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Cross section expansion for direct neutron radiative capture
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Cross sections for neutron radiative capture multiplied by the relative velocity can be expressed as a Taylor
expansion in powers of the relative energy. The coefficients of this expansion are expressed in the potential
model as integrals involving solutions of the radial Schrodinger equation and of its inhomogeneous energy
derivatives calculated at zero energy. Similarities and differences with charged-particle capture are emphasized.
The 12C(n, y)'°C capture reaction is treated as an example. The coefficients of the Taylor expansion lead to
simple parametrizations of the experimental partial cross sections for neutron capture éG=hohnd state.
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I. INTRODUCTION also for neutron energies between 21 and 550 k&V1Q.
The results reveal a strong deviation from a 1dw, which

.In astrophysics, the determl_na_tlon of reaction rates "has been discussed by several authors in the potential model
quires accurate values of radiative-capture cross sectio

down to very low energiefl—3]. Extrapolating a model to rﬁl—l:-] and in the microscopic cluster modgl4]. The

; . resent approach allows clarifying the reasons for the devia-
those energies and even to zero energy may lead to maccE

racies because the wave functions describing the initial sca _6n from the 1 law. As in a similar study of proton capture
tering states of the system become ver sme?ll This problem’. "Be [15,18, it also provides a better physical understand-

g sta Y . y : P ing of the most relevant quantities at low energies. Expan-
can be circumvented by calculating a Taylor expansion neai

27610 enerav of a quantity related to the cross section b ion(1) can be calculated for each bound state in the case of
. gy g y e 12C(n, y)13C capture reaction. The obtained model coef-
which does not vanish at zero energy.

This procedure has been applied in R, for radiative- ficientss, ands, are then used together with adjusted spec-

capture reactions between charged particles. A Taylor exparﬁ%%sg?fgfeﬁcé?(rse:ﬁn gﬁ:glrm;nrﬁa?;r?ﬁlrz Efgssmféz,ﬁiagn of
sion of the astrophysicdb factor has been derived in the P P P )

. o , , In Sec. Il, the formula for the cross section in the potential
pptentlal quel. The quantltles(p), S(0), S(0), - are model is recalled and its low-energy dependence is studied.
directly obtained from a calculation of the scattering wave

function and of its enerav derivatives. at zero ener In Sec. lll, the coefficients of the effective-range expansion
L nergy L ay- and of the Taylor expansiofil) are determined. The proce-
A similar expansion for neutron radiative capture is not

. . ; dure is illustrated with thé?C(n, y)'3C reaction in Sec. IV.
available, probably because numerical extrapolations are Ie%Oncludin remarks are presented in Sec. V
difficult in a case without a Coulomb barrier. Such an expan- 9 P C
sion is, however, useful as it reveals the importance of the
different physical ingredients near zero energy. Also it may
simplify cross sections parametrizations, increase their accu-
racy, and allow an optimization of the selection of energies A nucleus with mas#;=A-1 and chargeZ captures a

where experiments should be performed. Its derivation is theeutron by emitting a photon with wave numbley. The

Il. CROSS SECTION NEAR ZERO ENERGY

main purpose of this paper. energy of the final bound state with respect to the elastic
A Taylor expansion is shown to exist fow, threshold is denoted d%;. Let 1, andl,=1/2 be therespec-
| ) tive spins of the nucleus and the neutron drak the total
ov x E(1+sE+5E + ...), (1) spin. In the potential model,is both the channel spin of the

cattering wave function and the total intrinsic spin of the

whereo(E) is a partial capture cross section to a given bound® o . .
) P b g inal nucleus. Letl; and |; be the initial and final orbital

state at relative enerdy, v is the initial relative velocity, and . .
angular momenta for the relative motions of the neutron-

| is the smallest relevant orbital momentum of the initial | : @ and J. be the initial and final total
scattering state. The coefficients of this Taylor expansion arBUceus system ang and J; be the initial and final tota
angular momenta resulting from the coupling with the total

derived by a simple direct calculation. This expansion is ex-

. ) ; spinl.
pressed in a notatiofb] very close to that employed in the - L .
Coulomb casd4] in order to emphasize similarities in the The radiative-capture cross section in the potential model

treatment. Nevertheless the low-energy behavior is very dif> gllt\'/enl fo_[ e;a_;nple(jln Ref3]. For an electric transition of
ferent. The natural variable for expansidp is the energye multipolanty A, 1t reads

and not its square rootE as rather strangely used in Ref.

1] () = a(clo)Ne, 1B P, 2)

The *2C(n, y)*3C capture reaction has been studied ex-where « is the fine structure constant amdis the relative
perimentally in detail not only at thermal energ,7] but  velocity of the particles. In practice, this expression is mul-
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tiplied by a spectroscopic factor for each component of thespherical Bessel functiorj& 7], one deduces their Wronskian
final state and summed over initial or final angular momentaat any energy
Since we are dealing here with low-energy dependences,
which may vary from one transition to another, these sum- WG, Fi} =1, (11
mations are not performed and spectroscopic factors are not
introduced for the moment. whereW{g, f}=g(df/dr)-f(dg/dr). In Egs.(9) and(10), the
In Eq. (2), the normalization factor foE\ neutron capture rescaled Bessel functions directly depend on the eriérdry
is given by the following, primes designate derivatives with respect to
energy. For example, one has
g ZZ(N+1(2\+1)
A N2+ 1) 112

% 2%+ D2k + D2+ D2+ 1)

NE)\: d ' &2
f{(E,r)=a—Ef.(E,r), ﬂ(E,r)=Eﬁ(E,r) (12

2(21,+1) and similar expressions for other functions.
Lo | 2{J Lo }2 Let me introduce the rescaled partial wave function
f i folf
X . 3
(o 0 o) L J A & u(E,r) =T (E,r)/[Kcos &(E)]. (13
The photon wave numbé, is related to the initial energ¥. A shown hereatfter, this normalization ensures thatas a
through finite limit when E tends towards zerd5]. With Egs.
k,= (|Eg| + E)/hc. (4) (810, the asymptotic form of the radial wave function
5 becomes
The matrix element(E) is given by the one-dimensional
integral U|(E.f)r::c7:|(E,r) +D|(B)G(E,r) (14
T©)= [ uorsEno 6  with
0
Dy(E) =k ?Ytan §(E). (15)

whereﬁ,i(E,r)Eﬁ,i”i(E,r) and u (r)=u,, (r) are, respec-

tively, the initial and final radial wave functions. These wave Since its asymptotic fornil4) remains finite aE=0, u,(E,r)

functions are solutions of the Schroédinger equation does not vanish whel tends to zero. Since the phase shjft
Hu = Eu, 6) tends towards zero a@€'*%, function D,(E) does not vanish

either and is given by Eql14) as
with respective energieE and Eg. In Eq. (6), the Hamil-

- 2 o0
tonian reads Dy(E) = - limW{F,u} = - h—’j f F(E,nV(r)u (E,ndr.
r—oe 0

2| d® 1(1+1)
H=-—|—- +V(r), 7
'Y oouldrr 12 © @ (16)
where u is the reduced mass of the system avids a Now an ‘S factor” for neutron capture from a given par-

neutron-nucleus interaction that may depend oh andJ.  tial wavel is introduced as

Equations(2) and (5) require a definition of the normaliza- —
tion of T,_given here by S(E) =k“vo(E). (17

T (E,r) — r[cos §(E)j,(kr) + sin &(E)n(kr)], (8) It generalizes to an arbitrary partial wave the quantity with
r—o the same notation introduced in REf]. From Eqgs(2), (5),

wherej, andn, are spherical Bessel functiofit7] and 6, is (13), and(17), one obtains

the phase shift.

— 2A+1 2
When E tends towards zero, the regular functiptkr) Sen(E) = acNe k3 cos S (E)I(B) %, (18)
tends to zero fol >0 while the irregular functiom(kr)  \yhere
tends to infinity[17]. Therefore, rescaled functions are de-
fined [5] as *
. I(E):f u|f(r)r” u, (E,r)dr. (19
Fi(E,r) =K'rj(kr) 9 0 '
and These expressions have a nonvanishing finite limit when
G\(E,r) =K*Irn(kr) (10) tends towards zero.

In the charged case, the factor €§sin Eq. (18) can be
for which the same notation is used as for rescaled Coulomkeplaced by unity when a Taylor expansion is perforrféd
functions in Ref[4]. The advantage of; andg, is that they  Indeed, because of the Coulomb penetration factor, all its
have a finite limit whenE— 0. From the properties of the derivatives vanish aE=0.

015801-2



CROSS SECTION EXPANSION FOR DIRECT NEUTRON

IIl. PROPERTIES AT LOW ENERGY
A. Effective-range expansion

The effective-range expansiofi8,19 for an arbitrary
partial wave[20] is given by

1 —
D(E)

where notation(15) is used andy, r;, and P, are the scatter-

11
- =+ Zrk2-Prik*+0(K9), (20)
a 2
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U0 — Fr) + DG, (30

whereF? and G are the zero-energy limits of; andg, (see
the Appendiy. The functionu,0 can be normalized by impos-
ing the Wronskian limit

WGP} — 1. (31)

ing length, effective range, and shape parameter, respefSing Egs.(11), (16), and(Al), one obtains the scattering

tively.

By performing the Taylor expansion of the left-hand side

of Eqg. (20), one obtains the scattering length

a=-Dy(0), (21)
the effective range
ﬁ2
r=-—D/(0), (22)
may
and the shape parameteyr
#?\2DJ (0
p.:ﬁ[u(—) '2(2] (29
ar, n/ o2y

The low-energy behavior of factor ¢a% in Eq. (18) is

needed below. Fdr> 0, one has
cog §=1+0(E2), (24)

i.e., no contribution up t&2. On the contrary, foi=0, one
has

2uag_ (2uag\?(
coszfsl:l—?a(? 1—3—2 E?+ O(E®).
(25

This will introduce a difference between tteewave and

other waves, which has no equivalent in the charged case.

B. Expansion of S(E)

length (21)

T
ARy,

The first-order coefficiens; in Eq. (26) is obtained by
differentiating Eq.(18) with respect tcE [4], yielding

rV(rud(r)dr. (32

2

S'(0) 2x+1 2I'(0 2
202120,k g
S0 [Eg 1O h
with the energy derivative of integrél9) given by
1(0) = f u, (Nr* u(ndr. (34)
0

The energy derivativell’O of the radial wave function at zero
energy is a solution of the derivative of the Schrédinger
equation(6) at the limitE—0, i.e.,

Hu/ %= ul. (35)
The required solution of this inhomogeneous differential
equation verifiesul’O(O):O. Its asymptotic form is given by
the energy derivative of Eq14) at the limitE—0 as

u|’°(r):wf.’°(r) +D,(0)G/%(r) + D/ (0)G{(r),  (36)

where F%(r) and G/°(r) are given by Eqs(Al) and (A2),

The Taylor expansion of th& factor near zero energy can respectively. In this expressioB, (0) is still unknown.

be written as

S(E) = S(0)(1 +s,E + s,E?). (26)
From Eqs.(18), (19), (24), and(25), one obtains
S(0) = acNe, (|Egllfic)>[1(0) %, (27)
with the integral
1(0) = f uy,(r)r* ufi’(r)dr. (28)
0

A solution of Eg.(35) vanishing at the origin may still
differ from u/® by an arbitrary amount of solution of the
homogeneous Schrddinger equati@9) at zero energy. It
can be eliminated by imposing the Wronskian limit

WG u/° - F°-D,(0)G/% —0 (37)

obtained from Eqs(36) and(11) [4]. The coefficientD| (0)
and the effective rangg can then be calculated from Egs.

(16) and(22).
The last term in Eq(33) presents an interesting difference

Here and in the following, the superscript O indicates theith respect to the corresponding expression in the Coulomb
limiting value for E tending towards zero. The radial wave case[Eq. (52) of Ref. [4]]. It occurs only for thes wave and

function u’

equation at zero energy,
Hu’=0, (29)

with the boundary conditionslo(O)=0 and

(N=u(0,r) is a solution of the Schrodinger takes its origin from the c8s, factor in Eq.(18). It is due to

the fact that thej, phase shift vanishes proportionallykan
neutron scattering at low energies.

The second coefficiens, in the Taylor expansior{26)
reads
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S"0) A2\ +1) 22 +1)1'(0) 1"(0) {I’(O) ]2 TABLE I. EnergiesE; (in MeV), potential depth¥, (in MeV),
S, = = > + + scattering lengthsa; (in fm?*1), and effective ranges,; (in
2500) Es [Egl 1(0)  1(0) 10) fm=2*1). The approximate effective ranggin the last column are
2,ua(2J 218yl o obtained with Eq(44). The p3/2 state in parentheses is forbidden.
- 8o 72 ( , + 2 ) (38) A potential binding this state at the correct energy is shown in the
last row.
with the second energy derivative of the integral given by
. 1J Eu Vo ay My h
l”(0)=J u, (0r* y(ndr. (39 12 -1.86 576  6.43 3.56 3.19
0 p3/2 (-9.27 451 8.85 -1.71 -1.83
The second derivative!® can be determined by differentiat- p1/2 -4.96 45.1 22.75 -1.16 -1.34
ing EqQ. (6) twice with respect to energy and by taking the gs5/2 -1.10 56.15 159.9 -0.32 -0.25
limit E—0, i.e., d3/2 +33 5615 -57.2  -0.065
Hlui,O — 2U|’O, (40) p3/2 -1.28 28.35

with the boundary condition°(0)=0. Its asymptotic form is

fixed by the second energy derivative of Efj4), and scattering lengths. Indeed, expangiD) is \Z/allizd for the
imaginary valuek=irx;, where x;=(2u|Ey|/A%)Y?, corre-

uilo(r)r:;ﬂlo(r) +Di(0)G1°(r) + 2D/ (0)G{ () + D[ (O)G(r), spogdingyto a bound Igtate for Wﬁicra gﬁ!)j:i|. To) the extent

41) that terms beyon#? are negligible in the right-hand side of
Eq. (20), the effective ranges are approximately given by the

where F/°(r) and G/%(r) are given by Eqs(Al) and (A2),  generalized Schwinger relatida8,19,22

respectively. Again a solution of the inhomogeneous equa-

tion (40) vanishing at the origin may contain an arbitrary My~ - i{i +(- 1)|+1K|2J|+1] (44)
amount ofu?, which can be eliminated by imposing the con- K,ZJ a

dition
o 0 o o The valuesr|; deduced from Eq(44) are given in the last
WGP, u/® = F7/°-Dy(0)G/°- 2D/ (0)G/° — 0 (420  column of Table I. They reproduce fairly well the exact val-
= ues. The experimental scattering length leads to an effective

obtained from Eqs(41) and (11) [4]. The shape parameter range of 3.02 fm.

can be obtained from Eq&3) and(16). The last term in Eq. The present single-particle model is not able to describe
(38) for the s wave also takes its origin from the ¢o§, thep3/2 bound state. However, in order to study it together
factor in Eq.(18). with the other bound states \g value is fitted to the experi-

mental energy for that case too. It is displayed in the last row
of Table I. Since it is used for a bound state only, its scatter-
IV. 2C(n,)1%C CAPTURE REACTION ing properties are not necessary.
1 1 L The coefficients of expansia@6) derived from Eqs(27),
_ The ZC(n,y) °C capture reaction is a perfect example 33) and(38) with the potentials of Table | foE1 transitions
|IIu§trat|ng the interest of the present expansion. Indeed, ex5 e displayed in Table II. The zero-energy wave functions are
perimental data exist from thermal enerfi@y7] up to a neu-  cajcylated with the Numerov methd@3] as explained in
tron energy of 0.55 MeV[8-10 for all **C bound states. In  Ref. [4]. Coefficients, induces a deviation from &2 law.

the following, energies are in MeV and lengths in fm. .~ one observes that it is often negative in Table II. Only in the
In order to derive values of the parameters in expansion ave capture to the 372state is the 1/ law valid in the
(26), | choose a simple Woods-Saxon potential present model.
V- +55 .S Experimental data can be fitted with expansi@®) to
V(r)y=- . (43)  determine parameter$(0), s;, ands,. This approach is fea-

1+ exi(r - 2.86/0.65) sible but hindered by large error bars on the data. Therefore
Its range and diffuseness are adopted from Héf13. The | make the following assumption: the coefficieisand s,
spin-orbit strength of 5.5 MeV is adjusted on th8/2 are only weakly model dependent. In the following, their
-d5/2 energy difference. The depth of the central part is unchanged model values will be used in fits of the data while
adjusted for each bound-state energy. The obtained valuége S(0) values will be adjusted to the data. The resulting

are given in Table 1. correcting factorsSe,,(0)/S(0) are given in the last column
The corresponding scattering lengthg and effective  of Table II.
rangesr|; obtained with Eqs(21) and(22), respectively, are The capture to the 17/2ground state is presented in Fig.

also displayed. The-wave scattering length and effective 1. The paramete§(0) is reduced by a factor 0.88ee Table
range are in reasonable agreement with the respective expeliy in order to fit the accurate experimental value
mental values 6.14 and 3.42 ffal]. It is interesting to note  2.38+0.05 mb at thermal enerd,7], which is indistin-
that the effective range is well fixed by the binding energiegguishable fromE=0 with the linear energy scale in Fig. 1.
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TABLE II. Coefficients S(0) (in fm?*3s71), s, (in MeV1), ands, (in MeV~2) of expansion(26) for
different transitions. The numbers in the last column are fitted to experiment as explained in the text.

[+ LiJ, S(0) S S Sexp0)/S5(0)
p1/2 sl/2 5.90x 10V -1.10 0.70 0.88
d3/2 3.91x 107 0.13 0.17 0.88
sl/2 p3/2 1.09x 1071 -0.77 0.52 0.95
pl/2 4.74< 107° -1.02 0.97 0.95
p3/2 sl/2 1.67x 10'8 -0.012 0.026 0.15
d5/2 4.72x 107 -0.99 0.55 1.0
d3/2 7.83x 10%° -0.60 0.48 1.0
ds/2 p3/2 1.29x 1070 -0.27 0.12 0.39
The resultings wave approximation involving; ands, is The factorS;,+ for the capture to the 1/2excited state is

displayed as a dashed line. In order to check the validity opresented in Fig. 2. Both initial componemi$/2 andp3/2
the Taylor expansion, it is compared with the exact resulare summed. The paramet$(0) is reduced by a factor 0.95
obtained from Eq(2) also multiplied by the correcting factor in order to fit the experimental point at 0.509 MeV. The
Sexpl0)/S(0), represented as a dotted line. The second¥esultings wave.approximation involving, ands, is dis-
degree polynomia(26) is quite accurate. However, the re- played as a full line. It closely follows the trends of the data,
sulting curve is far from the data. The-wave term indicating thats, ands, are reasonable. The exact result ob-

k48d3/2—>p1/2(E) must be added. It would need be multiplied tained_ from Eq(2), also multiplied_ by the _correcting fa_ctor
by a factor 0.64 in order to fit the data point & 0.95, is represented as a dotted line and is not very different

=0.508 MeV (E,=0.55 Me\). However, | use instead the from its approximation. The second-degree polynoni2&)

. is thus quite accurate. The obtained spectroscopic factor is in
same factor as for the other partial wave. The tétdactor good agreement with a previous determinafi26l, although

S112= (E) = 0.84Ss1/2 . p1/2E) + K*Sgaop12(E)] (45)  EQq.(32) does not seem to support a derivation of the spec-

_ S ) troscopic factor based on the scattering length.
is represented as a full line in Fig. 1. It agrees with the data |nterestingly, the present parametrization cannot explain
over the whole energy range. The exact calculation is almoshe thermal cross section 5.6+Qub to the 1/2 state[6,7].
identical. It underestimates this value by several orders of magnitude.

The correcting factor 0.88 can be interpreted as a spectrorhis thermal cross section is thus clear evidence Nt
scopic factor for the ground staf@4]. This value is consis- capture. Unfortunately, th&11 capture cross section van-
tent with the experimental result 0.84+0.04 of R&b5]. The  ishes exactly in the potential model because the initial and
same spectroscopic factor is thus employed in @§) for  final wave functions in the integra(E) (without ther fac-
the transition from theal state. Unless the,=0.70 value for tor) are orthogonal as they both belong to thevave. This
the s wave is very incorrect, the calculation indicates that theM1 capture represents an interesting challenge for more
cross section at 0.509 MeV should be close to the upper limielaborate models. Strikingly it would also vanish in a single-
of the error bar. channel microscopic mod¢gR7].

The procedure for the 372excited state is very close to
that for the ground statésee Fig. 3 but the use of the po-

2.5 x 10'8
2x 101 2x 102 + 1/2+
‘s 15x 101 o~ 15 x 102
b [
£ = T —
& 1x10'% @ | b T
% &
0.5 x 1018 )
0.5 x 102
0
0 0.1 02 0.3 04 0.5 0.6 0
E (MeV) 0 0.1 0.2 0.3 0.4 05 0.6
E (MeV)
FIG. 1. S factor for radiative capture to the 17ground state of
13C: parametrization(26) for s-wave capture (dashed ling FIG. 2. S factor for radiative capture to the 172tate of'°C:
potential-model calculation fos-wave capture(dotted ling, and  parametrizatiori26) for p1/2 andp3/2 wave capturéfull line) and
parametrization(45) for s and d wave capturgfull line). Experi- potential-model calculatior{dotted ling. Experimental data are
mental data are from Reff6-10. from Refs.[8-10.
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2.5 x 10

2 x 108

1.5 x 108

1x10®

Sso- (fm®s71)

0.5 x 10®

0 0.1 0.2 0.3 04 0.5 0.6
E (MeV)

FIG. 3. S factor for radiative capture to the 373tate of13C:
parametrization(26) for ss-wave capturgdashed ling sum of pa-
rametrizations fors andd wave capturgfull line), and potential-

PHYSICAL REVIEW C 70, 015801(2004)

3 x 10¥

2 x 101

ov (fm? s71)

1 x 101

0 0.1 0.2 0.3 04 0.5 0.6
E (MeV)

FIG. 5. Totalov product for'2C(n, y)13C radiative capture: pa-
rametrization(47) (full line). Experimental data are from Refs.
[6,8-10Q.

model calculation fors andd wave capturgdotted ling. Experi-

mental data are from Reff5-10. By summing the capture contributions to the different

bound states,

tential model is here rather artificial. The initetomponent
oV = S5 (E) + K2S15+(E) + Sz1p-(E) + K2Ss+(E),

fitted to the experimental thermal cross section

1.14+£0.02 mb6,7] is represented as a dashed line. The cor- . o

recting factor 0.15 is compatible with spectroscopic factor$®N€ obtains the parametrization

for that statg28]. The initiald5/2 andd3/2 components are  ;, ~ 7.70x 10%(1 + 88.TE - 50.(E2 + 44.7E3)fm3 1.

added to fit the data point at 0.509 MeV. Here no multipli-

cative factor is needed. The fact8s,- for the capture to the (47)

3/2" excited state is then obtained with a formula similar toThis expression is limited at order 3 for simplicity. It is com-

Eq. (45 but with different factors for both terms. An exact pared with experimental data in Fig. 5. The fact that the 1/

calculation with the same multiplicative factaidotted ling law is not valid here[8,9] is obvious in this figure. As al-

is very close to the present approximation. The use of suckeady noted in Refg11-14, the large coefficient of th&

different correcting factors cannot easily be explained buterm in Eq.(47) is mostly due to the importance pfwave

may reflect the fact that the coefficies of the s wave  capture to the 1/2state.

should be much larger. By averaging expressio@7) with a Maxwellian distribu-
Finally the factorSs,+ for capture to the 5/2excited  tion [1,2], one obtains the reaction rate

state is presented in Fig. 4. The correcting factor fitted at

0.509 MeV is 0.39, a value rather different from spectro- Na(ov) = 463(1 + 11.4Tg ~ 1.39T5 + 0.37Tg)cm® mol ™ s~

scopic factors for that staf@8]. The exact calculation shows (48)

no difference. Here one can suspect that the theoretical val- ] ) )

ues ofs, ands, are inaccurate. The data seem to indicate thaf Nis rate slightly oscillates around the rate proposed in Ref.

the slopes; should be negative, which would lead to a larger[10] with deviations reaching +4% nedl,=0.2 and -7%

value ofSe,,(0)/S(0). However, the error bars are too large nearTy=2.5.

to lead to definite conclusions.

(46)

V. CONCLUSIONS

6 x 102 5/2% - .
The coefficients of the Taylor expansion a$(E)
5% 10% =k 2vo(E) are directly calculated at zero energy. The first
{: 100 terms _of this ex.pansion_ are obtaingd _by solving the
=y Schrodinger equation and its energy derivativeE=a0. The
£ 3x10 i results are accurate and can be used to correctly extrapolate
& standard calculations performed at positive energies.
w2X10% T 1 The method is applied here to the simple potential model
1x 102 1 but the main ingredients of its algorithm, i.e., the properties
T } of wave functions at zero energy, can straightforwardly be
o 5 ol 02 03 01 05 0% extended to more elaborate models such as microscopic
E (MeV) models.

A parametrization with second-order polynomials is valid
over an energy range covering the domain of astrophysical
interest. With only three coefficients in the parametrization,
experimental data at three energies, e.g., thermal energy and

FIG. 4. S factor for radiative capture to the 572tate of3C:
parametrization(26) for p3/2-wave capturgdotted ling. Experi-
mental data are from Refg3-10.
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two other energies, may be sufficient to adjust the coeffiBelgian-state Federal Services for Scientific, Technical and
cients. Ifp-wave capture is important, three energies beyondCultural Affairs.
thermal are needed. Alternatively, this type of parametriza-

tion can be used for an all-theoretical prediction of the cross APPENDIX
sections. With a potential reproducing the different bound- . . )
state energies, the coefficienf0), s;, and s, are easily At low energies, functionsF; and G, are given by the

obtained. A reliable parametrization should then be obtained@Y!or expansion$l7,5
with some information on spectroscopic factors.

In the treatment of thé?C(n, y)13C capture reaction, | F(E,r)=FAr)+EFr) + }Ezf{’o(r) +O(E®)
have adopted an intermediate strategy. The potential model 2
provides the shape coefficiergsands,. The remaining nor- r'+l ME r?
malization coefficients are fittgd to experiment at an energy = W “\p2 m
where accurate data exist. This approach provides an excel- 5 .
lent parametrization of all data as well as some values of (M_E) r } +O(EY) (A1)
spectroscopic factors. The cross sections show a strong de- 7% ) 2(21+3)(2l +5)

viation from the 14 law as noticed and explained in several
previous works. The essential part of the deviation come
from the p-wave capture to the 172ound state. Deviations 1
due at least to coefficients, should occur in most direct GI(E,r)=GX(r) +EG/°r) + EEZQI'O(V) +O(E?)
neutron capture reactions.

§nd

| M r2
=@-nrr1+| 5
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