(-5.366 0.896(0.875
in the p discretization. We taka;-n,-n;=15-10-5 for the &

system and 10-10-5 for theaA system, respectively, unless

otherwise specified. The modified spline interpolation tech- 4 8583(9.608 -11.202(-5.78) 0.826(0.799
nique developed in Refi56] is employed to generate the VN2 6 8.449(9.505 -11.415(-5.967 0.821(0.790
rearrangement matrices. For the large-scale diagonalization 8 8.447(9.503 -11.417(-5.969 0.821(0.790

of non-symmetric matrices, the Arnoldi-Lanczos algorithm

developed in theaRPACK subroutine packaggs7] is very 4 12.032(13.603 -15.616(-9.433 0.979(0.973

useful.
MN 6 11.905(13.483 -15.777(-9.591) 0.978(0.97)
8  11.904(13.48) -15.779(-9.592 0.978(0.971)
A. 3a Faddeev calculation h.o.var.  11.90313.48) -15.781(-9.594 0.978(0.97]
In order to make sure that our Faddeev equation is solved
correctly, we first carried out the standard-particle Fad- In Table IV we compare the®ground-state energiés,,,

deev calculation by using the angular-momentum dependemjredicted in the present three-cluster Faddeev formalism,
Ali-Bodmer potential ofd type (ABd). We find that the @  with those obtained by fully microscopic calculatioi!.
energy,Ez,=-6.423 MeV without Coulomb force, is consis- e find that the present three-cluster equation give®6-
tent with previous calculationf9]. Here, we usedi®/M,  ergies which are only 1.5—1.8 MeV higher than those of the
=10.4465 MeV fri and e’=1.44 MeV fm for comparison.  fylly microscopic 3 RGM or GCM calculations. This im-
When the cut-off Coulomb force is included, our value plies that the three-cluster exchange effect, which is ne-
~1.527 MeV is 4 keV lower than the -1.523 MeV given in glected in our three-cluster formalism, but is present in the
Table | of Ref.[9]. This difference is due to a slightly differ- fy|ly microscopic three-cluster RGM kernel, is attractive in
ent treatment of the Coulomb force between the two calcunature, and is not as large as the repulsive three-body force
lations. The small @ binding energy implies that the Ali-  claimed necessary in the semi-microscopicrBodels[2,4].
Bodmer phenomenologicala potential cannot describe the This is mainly because thea3model space used by these

ground state of“C with a compact shell-model like struc- aythors does not exclude the ®auli-forbidden components
ture.

On the other hand, the present &odel interacting via TABLE IV. Comparison of the & ground-stete energies, pre-
the aa RGM kernel gives enough binding and a large over-dicted bynﬂ?e present modés,) and by ftéyy microscopic calcu-
lap with the compact shell-model-like component. Table Illations (Ez,). The experimental value ig5;"=~7.275 MeV. The
lists the results of such Faddeev calculations for the groun@resent model is the Faddeev calculation usingithdRGM kernel,
state of the & system with and without the Coulomb force. including the cut-off Coulomb force witRc=10 fm. The heading
The @a RGM kernels are generated from the VN1, VN2, and E™ implies the internal energy of th@s)* a-cluster with the h.o.
MN forces. When the Coulomb effect is included, the cut-off Width parametem, Eq, the total energy from the RGN[53] for
Coulomb force withR-=10 fm is employed. In the last col- '\E/'ﬂ',\',, _aEd [_?’g]EL?r VN2) or GCM ([39] for VN1) calculations, and
umn in Table Ill,co4 implies the overlap amplitude of the —Sa ™ot "~a -
3a bound-state function with th8U; (04) shell-model con-

' ' _ , : Force fm2 gnt E ghul Es,
figuration. We find that all three effectiviiN forces vyield v (™) @ o S s
binding energies comparable with the experimental value VN1 0.2515 -27.0 -87.9 -6.9 -5.37
|ESH=7.275 MeV, although the result of of tiéN force is VN2 0.275 -273  -89.4 -75 -5.97
a little too large. The dominant component of these 3 0.257 -239  -830 -11.4 -959

ground states is th8U; (04) shell-model configuration.
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TABLE V. Kinetic- and potential-energy contributions to the calculation implies a 4-channel calculation a@€G in the
threea energyEs,, calculated from(Hg)=2(3e,,~E3,) and (V) L™=2* calculation a 19-channel calculation. The largest
=3(Ez,—282,). The shell-model(04) componentc ), is large if  model space adopted isl, which is an 11-channel calcula-

(Hy) is large. tion for L™=0* and a 28-channel calculation fof =2*. Note
that the variational calculation in Ref7] uses a rather re-
Force ey, Bz (Ho) (V) Cog) stricted model space, i.e., a 3-channel calculation Witk

=2 and ¢; =0, although the meaning of angular-
VN1 10778 -5.366 75402 ~80.768  0.875  5mentum truncation is a little different from ours. For the
VN2 9503  -5969 68958  -74.927  0.790 momentum discretization points, we find that the energy
MN 13.481  -9.592  100.068  -109.660 0.971 change due to the increasemfn,-nz is very muchR: de-
pendent. It is usually positive if we go fromy-n,-n;=5-5
-5 to n;-n,-n;=10-10-5 when the Coulomb force is not in-
accurately, unlike the one used in the present Faddeev fotjuded, but it turns out negative whé®-=10 and 14 fm.
malism. This implies that the Faddeev calculation without Coulomb
In Tables Il and IV, we also find that the three-range MN force usually overestimates the binding energy, if the number
force gives a somewhat large overbinding of 2—4 MeV, if of momentum discretization points is not large enough. Since
the 3a energyE;, is measured from theddthreshold. The the cut-off Coulomb kernels are oscillating, too small a num-
decomposition of the @ energy to the kinetic-energy and per of momentum discretization points such asjan,-n,
potential-energy contributions in Table V implies that this=5-5-5 case is dangerous wheR is very large likeR:
overbinding is due to the large cancellation between these10 and 14 fm. The orthogonality to the Pauli-forbidden
two contributions. In this respect, it is interesting to note thatstates also deteriorates when the number of momentum dis-
the a clusters withy=0.257 fm? (which gives the correct cretization points is too small. The squared norm of the
rms radiusr,=(3/4\v)=1.48 fm [58] for the simple(0s)*  Pauli-forbidden components contaminating the total wave
a-cluste) give less binding in the framework of the orthogo- function is typically 10°-10° when n;-n,-n;=5-5-5, but
nality condition modeOCM) [8]. If the h.o. constant pa- is improved to less than I& for n;-n,-n;=10-10-5. In
rameterv is small, a proper treatment of thew exchange this paper, we will mainly show the results ofi-n,-n;
kernel seems to be essential in order to obtain a large binding10-10-5, since the energy gain by further extension to
energy of the & ground state. This is reasonable since then;-n,-n;=15-15-5 is usually less than 1 keV, when the cut-
large overlap of twoa-clusters implies the importance of off Coulomb force withR-=10—14 fm is included.

nucleon exchange effects. The energy gain of the ground statef, and that of the
. self-consistents,, value by the increase of the maximum
B. aaA Faddeev calculation angular-momentum valuesya,-€; _, are shown in Table VI

For a detailed description of thexA bound states in the in the cases when we use the VN2 or MN forces for dhe
Faddeev calculation, it is important to make sure that thdnteraction and the SB force for thea interaction. In these
result is converged with respect to the following three con-calculations the cut-off Coulomb force witRz=6 fm is em-

ditions: ployed. If theSwave calculation is extended to include the
(1) convergence with respect to the momentum discretiD-wave, the energy gain is about 1 MeV for VN2+SB and
zation points, 1.2 MeV for MN+SB. The energy gain mainly comes from
(2) convergence with respect to the extension of partiathe partial-wave component witti;={,=1 of the a-He
waves included, channel. The effect of the partial wave=¢,=2 is rather
(3) convergence with respect to the cut-off radi@s, small; i.e., about 5QVN2)-60 (MN) keV. Needless to say,
when the cut-off Coulomb force is included. the exact energy gain largely depends on the character of the

Among them, the Coulomb effect is the most difficult, since AN odd force. The ground-state energy is further improved
the T-matrix of the full Coulomb force is divergent at the by 7 (VN2)-5(MN) keV and 0.03VN2)-0.0(MN) keV,
diagonal part and the strong oscillation in the momentunaccording to the extension to th@- and I-wave, respec-
representation in the cut-off Coulomb case does not lead tvely. On the other hand,e,, is improved by
the correct answer, unless the numerical angular-momentudf5 (VN2)-288(MN) keV, 6 keV and 0.5-0.6 keV, ac-
projection of theaa Coulomb kernel(especially the direct cording to the extension to tHe-, G- andl-waves, respec-
Coulomb term is accurately performed. As to the partial tively. In conclusion, partial waves up to th@-wave are
waves, we can easily enumerate all possible angulasufficient within 10 keV accuracy. If we wish to have a
momentum states d{Be for theL"=0" ground state with 1 keV accuracy, we need to take into account at least up to
J=1/2 and the.™=2" excited state with)=5/2 and 3/2 in the G-wave. This implies that the partial-wave truncation in
the LS coupling scheme. If nd\a spin-orbit force is intro- the Faddeev formalism is very efficient and the result con-
duced, thel=5/2 and 3/2excited states are degenerate andverges very rapidly, according to the increase of the partial
the LScoupling scheme is more efficient than the waves taken into account.

ji-coupling scheme to reduce the number of channels Table VIl shows theR. dependence of the twa-energy
coupled in the calculation. In the following, the angular- E(®Be), the self-consistently determined,,, the three-
momentum truncation is specified b%ax-{flmax values for  cluster ground-state ener@(iBe), the A separation energy
the e and A« pairs. For exampleD-P in the ground-state defined byB,(3Be)=E(®Be)+M ,—E(}Be), and the expecta-
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TABLE VI. Energy gain for the ground statdE) and that of the self-consistes, value(Ag,,) in keV,
for the extension of the maximum angular-momentum valdgg€1max The cut-off Coulomb force with
Rc=6 fm is included.

Force VN2+SB MN+SB
AE(keV) Ag,, (keV) AE (keV) Ag,, (keV)
ny-Ny-N3 5-5-5 10-10-5 5-5-5 10-10-5 5-5-5 10-10-5 5-5-5 10-10-5
SS—D-P -954 -954 165 160 -1165 -1172 287 281
D-P—D-D -50 -50 5 5 -57 -58 7 7
D-D—-G-G -7 -7 6 6 -6 -5 7 6
G-G—1-l -0.03 -0.03 0.6 0.6 -0.1 -0.0 0.5 0.5

tion value of theA « Hamiltonian,e, ,, when the momentum tion is a good example that our self-consistent procedure of
discretization points witm;-n,-n;=10-10-5 and the partial determininge,, is reasonably functioning. It is interesting to
waves up tol-I are used in the MN plus SB model. The note that this large Coulomb effect in the three-body ground
energy increasgand the accumulated opelue to the in-  state; i.e., about 1.4 times larger than in the weystem, is
crease ofR: is also shown with the plus sign in the second characteristic for the increase B from 0 to 6 fm. For the
(and the thirg row. We find that the ground-state energy range fromR-=6 to 10 fm, just the opposite is true and the
E(3Be) increases by 1.621 MeV when we move frdR¢  energy increase in the three-body ground sta&keV) is

=0 to Rc=6 fm, which is larger than 1.127 MeV calculated gmgjier than in the twar system(>133 ke\). This is appar-
for the free twoe bound state. This seems to be natural,qyy pecause the freea relative wave function is more

f"rr]:e_l_t::e tvr‘:oi‘ suitr:s;r/stem ilr? more (I:fomprm]a?:ttlnn:f?@B: tsyrsrhin idely spread than the correlatedr relative wave function
em. The energy Increase © sell-consistently dete R the €XBe ground state. The tendency ©f, falls just into

g5, Values is 1.435 MeV, which is about 200 keV smaller he middle of th " this f
than the energy increase B(3Be), but is still larger than in the mi '€ o t. ese two extremes. By using t. Is feature, we
AT can easily estimate the full Coulomb effect in tE€Be)

the free twoer bound state by about 300 keV. This observa- . .
o bou y . ! ground state. We find that the result wia=10 fm is accu-

TABLE VII. Cut-off radius (R:) dependence of the Coulomb rate within a 1 keV error both foE(}Be) and e,,. From
energies in the twar bound state energi(®Be), the twow expec-  Table VII, the final result for the MN+SB potentials is
tation valuee,,, the three-body bound state ener@@Be), the A
separation energ&A(?\Be), and theA « expectation value, . Cal-
culations are carried out by usimg-n,-n;=10-10-5 and the partial E(iBe) =27.35-34.18 = - 6.837 MeV,
waves up tol-I. The three-range MN force and the SB force are
used with »=0.257 fm? for the h.o. width parameter of the
a-clusters. The energy increaéand the accumulated ondue to
the incrgase oR¢ is also shovx_/n with the plus sign in the secc_nnd £,,=19.46 — 18.27 = 1.181 MeV,

(and third row. The experimentalA separation energy is
BYABe)=6.71+0.04 MeV. The suffix “ext” stands for
extrapolation.

£r,=9.215-7.954=1.261 MeV,

Rc (fm) 0 6 10 14 %
E®Be) -1.260 -0.133 >0 _
+1.127 >+0.133 Cag = 0.695. (30
(>+1.260
-0.384 1.051 1.180 1.181 (1.18 L .
F2a +1.435 10129 +0.001 (1183 x _ Here we have shown the kinetic-energy and potential-energy
' (+1 5'64 (+1 565 (+1.563 contributions separately in each energy, apg is the over-
EOBe -8.543 -6.922 _'6 837 '_6 837 _6'83 et Jap amplitude of thg Be ground-state wave function with the
(xBe) ' ) : -837(=6.837ex shell-model(40) wave function.[Note that the sum of the
+1.621 +0.085 +0.000 -

&5, potential energy and twice of the, , potential energy is
(+1.708 (+1.706 (+1.708¢x  the potential energy oE(3Be), but this is not true for the

BA(1Be) 7.283 6.789  >6.837 kinetic-energy term$.We have also carried out the similar
analysis in the VN2 +SB model. The converged result of the
er, 1390 1.228 1.260 1.261(+1.26D 0y VN2+SB forces, including the cut-off Coulomb force with

Rc=14 fm, is given by
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E(iBe) =21.21-28.09=-6.879 MeV, TABLE VIIl. aaA Faddeev calculations for tHe"=0* ground
state, including the cut-off Coulomb force wiRx=10 fm. Theaa
RGM kernel is generated from the three-range MN force with
=0.946 87 andv=0.257 fm? for the h.o. width parameter of the
a-clusters. TheG-matrix based effectivé\N forces in Ref[7] are

£0,=13.64 - 12.99 = 0.649 MeV,

g7, =8.264-7.548=0.715 MeV, used for theA« interaction, by slightly modifying the short-range
repulsive part to fit the\ separation energBA(iHe)=3.120 MeV.
Cuao = 0.569. (31) Partial waves up ta .y are included imxa-A channel and those up

to €1max are included in the\a-a channel. The headinﬁ(iBe) is
If we compare this result with Eq30) for the MN force, we  the three-body ground-state energyi@e in theaaA model, s,
find that the energy gain by the more attractive VN2 force isthe twow expectation value determined self-consistently, ang
only 42 keV. This result is rather surprising, if we considerthe Aa expectation value, andy is the overlap with the shell
that the VN2 force gives a twae-bound state with energy Model(40) wave function.
E,,=—245 keV. TheA« interaction by the SB force is also

more attractive than in the MN force case due to the different FOTCe  Amaxfy EGBe) ez Eha C40)
choice of the h.o. width parametet In other words, the

ground state energy afBe is not much affected by the poor [SES -5.580 0.909 1.136 0.606
aa andA«a in_teractions, as Iong as we find a well-converged g D-P -6.681 1.122 1.250 0.683
value by takmg en(_)ug_h partl_al waves and a large number of D-D ~6.736 1133 1255  0.686
momentum discretization points. On the other hand,sthe G-G 6743 1132 1257  0.686
ande, , values for the MN force are larger than those for the ' ' ' '
VN2 force by almost 500 keV. This may be related to the

difference ofv values in the two calculations. The smaller SS -5.734  0.764  0.774  0.579
value, 0.257 fi?, in the MN force calculation means more  ND D-P -7.375 1.136 0.838 0.693
extended a-clusters than in the VN2 calculatior(v D-D -7.478 1.159 0.842 0.697
=0.275 fm?), which implies in turn that the relative wave G-G ~7.483 1157 0843  0.697
functions in the 2 and A « subsystems should be more com-

pact in the MN case. This can be confirmed by comparing

the kinetic-energy contributions iE(iBe), g9, and ey, IN SS ~5.682 0802  0.882  0.587
Egs. (30) and (31). For example, the kinetic-energy contri- ~ NF D-P -6.839 1009  0.942  0.666
bution in e,, is 13.64 MeV in the VN2 case, while in the D-D -6.901  1.021 0944  0.669
MN case it has a much larger value 19.46 MeV. The com- G-G -6.906 1.020 0944  0.669
pactness of thecaA relative wave function in the MN case

is also reflected in t_he.fact thay, i§ larger in the MN case, Ss 5620 0862 1030 0599
even though the bmdmg energy is smaller. Compgarlng the IA D-p 6.622 1.022 1112 0667
result in Eq.(30) with the experimental valu&®™(;Be) DD 6672 1031 1114  0.669
=-6.62+0.04 MeV, we can conclude that the MN+SB com- ' : ' '
bination overbinds théBe ground-state energy by 220 keV. G-G —6.677 1031 1.115 0.669
This is partly because our SB potential is of the pure Serber

type (u=1). If we chooseu=0.82 for the SB force, the com- SS -5.566 0.915 1.154 0.606
bination with the present MN force and=0.257 fm? yields B D-P -6.431 1.027 1.253 0.664
E(iBg):—6.621 MeV. In this case, th?‘w bound-state en- D-D —6.469 1.034 1.255 0.666
ergy is ~3.105 MeV. GG  -6475 1033 1256  0.666

We list the results of varioudN effective forces used by
Hiyamaet al.in Table VIII, when they are used in combina-
tion with the MN force for thewae RGM kernel. The calcu-
lations are carried out wittm;-ny,-n;=10-10-5,R-=10 fm,
and the partial waves up to ti@-wave, to obtain the con-

E=29.47-33.40=-3.926 MeV,

verged results with the accuracy of 1-2 keV. €24 =21.55-17.54=4.013 MeV,
Table IX lists aa A Faddeev calculations for the" 2x-
cited state, including the cut-off Coulomb force witR €7, =9.481-7.930=1.551 MeV,
=14 fm. The momentum discretization points witfn,-n;
=10-10-5 are employed. When the partial waves are re- Cao = 0.645. (32

stricted toD-S or S-D, the 2-state energy is located above

the a+3He threshold with the threshold energy —3.12 MeV. If we compare Eqgs(30) and (32), we find that the 3 MeV

The listing therefore starts from the 7-channel calculatiorexcitation energy of the "2state mainly comes from an in-
with D-P. We find that the result is almost converged with crease of the twar kinetic energy(2 MeV) and from the

I-l and R.=14 fm, within the accuracy of 1 keV. The final two-a potential energy1l MeV). This clearly shows the ro-
result for the 2 excited state in the MN+SB model is tational nature of the ground"Gnd excited 2 states, com-
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TABLE IX. Same as Table VIII, but for the™=2" excited state

with Rc=14 fm.
Force  Amacty .~ E(Be) 24 Era Cao)
D-P -3.797 3.987 1.528 0.643
SB D-D -3.874 4.014 1.536 0.645
G-G -3.926 4.013 1.550 0.645
I-1 -3.926 4.013 1.551 0.645
D-P -3.700 3.920 1.518 0.639
NS D-D -3.772 3.946 1.525 0.641
G-G -3.831 3.942 1.544 0.641
I-1 -3.831 3.943 1.544 0.641
D-P -4.377 4.027 1.130 0.648
ND D-D -4.518 4.071 1.134 0.651
G-G —-4.553 4.066 1.137 0.651
I-1 -4.553 4.067 1.138 0.651
D-P -3.853 3.825 1.223 0.637
NF D-D -3.938 3.851 1.226 0.639
G-G -3.981 3.849 1.236 0.639
I-1 -3.981 3.849 1.236 0.639
D-P -3.645 3.805 1.380 0.635
JA D-D -3.710 3.827 1.385 0.637
G-G -3.762 3.825 1.401 0.637
I-1 -3.762 3.826 1.402 0.637
D-P -3.460 3.775 1.507 0.632
JB D-D -3.510 3.792 1.511 0.633
G-G -3.568 3.793 1.535 0.634
I-1 -3.568 3.794 1.535 0.634

posed of the twax cluster structure with a weakly coupled
A.

PHYSICAL REVIEW C 70, 024002(2004)

TABLE X. Summary of the ground-state enerBy,(0*) and the
2* excitation energye,(2*) in MeV, calculated by solving the Fad-
deev equation for theawA system in the_S coupling scheme. The
aa RGM kernel is generated from the three-range MN force with
u=0.946 87 andy=0.257 fm? for the h.o. width parameter of the
a-clusters.

VAN Eq(0) (MeV) Ex(2°) (MeV)
Present Ref[7]
SB -6.837 - 2911
NS -6.742 -6.81 2.912
ND -7.483 -7.57 2.930
NF -6.906 -7.00 2.925
JA -6.677 -6.76 2.915
JB -6.474 -6.55 2.907
Expt -6.62+0.04 3.028)
[30,37 3.06713)

the exchange term of thea folding potential may also con-
tribute to this difference.

If we arrange the effectivdlN forces in Table X in the
order of more attractive nature, we find

ND(- 7.483 > NF(- 6.906 > SB(- 6.837

> NS(-6.742 > JA(- 6.677 > JB(- 6.479. (33

The experimental value —6.62+0.04 MeV is located between
JA and JB. However, this does not mean that the Julich po-
tentials JA and JB are the most corréd\l interactions. It is
well known that the spin-spin central terms of these Jilich
potentials are completely wrong and that they fail to repro-
duce the observed energy spectrum ofihbandf\He sys-
tems[60]. As for the Z excitation energy, all the results in
Table X are between 2.91 and 2.93 MeV. They are too small
by 110-130 keV with respect to the average value
3.04 MeV of the two resonances recently observedylrgy
spectroscopy30,3]]. Since the experimental error bars are at
most +40 keV even in théK, ) reaction[26], this is a

Table X summarizes the present results with the MN forcameaningful disagreement. It would be interesting to examine

for the aae RGM kernel. The SB result shows the overbind-

the ¢s splitting of the 5/2-3/2" states, by introducing a

ing of the?\Be ground-state energy by about 220 keV and tocsmall AN spin-orbit force predicted by our quark-model in-

small excitation energy of the*2excited state by about

130 keV. Table X also shows a comparison with the results

by Hiyamaet al. [7] for the G-matrix based effectiveAN

teraction.
In order to show that the presemntr RGM kernel gives a
better result than simplea potentials, we show in Table XI

forces. We find that their results are a little lower than oursome results ofeaA Faddeev calculations using the Ali-
results by about 70—90 keV. Since their calculation is aBodmer potential, ABd12], and the Buck, Friedrich, and
variational calculation using a smaller model space tharWheatley potential, BFW11]. In these cases, there needs to
ours, this is not a convergence problem of the variationabe no self-consistent procedure to determing. We only
calculation. A possible reason is the difference betweemse the SB potential for th&« interaction, since results with

OCM and RGM in theaa part. They usedra OCM, while

ours isaa RGM. The OCM usually gives more attractive

results than the RGM. In fact, it is well known that ®CM
usually gives a larger binding energy than the RGM for
the ground state of theadsystem[59]. A small difference in

other effectiveAN forces are easily evaluated from the above
discussion in the case of thea RGM kernel. In these
a-particle  models, we customarily use#?/M,
=10.4465 MeV fd and €=1.44 MeV fm. The momentum
discretization points wittm;-n,-n;=15-10-5 are employed.
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TABLE XI. aaA Faddeev calculations for the™=0* ground 0.7 MeV. This implies that th&wave assumption adopted
state by the Ali-Bodmer(ABd) [12] and Buck, Friedrich, and by Filikhin and Gal[34] is not valid. They used a little dif-
Wheatley(BFW) [11] aa potentials. The SB\N force is used for  ferent version of the Ali-Bodmer potentigtype (a) with
the A« interaction. The cut-off Coulomb force is included at the 125 MeV modified by 120 MeY and obtainedE(gABe)z
nucleon level withRc=10 fm. The h.o. width parameters of the _g 55 MeV in theS-wave approximation. We expect an en-

. . .
ix-clgs;efrs_zareBFassur_pEd to be=0.2;%/i/l7 f_ml iﬁBd)Mar\‘/dfn’% ergy gain of about 0.7 MeV from the higher partial waves
=0.257fm1® (BFW). The parameters o=10.4465 Me . and their result is overbound, in comparison with the experi-
and 62:.1'44 MeVfm are used. Partial waves up Aa are in- ool value, —6.62+0.04 MeV. In Table X1, we find that
cluded in theaa-A channel and those up tymax in the Aa-a o g\ otential gives a better result than the Ali-Bodmer
channel. The momentum discretization points ‘with-n,ng force, but the energy is still lower than in the MN force case
< 15-10-5 are employed. Thea bound-state enerdj(He) for the by 0.2 MeV. In this case we find that the effect of partial
SB AN force is given in the first column. : o . . : -

9 waves higher than th& wave is quite appreciable, i.e.,
—-1.5 MeV. This is of course due to the inner oscillation of

5 9
E(iHe) _)\max E(\Be) f2a Fha Ca0 the relative wave function between the tweclusters in the
tmax aa ground state. The shell-model liké0) components are
about 0.7 in amplitude, which is appreciably larger than
ABd+SB Clao~ 0.5 in the Ali-Bodmer case.
SS -6.409 0.970 -0.503 0.466
D-P -7.091 1.013 -0.532 0.497 V. SUMMARY
-3.183 D-D -7.147 1.013 -0.526 0.499
G-G -7.153 1.018 -0.518 0.498 The three-cluster Faddeev formalism using two-cluster

11 -7153 1.018 -0.517 0.49g resonating-group metho(RGM) kernels opens a way to
solve few-baryon systems interacting via quark-model
baryon-baryon interactions without spoiling essential fea-

BFW+SB tures of the RGM kernel, i.e., the non-locality, the energy
S$S  -5544 0861 1776 0.630  dependence proportional to the exchange normalization ker-
D-P -6.971 1.147 1.973 0.724 nel, and the existence of pairwise Pauli-forbidden states in
-3.066 D-D -7.038  1.155 1.979 0.728  some specific channels. In this paper, we have applied this
G-G -7.043 1.161 1.979 0.728 formalism to three-cluster systems involviagclusters, i.e.,

-l ~7.043 1.161 1.980 0.728 the 3» and aaA systems. The§e systems involye all of the
above three features for the microscopic interactions between
. . , composite particles. In particular, tlag interaction is a pro-

For the «aa Coulomb potential, ﬂle folding potential of the {4type of composite-particle interactions, in which the fully
cut-off Coulomb force with th€0s)” shell-model wave func-  microscopic RGM calculation is easy and very successful. It,
tion Is used witlRc=10 fm. The h.o. width parameter of the powever, involves a somewhat complex kernel structure
(09" a-cluster for this Gaussian folding isv  composed of three non-trivial Pauli-forbidden states, and the
=0.271 27 fm? in the ABd case and'=0.257 fm” in the  energy-dependence of the interaction is rather strong in the
BFW case. In the ABd case, thisvalue corresponds to the payli-allowed model space. In the present Faddeev formula-
Coulomb-force  parameterg=13/(2x 1.44=0.6014 fm* tjon, the Pauli-forbidden components between pairwise clus-
and thea rms radius,r,=(3/4yv)=1.44 fm. Since thisv  ters are completely eliminated from the total wave function
value is also used for the-cluster folding for theAN po-  of the three clusters. This can be achieved by introducing a
tential, theA« bound-state energE(iHe) is a little shifted special type of RGMT-matrix calculated from the two-
from the fitted experimental value —3.12 MeWhe differ-  ¢jyster RGM kernel, which satisfies tHematrix version of

ent°/My value also affects this differendeSince the en-  the orthogonality conditions to the relative motion between

ergy change is only about 0.06 MeV, we do not readjust thqyg clusters. The on-shell and half off-shell properties of the

potential parameters of theN force. In the BFW case, the = . . . .
value, 0.257 fii?, corresponds t@=14r/3=0.585 38 fm T-matrix are just the same as those of the ordingmatrix.

and the rms radius of the—cluster,raz\@/(2,8)=1.48 fm.In  This RGM T-matrix invo!ves_ a relativg energy of tvyo clus-
this case the difference of th&N bound-state energy, ters as a parameter, which is determined self-consistently by

0.054 MeV, from -3.12 MeV is solely from the different calculating the expectation value of the two-cluster Hamil-

#2/My, value. The bound-state solutions of the BFW IOoten_tonian with respect to the total wave function resulting from

tial are used for the pairwise Pauli-forbidden states. Thdh® Faddeev equation. The Faddeev equation using
elimination of the Pauli-forbidden components from the T-matrices is equivalent to the pairwise orthogonality condi-
three-body total wave function is always inspected by calcution model(OCM) of three-cluster systems, interacting via
lating their squared norm, which is of the order of 0 two-cluster RGM kernels. A nice point of this formalism is
We find that theaaA ground-state energy by the ABd that the underlying nucleon-nucleofNN) and hyperon-

potential is lower than the result of the MN force in E§0)  nucleon(YN) interactions are more directly related to the
by 0.3 MeV. Note that even in this case the energy gain fronstructure of three-cluster systems than in the models assum-
the higher partial waves than ti8wave is appreciable, i.e., ing simple two-cluster potentials.
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We have first applied the present formalism to the groundtalculating the kinetic-energy contribution in the twoex-
state of the & system by using three different types of ef- pectation value,,. The comparison of the Coulomb contri-
fective NN forces, the two-range Volkov forces, No(XEN1) butions in theaa bound stateg,, and the?\Be ground state
and No. 2(VN2), and the three-range Minnes@MN) force. ~ With respect to the change & is very useful to measure
The three-range MN force reproduces $eD- andG-wave the compactness of the twe-configurations in various en-
aa phase shifts quite well in the simeQs)“-model of thea vironments. It is confirmed that the’ @round state and the
clusters. The comparison with thee®RGM calculation has 2" exited state of{Be are well described by the contracted
shown that the present three-cluster formalism using only th&wo-a cluster structure with a weakly couplettparticle in
aa RGM kernel gives a good approximation to the micro-the dominantSwave component. In the present calculation
scopic 3» model. The difference of the ground-state energied!sing only central forces, the three-range MN force and the
predicted by these two models is less than 2 MeV. The effecBB potential with the pure-Serber character can reproduce
of the antisymmetrization among threeclusters, which is the ground-state and excitation energies;8e within an
neglected in our formulation, is attractive and is not so largeaccuracy of 100—-200 keV. The results in Rgf] based on
as long as the Pauli-allowed model space of thesgstem is  the OCM framework are also confirmed within 100 keV ac-
properly treated. It is also shown that the three-range MNeuracy. On the other hand, the simpleparticle model using
force gives a lower ground-state energy than the two-rangthe Ali-Bodmeraa potential, ABd[12], and the OCM using
VN1 and VN2 forces, resulting in a somewhat largethe deep Buck, Friedrich, and Wheatley potential, BFW
overbinding of 2—4 MeV, if the @ ground-state energy is [11], with bound-state Pauli-forbidden states give an
measured from the@threshold. overbinding of theiBe ground state by 530 and 420 keV,

The application to thé’\Be system has proved that our respectively, when the SB force is used for the interac-
three-cluster formalism is soundly extended to the system#ion. Although these energies are rather similar, the effect of
with two identical clusters, in addition to the systems of threepartial waves higher than th@wave is very different, i.e.,
identical clusters like the @ system and the triton system. 0.7 MeV in the Ali-Bodmer case and 1.5 MeV in the BFW
Here we have introduced a new effectié\ force, called case. It is natural that thea interactions which yield an
the SB force, which is made from the quark-model prediC_OSCi”atOI'y behavior of thexa relative wave functions, like
tions of the AN phase shifts by using an inversion methodour RGM kernel and the BFW potential, need more partial
based on supersymmetric quantum mechafd&s The SB  waves with a larger energy gain.
force consists of two simple two-range Gaussian potentials There are still many problems left for future studies. First
which reproduce the low-energy behavior of ﬂ% and 351 of all, the readjustment of thiS attractive part of the SBN
AN phase shifts predicted byN-3N coupled-channel RGM potential is unsatisfactory from the viewpoint of using the
calculations using the model fs§26]. Since any central and fundamental baryon-baryon interactions. The Brueckner re-
single-channel effective\N force leads to the well-known arrangement effect iRHe is fairly large even for the rather
overbinding problem of’\He by about 2 MeV[50], the at-  Stablea-cluster[50]. In this sense, there is still no consistent
tractive part of théS; AN potential is reduced by about 10% description of thes-shell andp-shell hypernuclei even at the
to reproduce the empiricak-separation energyB™ iHe) level of using effective baryon-baryon interactions. A micro-
=3.12+0.02 MeV. The odd-stat&N force is assumed to be Scopic description of the\« interaction may need a more
zero(pure Serber type In addition to this SB force, we have detailed analysis based on tGematrix theory, for which the
also used the effectivaN forces in Ref[7] for comparison.  folding formula given in Appendix B is very useful. In order
The A« interactions are generated from thesH effective to describe th@Be excited states realistica“y, we need to
forces by the fo|d|ng procedure with respect to (Be)4 h.o. introduce theA« Spin-orbit force and solve the Faddeev
wave function of thex clusters. equation in thejj-coupling scheme. The recentray spec-

In the aA Faddeev calculation, sufficient partial waves roscopy experimer{80,31 indicates a very small spin-orbit
Up 10 Ayax={1ma=6 are included both in thea and Ao SPIitting for the possible 5/2and 3/Z resonances. It is
pairs since the relative wave functions between twolnteresting to examine théS components of the quark-
a-clusters are oscillating at least in the relatige and ~ModelAN interaction, in which the antisymmetricS inter-
D-waves. The detailed analysis shows that the partial wavection (LS™) is by about a factor two larger than in the
up to theD-wave are sufficient if we do not mind a 10 kev Nijmegen models. We expect a large cancellation between
inaccuracy_ If we wish to obtain a 1 keV accuracy, we needhe Ol’dinaryLS interaction and th|$_5(_) interaction. An n-
to take into account at least up to t@ewave. This implies teresting application of the present Faddeev formalism and
that the partial wave truncation is very efficient even in thethe Aa T-matrix derived in this study is to the recent Nagara
present Faddeev formalism. The energy gain due to partig@vent[61] for §\He. For theAA interaction, we can use the
waves higher than th&wave is about 1 MeV for the VN2 coupled-channeN A-EN-33 T-matrix of the quark-model
force and 1.2 MeV for the MN force, when theae inter-  interaction, fss2. A preliminary resui1] shows that fss2 is
actions are used in combination with the SB force forse  at present the only model which can reproduce an appropri-
interaction. The Coulomb effect between the teelusters  ate strength of thé\ A interaction,ABY{=1.01+0.20 MeV,
is included by a cut-off Coulomb force at the nucleon level.deduced from the Nagara event. In a separate gaa@grwe
The cut-off radiusR-=10-14 fm seems to be sufficient for have also reported another application of the present three-
a 1-2 keV accuracy. In the present formalism, the structureluster Faddeev formalism to the hypertriton system, in
change of twoa-clusters insidéBe is clearly identified by ~ which the quark-mode¥N andY Ninteractions are explicitly
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used in theANN andXNN coupled-channel Faddeev formal- P12 ¥(Ps,03; 123 = ¢~ p3,03; 213),
ism. In this system, a complete Pauli-forbidden state at the
guark level exists in thé\N-2N subsystem.

P2 ¥(P1,01; 231 = (- p,02;132),

ACKNOWLEDGMENTS Pot(p2,02;312) = (= p1,01;32). (A2)

This work was supported by Grants-in-Aid for Scientific Note that the momentum suffix in p,, q,, and the sign of
ResearchC) from the Japan Society for the Promotion of p,, etc., are uniquely specified by the sequence of 123. For
Science(JSPS (Nos. 15540270, 15540284, and 15540R92 example, (p,,0,|8) in Eq. (4) actually implies
Y.F. wishes to thank the FNRS foundation of Belgium for {p,,0,;312 8). In the following, we always use an abbrevi-
making his visit to the Free University of Brussels possibleated notation,s=(ps,qs;123), in the standard coordinate
during the summer, 2002. systemy=3. The total wave functiortV(qgs,qs; 123, in Eq.

(2) is then compactly expressed as

— 2 2
APPENDIX A: REARRANGEMENT FACTORS OF W=yt P(lz)P<123) ¢+ P(123) ®- (A3)
THREE-CLUSTER SYSTEMS WITH TWO
IDENTICAL PARTICLES If we write the Faddeev equation in terms gfand ¢, it
reads

In this Appendix, we give a brief comment on the defini- -
tion of the rearrangement factors in the Dirac notation for = GoT(1£P1)Pu2°@,
general three-body systems with two identical particles or
clusters. The incorporation of spin-isospin degrees of free-
dom is essential for further applications to the hypertriton @=GoT[Pu2gh* Pagel, (A4)
system[22] and theAA«a system[41]. When one uses the

Dirac notation, it is important to fix a coordinate system of with T=T,, and T=P(123>T13P(123>_l, whereT;, and T, are
the representation. We choose the standard system of thg, two-bodyT-matrices in the three-body space.

Jacobi coordinates withy=3, and introduce the Jacobi coor- e definition of the rearrangement factors in the Dirac
dinates in the momentum spagesp; andq=ds. The other  qtation is based on the assumption

Jacobi coordinatep;, q;, etc., are similarly defined. For an
arbitrary functioni(p,q;123 in y=3, the effect of the cy-

. 2 — 2 . - .
clic permutationP(;,4 of the symmetric groufS; is (Pa.03 123P12370) = Pirog ¢(Pa,0si 123 = ¢(P,02;312)

=fdp’dq’6(p’ —p2)8q’ — )

(a7)

P29 ¥(P2,02:312) = P(155¢(P1,01; 23D = ¢(ps, 0s: 123), X Pi3h%e(p',q';123), (A5)
(A1)

o7)

where the functionp(ps,qsz; 123 is ¢ in Eq. (A3) and P2123)
operates only on the spin-isospin variablespb’,q’; 123).
With this ¢ in the =2 channel in mind, the standard proce-
where 123 ing(p,q;123 stands for the spin-isospin vari- dure of the partial wave decomposition gives the following
ables. For the transpositid?y,,, Eq. (1) yields definition for the first-type rearrangement factpg(q,q’ ; X):

(p,a, P(123)2|p’,q’,,8)3_2= S| dx— % 101+2 gyﬁ(q!q/ iX) = E dpdgdp’dg’(v|p,d;123

1f1 S(p—py) p’ - po)
2)4 p p 123

’ m, I~ ms ’ (o7) 2/ A7
><6<p+q +m2+mlq>5<p g m3+le)P(123> (0,9';123B). (A6)

Here,p; andp, are given in Eq(5c) with a general mass factaf=(4ms/my). With this mass modification, E@6) is valid
with a more complete reduced rearrangement factor
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(- DG (STTAPELASTT:A) (LS-coupling
);g\ik: Noso L €os , (A7)
CD 2| % 0|l S 2 |G, ST MPELISTEL: A (ij-coupling.
L S Jj|L s J
Here the square bracket implies the unitary form of the®efficients and the quantum numbers are specified by
[ =[[(MOLSPI,TTY, 18 = |[(£1€2)LSPI,;TT)  (LS-coupling,
{Iw =[[AsDI ()] NI Ty, B) = [[(€18)i1(€25)]2133;TT)  (jj-coupling. A9

The angular-momentum factof%\lé‘)i’f{';lez) with A;=0~X\, \;=0~ ¢, are given by

MM KL AAKL { @+ D)1 (20, + 1) }1/2

1 - - SO0 0 ’ ’ ’ !
Gilitt.e) = ClE S e B @ @D @D Wile% (N,000]FO)(N50€,0|f" 0)(kOX ;0| f' 0)(kOA 0] O)

foL oa)f LA F L
X , , (A9)
NN O € N (N f oK

where A=\2\+1, etc. and\,=A-\;, N,=€;—\]. In the  With respect to the interchange betwegng, 8 andp’, ¢,
spin-isospin reduced matrix elements of A7), the per- /B'» sincem;=m.

2
mutation operatoPE‘szTg does not change the total spin and
isospin valuesS andTT,. APPENDIX B: A USEFUL FORMULA FOR THE Aa
The other types of rearrangement factors are obtained in a BORN KERNEL
similar way. First, the symmetry of the matrix elements
yields The general procedure to calculate Born kernels of the
o . ) s-shell clusters, developed in R¢62], can also be used to
(P,4,8Pa23lp’,a", V2-3=(P",q", ¥IP (125 1P 4. B)3-2- calculate theAa Born kernel
(A10)
5
The rearrangement factor for the matrix elem&pP ,3|¢) V(a5 Gp) = (€97 V]&r) = (9 g, | Ulj|eiqir§A¢a>’
j:

needs a little care, since the mass assignment of the three
particles is made in the standard Jacobi coordingte3. We
first use P(23):P(123)P(12)P(123)'1 and write the matrix ele-

ment as

(B1)

where ¢, is the internal wave function of the cluster,&, is
the spin wave function of thd particle andv,; is an effec-
(@|Pasley =2 | dpadase* (pa,02;312 (- py,Gy;32D). tive AN interaction. The essential part of this method lies in
123 the correct treatment of the c.m. motion which is handled by
(Al11) the procedure given in Ref63]. This method makes it pos-
, ) ) sible to deal with the most general form of thd interac-
The corresponding rearrangement factor in the Dirac notagap, \ith non-static effects like th&-matrix AN interaction.

tion is given by In this method,V(q,q;) in Eq. (B1) is calculated from an

(P, 0, BP23|P .0 B V2ot integral form of the GCM kernel through
5
= dpdgdp’dg’(8|p.q;123 . o

2, ) oPUaR (B0 Vicha) = (XIS €6 S vy - 8968

j=2
AL ' M 3/2
><5<p+q + ml+m3Q)5(p +q+ m2+m3q ) _ (%) e(1/47><qf2+qi2)Jdadbe‘iqf'a”qi'bG(a,b).
v
XPE3(p',§';1238"), (A12) -

from which the results in Eq$8) and(9) are easily obtained.
Note that the rearrangement factor E412) is symmetric  with
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Y ¥ o 2 3/2 X
Gla,b) = ( G) f dR (Y (a) lr//a(o)| Vspachf,qi) = g B3k (_> f dpe(2/3vP
em 3y
5 (+4 { .3
><j§2011|¢A(R+b)¢a(R)>. (B3) X U k’4(§+1)q‘§+_1P,P+Zq ,

(B6)

wherek=q;—q; andq=(q;+q;)/2.

Here, ye=(4+)v, y=4{vl(4+ ith (=M, /My, and g ;e . ,
Ye=(4+0y, y=4cv/(4+0) with {=My/My For a simple local Gaussian interaction, we find

YA (R) and 4,(R) are the h.o. shell model wave functions of

A ande, centered aR, with the width parameterév and v, ) (77)3’2 p{ kz} 2
. . s uk,q;P)=|—] expy—-— foru(r)=e ",

respectively. First we calculate spatial integrals for the spa- K Ak

tial partu in v,;=uyj0y;. These four integrals with=2-5 are

all equal because of the antisymmetric property of the )\ 32 17-1_)\?

cluster. We need to calculate spatial integrals dieru(x; k,q;P) = (‘) exp{ (q+ 20+ 1P) }

—X,) andu=u(x;—Xx,)P,, which we call the direct term and

the exchange term, respectively. It is important to npte that for u(r) = e"‘rzPr. (B7)

the space exchange operatey, operates only on the single-

particle coordinateg; andx,, anddoes notexchange thé\  Then theP integral is carried out easily and we obtain

and N masses. The procedure to interchange these masses 7\372 1/3 1

M, andMy simultaneously like in Ref.7] leads to an erro- V(g q) = (—) exp) — —(— + —)kZ

neous expressiofsee Eq(A.1) of [7]], which is apparently

wrong since the RGM  kerneka(r—a)éy ¢,/ v 8

4\8v «

-b)ér ¢, should not involve the mass dependence. The cor- for u(r) =e™",
rect expression is the one in which one 9dig=M , in their 3/
Eq.(A.1) [see Eq(B8) below]. The most general form of the Vo(Gr, q) = (877 1 ) X — ikz
two-body AN matrix elements for the translationally invari- e 3 v+ 32v
antu is parametrized as
-2 2t for u(r)=e’P,. (B8)
T 24y gq N a
(p1po|ulp, P, ) = 35(P PHuk’,q";P), (B4) If we further incorporate the spin-isospin factors, the full
(2m) V(qs,q;) is given by
V(dr,Gi) = XaVa(Qr, o) + XeVeldr, G0 s (B9)
with p=(py={po)/(£+1), P=p,+p; (alsop’, PTTOr Py, P2).  ith the spin-isospin factors defined by
and k' =p-p’, q'=(p+p’)/2. For the matrix element Eq. 5 §
B4), the spatial part of the GCM kernel in E@B3) is cal- W]
f:ulzited to Ee P ®3) {Xe} <§AXa|2 {wij }|§AXa>- (B10)
1

Here x, is the spin-isospin wave function of thecluster.

1 4+ 7\32 The partial wave decomposition of E@8) is given b
GSpac‘fa,b)Zﬁ(—éu) Jdek’dq’u(k’,q’;P) P P ®8)is g y
(2m)°v°\ 3¢ )32 13 1\ ,
V?(Qf,Qi;K)z = exp -~ o+ )@ +qg°)
1¢+4 , 1¢+1( , 1, 4\8v «
X exp) - — Pe-— q-+-k’
6rvi+1 2v 4 i
: x.f(( )qfq.>,
+i(a-b) -(q’+iP)+i—(a+b) -k’}.
[+1 2
VE(ar, G5 k) = —+§ " @
(BS) CHRHED g 8v 24p+ :%K f
2 (13 25 1
If we use Eq(B5) in Eq. (B2), we can perform the integrals +q%) (i 5 24v+ pAEIE (B11)

overa and b and obtain two delta functions. Thus we can
perform the integrals ovek’ andq’ and obtain a compact where i,(x)=ij,(-ix) is the spherical Bessel function of
formula imaginary argument.
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