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Cross sections for neutron radiative capture multiplied by the relative velocity can be expressed as a Taylor
expansion in powers of the relative energy. The coefficients of this expansion are expressed in the potential
model as integrals involving solutions of the radial Schrödinger equation and of its inhomogeneous energy
derivatives calculated at zero energy. Similarities and differences with charged-particle capture are emphasized.
The 12Csn,gd13C capture reaction is treated as an example. The coefficients of the Taylor expansion lead to
simple parametrizations of the experimental partial cross sections for neutron capture to each13C bound state.
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I. INTRODUCTION

In astrophysics, the determination of reaction rates re-
quires accurate values of radiative-capture cross sections
down to very low energies[1–3]. Extrapolating a model to
those energies and even to zero energy may lead to inaccu-
racies because the wave functions describing the initial scat-
tering states of the system become very small. This problem
can be circumvented by calculating a Taylor expansion near
zero energy of a quantity related to the cross section but
which does not vanish at zero energy.

This procedure has been applied in Ref.[4] for radiative-
capture reactions between charged particles. A Taylor expan-
sion of the astrophysicalS factor has been derived in the
potential model. The quantitiesSs0d, S8s0d, S9s0d, . . . are
directly obtained from a calculation of the scattering wave
function and of its energy derivatives, at zero energy.

A similar expansion for neutron radiative capture is not
available, probably because numerical extrapolations are less
difficult in a case without a Coulomb barrier. Such an expan-
sion is, however, useful as it reveals the importance of the
different physical ingredients near zero energy. Also it may
simplify cross sections parametrizations, increase their accu-
racy, and allow an optimization of the selection of energies
where experiments should be performed. Its derivation is the
main purpose of this paper.

A Taylor expansion is shown to exist forsv,

sv ~ Els1 + s1E + s2E
2 + . . . d, s1d

wheressEd is a partial capture cross section to a given bound
state at relative energyE, v is the initial relative velocity, and
l is the smallest relevant orbital momentum of the initial
scattering state. The coefficients of this Taylor expansion are
derived by a simple direct calculation. This expansion is ex-
pressed in a notation[5] very close to that employed in the
Coulomb case[4] in order to emphasize similarities in the
treatment. Nevertheless the low-energy behavior is very dif-
ferent. The natural variable for expansion(1) is the energyE
and not its square rootÎE as rather strangely used in Ref.
[1].

The 12Csn,gd13C capture reaction has been studied ex-
perimentally in detail not only at thermal energy[6,7] but

also for neutron energies between 21 and 550 keV[8–10].
The results reveal a strong deviation from a 1/v law, which
has been discussed by several authors in the potential model
[11–13] and in the microscopic cluster model[14]. The
present approach allows clarifying the reasons for the devia-
tion from the 1/v law. As in a similar study of proton capture
by 7Be [15,16], it also provides a better physical understand-
ing of the most relevant quantities at low energies. Expan-
sion (1) can be calculated for each bound state in the case of
the 12Csn,gd13C capture reaction. The obtained model coef-
ficientss1 ands2 are then used together with adjusted spec-
troscopic factors to determine a simple parametrization of
the different experimental partial capture cross sections.

In Sec. II, the formula for the cross section in the potential
model is recalled and its low-energy dependence is studied.
In Sec. III, the coefficients of the effective-range expansion
and of the Taylor expansion(1) are determined. The proce-
dure is illustrated with the12Csn,gd13C reaction in Sec. IV.
Concluding remarks are presented in Sec. V.

II. CROSS SECTION NEAR ZERO ENERGY

A nucleus with massA1=A−1 and chargeZ captures a
neutron by emitting a photon with wave numberkg. The
energy of the final bound state with respect to the elastic
threshold is denoted asEB. Let I1 andI2=1/2 be therespec-
tive spins of the nucleus and the neutron andI be the total
spin. In the potential model,I is both the channel spin of the
scattering wave function and the total intrinsic spin of the
final nucleus. Letl i and l f be the initial and final orbital
angular momenta for the relative motions of the neutron-
nucleus system andJi and Jf be the initial and final total
angular momenta resulting from the coupling with the total
spin I.

The radiative-capture cross section in the potential model
is given for example in Ref.[3]. For an electric transition of
multipolarity l, it reads

sElsEd = asc/vdNElkg
2l+1fĨsEdg2, s2d

wherea is the fine structure constant andv is the relative
velocity of the particles. In practice, this expression is mul-
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tiplied by a spectroscopic factor for each component of the
final state and summed over initial or final angular momenta.
Since we are dealing here with low-energy dependences,
which may vary from one transition to another, these sum-
mations are not performed and spectroscopic factors are not
introduced for the moment.

In Eq. (2), the normalization factor forEl neutron capture
is given by

NEl = 8p
Z2

A2l

sl + 1ds2l + 1d
ls2l + 1d ! ! 2

3
s2Ji + 1ds2Jf + 1ds2l i + 1ds2l f + 1d

2s2I1 + 1d

3Sl f l l i
0 0 0

D2HJf l f I

l i Ji l
J2

. s3d

The photon wave numberkg is related to the initial energyE
through

kg = suEBu + Ed/"c. s4d

The matrix elementĨsEd is given by the one-dimensional
integral

ĨsEd =E
0

`

ul f
srdrlũl i

sE,rddr, s5d

where ũl i
sE,rd; ũl iIJi

sE,rd and ul f
srd;ul fIJf

srd are, respec-
tively, the initial and final radial wave functions. These wave
functions are solutions of the Schrödinger equation

Hlul = Eul , s6d

with respective energiesE and EB. In Eq. (6), the Hamil-
tonian reads

Hl = −
"2

2m
F d2

dr2 −
lsl + 1d

r2 G + Vsrd, s7d

where m is the reduced mass of the system andV is a
neutron-nucleus interaction that may depend onl, I, andJ.
Equations(2) and (5) require a definition of the normaliza-
tion of ũl i

given here by

ũlsE,rd →
r→`

rfcosdlsEd j lskrd + sin dlsEdnlskrdg, s8d

where j l andnl are spherical Bessel functions[17] anddl is
the phase shift.

When E tends towards zero, the regular functionj lskrd
tends to zero forl .0 while the irregular functionnlskrd
tends to infinity[17]. Therefore, rescaled functions are de-
fined [5] as

FlsE,rd = k−lr j lskrd s9d

and

GlsE,rd = kl+1rnlskrd s10d

for which the same notation is used as for rescaled Coulomb
functions in Ref.[4]. The advantage ofFl andGl is that they
have a finite limit whenE→0. From the properties of the

spherical Bessel functions[17], one deduces their Wronskian
at any energy

WhGl,Flj = 1, s11d

whereWhg, fj=gsdf /drd− fsdg/drd. In Eqs.(9) and(10), the
rescaled Bessel functions directly depend on the energyE. In
the following, primes designate derivatives with respect to
energy. For example, one has

Fl8sE,rd =
]

] E
FlsE,rd, Fl9sE,rd =

]2

] E2FlsE,rd s12d

and similar expressions for other functions.
Let me introduce the rescaled partial wave function

ulsE,rd = ũlsE,rd/fklcosdlsEdg. s13d

As shown hereafter, this normalization ensures thatul has a
finite limit when E tends towards zero[5]. With Eqs.
(8)–(10), the asymptotic form of the radial wave function
becomes

ulsE,rd →
r→`

FlsE,rd + DlsEdGlsE,rd s14d

with

DlsEd = k−2l−1tan dlsEd. s15d

Since its asymptotic form(14) remains finite atE=0, ulsE,rd
does not vanish whenE tends to zero. Since the phase shiftdl
tends towards zero ask2l+1, function DlsEd does not vanish
either and is given by Eq.(14) as

DlsEd = − lim
r→`

WhFl,ulj = −
2m

"2E
0

`

FlsE,rdVsrdulsE,rddr.

s16d

Now an “S factor” for neutron capture from a given par-
tial wave l is introduced as

SsEd = k−2lvssEd. s17d

It generalizes to an arbitrary partial wave the quantity with
the same notation introduced in Ref.[1]. From Eqs.(2), (5),
(13), and(17), one obtains

SElsEd = acNElkg
2l+1cos2dlsEdfIsEdg2, s18d

where

IsEd =E
0

`

ul f
srdrl uli

sE,rddr. s19d

These expressions have a nonvanishing finite limit whenE
tends towards zero.

In the charged case, the factor cos2dl in Eq. (18) can be
replaced by unity when a Taylor expansion is performed[4].
Indeed, because of the Coulomb penetration factor, all its
derivatives vanish atE=0.
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III. PROPERTIES AT LOW ENERGY

A. Effective-range expansion

The effective-range expansion[18,19] for an arbitrary
partial wave[20] is given by

1

DlsEd
= −

1

al
+

1

2
r lk

2 − Plrl
3k4 + Osk6d, s20d

where notation(15) is used andal, r l, andPl are the scatter-
ing length, effective range, and shape parameter, respec-
tively.

By performing the Taylor expansion of the left-hand side
of Eq. (20), one obtains the scattering length

al = − Dls0d, s21d

the effective range

r l = −
"2

mal
2Dl8s0d, s22d

and the shape parameterPl

Pl =
al

4r l
F1 +S"2

m
D2Dl9s0d

2r l
2al

3G . s23d

The low-energy behavior of factor cos2dl in Eq. (18) is
needed below. Forl .0, one has

cos2 dl = 1 +OsE2l+1d, s24d

i.e., no contribution up toE2. On the contrary, forl =0, one
has

cos2 dl = 1 −
2ma0

2

"2 E + S2ma0
2

"2 D2S1 −
r0

a0
DE2 + OsE3d.

s25d

This will introduce a difference between thes wave and
other waves, which has no equivalent in the charged case.

B. Expansion ofS„E…
The Taylor expansion of theS factor near zero energy can

be written as

SsEd < Ss0ds1 + s1E + s2E
2d. s26d

From Eqs.(18), (19), (24), and(25), one obtains

Ss0d = acNElsuEBu/"cd2l+1fIs0dg2, s27d

with the integral

Is0d =E
0

`

ul f
srdrl uli

0srddr. s28d

Here and in the following, the superscript 0 indicates the
limiting value for E tending towards zero. The radial wave
function ul

0srd;uls0,rd is a solution of the Schrödinger
equation at zero energy,

Hlul
0 = 0, s29d

with the boundary conditionsul
0s0d=0 and

ul
0srd →

r→`
Fl

0srd + Dls0dGl
0srd, s30d

whereFl
0 andGl

0 are the zero-energy limits ofFl andGl (see
the Appendix). The functionul

0 can be normalized by impos-
ing the Wronskian limit

WhGl
0,ul

0j →
r→`

1. s31d

Using Eqs.(11), (16), and (A1), one obtains the scattering
length (21)

al =
2m

"2

1

s2l + 1d ! !
E

0

`

r l+1Vsrdul
0srddr. s32d

The first-order coefficients1 in Eq. (26) is obtained by
differentiating Eq.(18) with respect toE [4], yielding

s1 =
S8s0d
Ss0d

=
2l + 1

uEBu
+

2I8s0d
Is0d

− dl0
2ma0

2

"2 , s33d

with the energy derivative of integral(19) given by

I8s0d =E
0

`

ul f
srdrl uli

80srddr. s34d

The energy derivativeul8
0 of the radial wave function at zero

energy is a solution of the derivative of the Schrödinger
equation(6) at the limit E→0, i.e.,

Hlul8
0 = ul

0. s35d

The required solution of this inhomogeneous differential
equation verifiesul8

0s0d=0. Its asymptotic form is given by
the energy derivative of Eq.(14) at the limit E→0 as

ul8
0srd →

r→`
Fl8

0srd + Dls0dGl8
0srd + Dl8s0dGl

0srd, s36d

whereFl8
0srd and Gl8

0srd are given by Eqs.(A1) and (A2),
respectively. In this expression,Dl8s0d is still unknown.

A solution of Eq. (35) vanishing at the origin may still
differ from ul8

0 by an arbitrary amount of solutionul
0 of the

homogeneous Schrödinger equation(29) at zero energy. It
can be eliminated by imposing the Wronskian limit

WhGl
0,ul8

0 − Fl8
0 − Dls0dGl8

0j →
r→`

0 s37d

obtained from Eqs.(36) and (11) [4]. The coefficientDl8s0d
and the effective ranger l can then be calculated from Eqs.
(16) and (22).

The last term in Eq.(33) presents an interesting difference
with respect to the corresponding expression in the Coulomb
case[Eq. (52) of Ref. [4]]. It occurs only for thes wave and
takes its origin from the cos2 d0 factor in Eq.(18). It is due to
the fact that thed0 phase shift vanishes proportionally tok in
neutron scattering at low energies.

The second coefficients2 in the Taylor expansion(26)
reads
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s2 =
S9s0d
2Ss0d

=
ls2l + 1d

EB
2 +

2s2l + 1d
uEBu

I8s0d
Is0d

+
I9s0d
Is0d

+ F I8s0d
Is0d G2

− dl0
2ma0

2

"2 Ss1 +
2ma0r0

"2 D , s38d

with the second energy derivative of the integral given by

I9s0d =E
0

`

ul f
srdrl uli

90srddr. s39d

The second derivativeul9
0 can be determined by differentiat-

ing Eq. (6) twice with respect to energy and by taking the
limit E→0, i.e.,

Hlul9
0 = 2ul8

0, s40d

with the boundary conditionul9
0s0d=0. Its asymptotic form is

fixed by the second energy derivative of Eq.(14),

ul9
0srd →

r→`
Fl9

0srd + Dls0dGl9
0srd + 2Dl8s0dGl8

0srd + Dl9s0dGl
0srd,

s41d

whereFl9
0srd and Gl9

0srd are given by Eqs.(A1) and (A2),
respectively. Again a solution of the inhomogeneous equa-
tion (40) vanishing at the origin may contain an arbitrary
amount oful

0, which can be eliminated by imposing the con-
dition

WhGl
0,ul9

0 − Fl9
0 − Dls0dGl9

0 − 2Dl8s0dGl8
0j →

r→`
0 s42d

obtained from Eqs.(41) and (11) [4]. The shape parameter
can be obtained from Eqs.(23) and(16). The last term in Eq.
(38) for the s wave also takes its origin from the cos2 d0
factor in Eq.(18).

IV. 12C„n ,g…13C CAPTURE REACTION

The 12Csn,gd13C capture reaction is a perfect example
illustrating the interest of the present expansion. Indeed, ex-
perimental data exist from thermal energy[6,7] up to a neu-
tron energy of 0.55 MeV[8–10] for all 13C bound states. In
the following, energies are in MeV and lengths in fm.

In order to derive values of the parameters in expansion
(26), I choose a simple Woods-Saxon potential

Vsrd = −
V0 + 5.5L ·S

1 + expfsr − 2.86d/0.65g
. s43d

Its range and diffuseness are adopted from Refs.[10,13]. The
spin-orbit strength of 5.5 MeV is adjusted on thed3/2
-d5/2 energy difference. The depthV0 of the central part is
adjusted for each bound-state energy. The obtained values
are given in Table I.

The corresponding scattering lengthsalJ and effective
rangesr lJ obtained with Eqs.(21) and(22), respectively, are
also displayed. Thes-wave scattering length and effective
range are in reasonable agreement with the respective experi-
mental values 6.14 and 3.42 fm[21]. It is interesting to note
that the effective range is well fixed by the binding energies

and scattering lengths. Indeed, expansion(20) is valid for the
imaginary valuek= iklJ, where klJ=s2muElJu /"2d1/2, corre-
sponding to a bound state for which cotdlJ= i. To the extent
that terms beyondk2 are negligible in the right-hand side of
Eq. (20), the effective ranges are approximately given by the
generalized Schwinger relation[18,19,22]

r lJ8 < −
2

klJ
2 F 1

alJ
+ s− 1dl+1klJ

2l+1G . s44d

The valuesr lJ8 deduced from Eq.(44) are given in the last
column of Table I. They reproduce fairly well the exact val-
ues. The experimental scattering length leads to an effective
range of 3.02 fm.

The present single-particle model is not able to describe
the p3/2 bound state. However, in order to study it together
with the other bound states, aV0 value is fitted to the experi-
mental energy for that case too. It is displayed in the last row
of Table I. Since it is used for a bound state only, its scatter-
ing properties are not necessary.

The coefficients of expansion(26) derived from Eqs.(27),
(33), and(38) with the potentials of Table I forE1 transitions
are displayed in Table II. The zero-energy wave functions are
calculated with the Numerov method[23] as explained in
Ref. [4]. Coefficients1 induces a deviation from av2l i−1 law.
One observes that it is often negative in Table II. Only in the
s-wave capture to the 3/2− state is the 1/v law valid in the
present model.

Experimental data can be fitted with expansion(26) to
determine parametersSs0d, s1, ands2. This approach is fea-
sible but hindered by large error bars on the data. Therefore
I make the following assumption: the coefficientss1 and s2
are only weakly model dependent. In the following, their
unchanged model values will be used in fits of the data while
the Ss0d values will be adjusted to the data. The resulting
correcting factorsSexpts0d /Ss0d are given in the last column
of Table II.

The capture to the 1/2− ground state is presented in Fig.
1. The parameterSs0d is reduced by a factor 0.88(see Table
II ) in order to fit the accurate experimental value
2.38±0.05 mb at thermal energy[6,7], which is indistin-
guishable fromE=0 with the linear energy scale in Fig. 1.

TABLE I. EnergiesElJ (in MeV), potential depthsV0 (in MeV),
scattering lengthsalJ (in fm2l+1), and effective rangesr lJ (in
fm−2l+1). The approximate effective rangesr lJ8 in the last column are
obtained with Eq.(44). The p3/2 state in parentheses is forbidden.
A potential binding this state at the correct energy is shown in the
last row.

lJ ElJ V0 alJ rlJ r lJ8

s1/2 −1.86 57.6 6.43 3.56 3.19

p3/2 s−9.27d 45.1 8.85 −1.71 −1.83

p1/2 −4.96 45.1 22.75 −1.16 −1.34

d5/2 −1.10 56.15 159.9 −0.32 −0.25

d3/2 +3.3 56.15 −57.2 −0.065

p3/2 −1.28 28.35
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The resultings wave approximation involvings1 and s2 is
displayed as a dashed line. In order to check the validity of
the Taylor expansion, it is compared with the exact result
obtained from Eq.(2) also multiplied by the correcting factor
Sexpts0d /Ss0d, represented as a dotted line. The second-
degree polynomial(26) is quite accurate. However, the re-
sulting curve is far from the data. Thed-wave term
k4Sd3/2→p1/2sEd must be added. It would need be multiplied
by a factor 0.64 in order to fit the data point atE
=0.508 MeV sEn=0.55 MeVd. However, I use instead the
same factor as for the other partial wave. The totalS factor

S1/2 − sEd = 0.88fSs1/2→p1/2sEd + k4Sd3/2→p1/2sEdg s45d

is represented as a full line in Fig. 1. It agrees with the data
over the whole energy range. The exact calculation is almost
identical.

The correcting factor 0.88 can be interpreted as a spectro-
scopic factor for the ground state[24]. This value is consis-
tent with the experimental result 0.84±0.04 of Ref.[25]. The
same spectroscopic factor is thus employed in Eq.(45) for
the transition from thed state. Unless thes2=0.70 value for
thes wave is very incorrect, the calculation indicates that the
cross section at 0.509 MeV should be close to the upper limit
of the error bar.

The factorS1/2+ for the capture to the 1/2+ excited state is
presented in Fig. 2. Both initial componentsp1/2 andp3/2
are summed. The parameterSs0d is reduced by a factor 0.95
in order to fit the experimental point at 0.509 MeV. The
resultings wave approximation involvings1 and s2 is dis-
played as a full line. It closely follows the trends of the data,
indicating thats1 ands2 are reasonable. The exact result ob-
tained from Eq.(2), also multiplied by the correcting factor
0.95, is represented as a dotted line and is not very different
from its approximation. The second-degree polynomial(26)
is thus quite accurate. The obtained spectroscopic factor is in
good agreement with a previous determination[26], although
Eq. (32) does not seem to support a derivation of the spec-
troscopic factor based on the scattering length.

Interestingly, the present parametrization cannot explain
the thermal cross section 5.6±0.4mb to the 1/2+ state[6,7].
It underestimates this value by several orders of magnitude.
This thermal cross section is thus clear evidence forM1
capture. Unfortunately, theM1 capture cross section van-
ishes exactly in the potential model because the initial and
final wave functions in the integralIsEd (without therl fac-
tor) are orthogonal as they both belong to thes wave. This
M1 capture represents an interesting challenge for more
elaborate models. Strikingly it would also vanish in a single-
channel microscopic model[27].

The procedure for the 3/2− excited state is very close to
that for the ground state(see Fig. 3) but the use of the po-

TABLE II. Coefficients Ss0d (in fm2l+3s−1), s1 (in MeV−1), and s2 (in MeV−2) of expansion(26) for
different transitions. The numbers in the last column are fitted to experiment as explained in the text.

l fJf l iJi Ss0d s1 s2 Sexpts0d /Ss0d

p1/2 s1/2 5.9031017 −1.10 0.70 0.88

d3/2 3.9131021 0.13 0.17 0.88

s1/2 p3/2 1.0931021 −0.77 0.52 0.95

p1/2 4.7431020 −1.02 0.97 0.95

p3/2 s1/2 1.6731018 −0.012 0.026 0.15

d5/2 4.7231021 −0.99 0.55 1.0

d3/2 7.8331020 −0.60 0.48 1.0

d5/2 p3/2 1.2931020 −0.27 0.12 0.39

FIG. 1. S factor for radiative capture to the 1/2− ground state of
13C: parametrization (26) for s-wave capture (dashed line),
potential-model calculation fors-wave capture(dotted line), and
parametrization(45) for s and d wave capture(full line). Experi-
mental data are from Refs.[6–10].

FIG. 2. S factor for radiative capture to the 1/2+ state of13C:
parametrization(26) for p1/2 andp3/2 wave capture(full line) and
potential-model calculation(dotted line). Experimental data are
from Refs.[8–10].
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tential model is here rather artificial. The initials component
fitted to the experimental thermal cross section
1.14±0.02 mb[6,7] is represented as a dashed line. The cor-
recting factor 0.15 is compatible with spectroscopic factors
for that state[28]. The initiald5/2 andd3/2 components are
added to fit the data point at 0.509 MeV. Here no multipli-
cative factor is needed. The factorS3/2− for the capture to the
3/2− excited state is then obtained with a formula similar to
Eq. (45) but with different factors for both terms. An exact
calculation with the same multiplicative factors(dotted line)
is very close to the present approximation. The use of such
different correcting factors cannot easily be explained but
may reflect the fact that the coefficients2 of the s wave
should be much larger.

Finally the factorS5/2+ for capture to the 5/2+ excited
state is presented in Fig. 4. The correcting factor fitted at
0.509 MeV is 0.39, a value rather different from spectro-
scopic factors for that state[28]. The exact calculation shows
no difference. Here one can suspect that the theoretical val-
ues ofs1 ands2 are inaccurate. The data seem to indicate that
the slopes1 should be negative, which would lead to a larger
value ofSexpts0d /Ss0d. However, the error bars are too large
to lead to definite conclusions.

By summing the capture contributions to the different
bound states,

sv < S1/2−sEd + k2S1/2+sEd + S3/2−sEd + k2S5/2+sEd, s46d

one obtains the parametrization

sv < 7.703 1017s1 + 88.1E − 50.0E2 + 44.7E3dfm3 s−1.

s47d

This expression is limited at order 3 for simplicity. It is com-
pared with experimental data in Fig. 5. The fact that the 1/v
law is not valid here[8,9] is obvious in this figure. As al-
ready noted in Refs.[11–14], the large coefficient of theE
term in Eq.(47) is mostly due to the importance ofp-wave
capture to the 1/2+ state.

By averaging expression(47) with a Maxwellian distribu-
tion [1,2], one obtains the reaction rate

NAksvl < 463s1 + 11.4T9 − 1.39T9
2 + 0.37T9

3dcm3 mol−1 s−1.

s48d

This rate slightly oscillates around the rate proposed in Ref.
[10] with deviations reaching +4% nearT9=0.2 and −7%
nearT9=2.5.

V. CONCLUSIONS

The coefficients of the Taylor expansion ofSsEd
=k−2lvssEd are directly calculated at zero energy. The first
terms of this expansion are obtained by solving the
Schrödinger equation and its energy derivatives atE=0. The
results are accurate and can be used to correctly extrapolate
standard calculations performed at positive energies.

The method is applied here to the simple potential model
but the main ingredients of its algorithm, i.e., the properties
of wave functions at zero energy, can straightforwardly be
extended to more elaborate models such as microscopic
models.

A parametrization with second-order polynomials is valid
over an energy range covering the domain of astrophysical
interest. With only three coefficients in the parametrization,
experimental data at three energies, e.g., thermal energy and

FIG. 3. S factor for radiative capture to the 3/2− state of13C:
parametrization(26) for s-wave capture(dashed line), sum of pa-
rametrizations fors and d wave capture(full line), and potential-
model calculation fors and d wave capture(dotted line). Experi-
mental data are from Refs.[6–10].

FIG. 4. S factor for radiative capture to the 5/2+ state of13C:
parametrization(26) for p3/2-wave capture(dotted line). Experi-
mental data are from Refs.[8–10].

FIG. 5. Totalsv product for12Csn,gd13C radiative capture: pa-
rametrization(47) (full line). Experimental data are from Refs.
[6,8–10].
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two other energies, may be sufficient to adjust the coeffi-
cients. Ifp-wave capture is important, three energies beyond
thermal are needed. Alternatively, this type of parametriza-
tion can be used for an all-theoretical prediction of the cross
sections. With a potential reproducing the different bound-
state energies, the coefficientsSs0d, s1, and s2 are easily
obtained. A reliable parametrization should then be obtained
with some information on spectroscopic factors.

In the treatment of the12Csn,gd13C capture reaction, I
have adopted an intermediate strategy. The potential model
provides the shape coefficientss1 ands2. The remaining nor-
malization coefficients are fitted to experiment at an energy
where accurate data exist. This approach provides an excel-
lent parametrization of all data as well as some values of
spectroscopic factors. The cross sections show a strong de-
viation from the 1/v law as noticed and explained in several
previous works. The essential part of the deviation comes
from thep-wave capture to the 1/2+ bound state. Deviations
due at least to coefficientss1 should occur in most direct
neutron capture reactions.
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APPENDIX

At low energies, functionsFl and Gl are given by the
Taylor expansions[17,5]

FlsE,rd = Fl
0srd + EFl8

0srd +
1

2
E2Fl9

0srd + OsE3d

=
r l+1

s2l + 1d ! !
F1 −SmE

"2 D r2

s2l + 3d

+ SmE

"2 D2 r4

2s2l + 3ds2l + 5dG + OsE3d sA1d

and

GlsE,rd = Gl
0srd + EGl8

0srd +
1

2
E2Gl9

0srd + OsE3d

= s2l − 1d ! ! r−lF1 +SmE

"2 D r2

s2l − 1d

+ SmE

"2 D2 r4

2s2l − 1ds2l − 3dG + OsE3d. sA2d
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