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A formalism for representing the fully relativistic propagator of the Rarita-Schwinger field in the nuclear
medium is developed. Using a convenient basis for expanding the propagator it is shown that it can be
represented by 40 energy and momentum dependent quantities which can be decomposed into a 232 and a
636 matrix. In this way calculations reduce to matrix multiplication. Using the presented formalism the full
relativistically covariant contribution of the pion-nucleon loop to the isobar self energy and propagator in
isospin-symmetric spin-saturated nuclear medium is computed. Utilizing this propagator the photoabsorption
cross section on in-medium nucleons in the isobar region is calculated and the result compared with experi-
mental data.
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I. INTRODUCTION

The spin-3/2 isospin-3/2Ds1232d baryon(in the follow-
ing refered to as the isobar and denoted byD) couples
strongly to the nucleon and pion and plays an important role
in nuclear processes with excitation energy of a few hundred
MeV. This raises the issue of the propagation of a spin-3/2
particle in the nuclear medium. The spin-3/2 particle is usu-
ally described by using the Rarita-Schwinger field[1], which
consists of four, Lorentz-vector indexed, Dirac spinors. A
free theory can be formulated in which the number of de-
grees of freedom is as a consequence of the equations of
motion reduced to the required 8(for a complex field). How-
ever, for realistic description of spin-3/2 resonances one
needs to introduce interactions taking into account their de-
cay channels.

Introducing interactions of general form into the above
free-field theory introduces also spin-1/2 components into
the propagator. This type of approach was used quite exten-
sively in the past for the delta baryon and was phenomeno-
logically successful(see, for example, Ref.[2]). Recently it
has been argued[3,4] that an interaction vertex which pre-
serves the correct number of degrees of freedom for the spin-
3/2 particle should be used. It has also been shown[5] that
the two types of couplings can be transformed into each
other by a redefinition of the field describing the spin-3/2
particle, at the expense of new contact interactions appearing
(not containing the spin-3/2 field) in the Lagrangian. These
contact interactions may be associated with other spin-1/2
fields in the theory.

The propagator we are interested in is defined by

Gmnspd = − i E d4xeip·xk0uTCmsxdC̄ns0du0l, s1d

whereCm is the Rarita-Schwinger field andu0l can denote
either the vacuum or the nuclear medium. In vacuum this

propagator(or the self energy, which is given by the ampu-
tated diagrams of(1)) can be expanded in terms of 10
Lorentz-scalar functions ofp2. This number can easily be
understood if we count the number of terms corresponding to
the Lorentz structure given by Eq.(1). Indeed, the two vector
indices can be represented by the five terms
gmn ,pmpn ,pmgn ,g mpn ,g mg n (g m are the Dirac matrices);
these are multiplied by the 434 unit matrix,1, or the con-
tractionp” ;paga.

In the nuclear medium the propagator acquires more in-
dependent components than in vacuum, since the presence of
the (rotationally symmetric) medium means that preserving
the Lorentz-covariant description requires introducing an-
other four-vector, namely the medium’s four velocity. This
quadruples the number of terms the propagator can be ex-
panded in(see Sec. II for details). To our knowledge a com-
plete calculation involving all these terms has not been car-
ried out and either a nonrelativistic approach(for example as
in Ref. [6]), a description based on combining off-shell and
on-shell behavior[7], or a treatment based on the assumption
that the isobar propagator is proportional to the spin-3/2
projector[8,9] was used. The implications of this latter ap-
proach we discuss in some detail in Sec. II B. Our aim is to
provide a general scheme for a fully Lorentz-covariant treat-
ment of the spin-3/2 particle’s in-medium propagation, ana-
lytically separating all its components. This means introduc-
ing a convenient basis for the expansion of the self-energy
and the propagator, which makes subsequent calculations
practical for arbitrary vertices involving the Rarita-
Schwinger field.

In the first part of Sec. II we develop the general formal-
ism for a covariant treatment of the spin-3/2 field in the
nuclear medium, while in the second part we provide nu-
merical results for the in-medium delta propagator. In Sec.
III we calculate the total cross section for the nuclear photo-
absorption and compare the results with observations.
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II. RELATIVISTIC PROPAGATOR OF THE IN-MEDIUM
RARITA-SCHWINGER FIELD

A. Formalism

To exhibit the general Lorentz-structure of the spin-3/2
particle’s propagator and self-energy in the medium, we ob-
serve that in the presence of rotationally symmetric nuclear
medium the latter’s state of motion is given by its four-
velocity, um;1/Î1−v2/c2s1,v /cd. This implies that in addi-
tion to the five objects with two Lorentz-vector indices in
vacuum (see the preceding section), we get five more:
umpn ,pmun ,umgn ,gmun ,umun. Also, the 434 matricesu” and
p”u” , in addition to1 andp” appear, producing in all 40 terms of
the basis.

While in vacuum one may argue that the definite spin of
the particle restricts the form of the propagator and decreases
the number of the nonzero expansion coefficients, in medium
such an argument is meaningless. The reason is that, even in
a rotationally symmetric medium, the spin of a particle mov-
ing with respect to the medium is not a good quantum num-
ber, since the momentum of the particle(in the rest frame of
the medium) defines a preferred direction and only rotations
about that axis are a symmetry transformation. This means
that only the projection of the angular momentum on the
momentum, i.e., helicity, is a good quantum number. As a
consequence, not only spin-3/2 and spin-1/2 components,
but also those corresponding to mixing of these spins should
in general appear in the propagator, with the restriction that
helicity-1/2 and helicity-3/2 states do not mix. We remark
that the sign of the helicity does not matter, since parity is a
symmetry operation.

A convenient basis containing the 40 terms mentioned
above has actually been constructed in Ref.[10], when an
in-medium generalization of the partial-wave expansion has
been introduced. In that case a basis fors-, p, andd-waves
with J=1/2 andJ=3/2 (including their mixing) was ob-
tained, containing 68 terms. Of these only 40 terms are rel-
evant for the present case, since the rest does not have two
Lorentz-vector indices.

To introduce the relevant basis we recapitulate the defini-
tion and basic properties of its building blocks. First, the
termsP± andU± are introduced1 providing the 434 matrix
structure by

P±spd =
1

2S1 ±
p”

Îp2D ,

U±sp,ud = P±spd
ig ·u

Îsp ·ud2/p2 − 1
P7spd. s2d

They have the following multiplication properties:

P±P± = P± = U±U7, P±P7 = 0 =U±U±,

P±U± = U± = U±P7, P±U7 = 0 =U±P±. s3d

One can observe that on-shell theP±spd are the positive- and
negative-energy projectors.

To exhibit the remaining rotational symmetry in the me-
dium, leading to the conservation of helicity, it is advanta-
geous to use, apart frompm, the following four quantities
[10]:

Vmspd =
1
Î3

Sgm −
p”

p2pmD, Xmsp,ud =
sp ·udpm − p2um

p2Îsp ·ud2/p2 − 1
,

Rmsp,ud = −
1
Î2

sU+sp,ud + U−sp,uddVmspd − iÎ3

2
Xmsp,ud,

Lmsp,ud = −
1
Î2

VmspdsU+sp,ud + U−sp,udd − iÎ3

2
Xmsp,ud,

s4d

While they are not all independent, they are constructed in
such a way to make the basis orthogonal, see Eq.(8) below,
and are motivated by the helicity basis for the partial-wave
expansion[10].

It turns out that the basis can be constructed in such a way
that the multiplication algebra of its 40 objects separates into
two subalgebras, one containing 4 and the other 36 terms.
The existence of two separate subalgebras of the expansion
basis is explained by the helicity conservation in the me-
dium. The 4 terms of the first subalgebra can be cast in the
form of a 232 matrix, which corresponds to helicity-3/2
components, containing the positive-energy and negative-
energy states(and their mixing). The remaining 36 terms,
suitably grouped in a 636 matrix, describe the helicity-1/2
components. They come from the spin-3/2 part of the
Rarita-Schwinger field and the two spin-1/2 sectors present
in that field, and positive and negative energy components
for each of the above-mentioned spin sectors.

The 4 terms of the first subalgebra are given byQfi j g
mn with

i, j =1, 2, defined as follows:

Qf11g
mn = sgmn − p̂mp̂ndP+ − VmP−Vn − LmP+Rn,

Qf22g
mn = sgmn − p̂mp̂ndP− − VmP+Vn − LmP−Rn,

Qf12g
mn = sgmn − p̂mp̂ndU+ +

1

3
VmU−Vn +

Î8

3
sLmP+Vn + VmP−Rnd

−
1

3
LmU+Rn,

Qf21g
mn = sgmn − p̂mp̂ndU− +

1

3
VmU+Vn +

Î8

3
sLmP−Vn + VmP+Rnd

−
1

3
LmU−Rn, s5d

wherep̂m=pm /Îp2.

1In Ref. [10] due to typographical errors in Eq.(A1) a minus sign
is missing in the defining expression forU±, and also the sign of the
terms containingU+sw,ud+U−sw,ud in equations definingRm and
Lm should be changed.
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The 36 componentsPfi j g
mn of the second subalgebra are

given by

Pfi j g
mn = Pi

mP̄j
n, i, j = 1, . . . ,6, s6d

where

P1
m = VmP+, P̄1

m = P+Vm,

P2
m = VmU−, P̄2

m = U+Vm,

P3
m = p̂mP+, P̄3

m = P+p̂m,

P4
m = p̂mU−, P̄4

m = U+p̂m,

P5
m = LmP+, P̄5

m = P+Rm,

P6
m = LmU−, P̄6

m = U+Rm. s7d

The Qfi j g
mn andPfi j g

mn satisfy the following relations:

Qfikg
ma gabPfl j g

bn = 0 = Pfikg
ma gabQfl j g

bn ,

Qfikg
ma gabQfl j g

bn = dklQfi j g
mn , Pfikg

ma gabPfl j g
bn = dklPfi j g

mn . s8d

The free and the dressed propagator, as well as the self-
energy of the Rarita-Schwinger field can be expanded in the
basis spanned byQfi j g

mn andPfi j g
mn :

G0
mnspd = o

i,j=1

2

Qfi j g
mn gfi j g

sQdspd + o
i,j=1

6

Pfi j g
mn gfi j g

sPdspd, s9ad

Gmnsp,ud = o
i,j=1

2

Qfi j g
mn Gfi j g

sQdsp,ud + o
i,j=1

6

Pfi j g
mn Gfi j g

sPdsp,ud,

s9bd

Smnsp,ud = o
i,j=1

2

Qfi j g
mn sfi j g

sQdsp,ud + o
i,j=1

6

Pfi j g
mn sfi j g

sPdsp,ud, s9cd

where the dependence ofQfi j g
mn and Pfi j g

mn on p and u is not
shown. Using the orthogonality relations(8) the Dyson equa-
tion

Gmn = G0
mn + G0

magabSbgggdG
dn s10d

simply becomes a matrix equation, where the matrices are
constructed from the corresponding expansion coefficients
cfi j g, with i being the row index,j the column index:

Gfi j g
sQd = gfi j g

sQd + o
k,,=1

2

gfikg
sQdsfk,g

sQd Gf, jg
sQd ,

Gfi j g
sPd = gfi j g

sPd + o
k,,=1

6

gfikg
sPdsfk,g

sPd Gf, jg
sPd . s11d

This means we can simply solve for the expansion functions
of the propagator:

G̃sAd = sg̃sAd−1 − s̃sAdd−1, s12d

with A=Q,P andG̃ denoting a matrix with elementsGfi j g.

B. Relativistic propagator of the isobar

We start from the free isobar propagator in its standard
form

G0
mnspd =

p” + MD

p2 − MD
2 + i«

Fgmn −
gmgn

3
−

2pmpn

3MD
2

+
pmgn − pngm

3MD
G . s13d

The expansion coefficients of its inverse can be simply cal-
culated by matrix inversion and are given in Appendix A.

The self-energy of the isobar close to its on-shell energy is
dominated by the pion-nucleon loop and for the relevant
pion-nucleon-isobar coupling we use

LpND = gpND]apD̄bsgab + agbgadN + h.c. s14d

An explicit computation in vacuum based on the coupling
(14) showed[11] that by introducing a pion-nucleon-isobar
form factor depending on the square of isobar’s four-
momentum(since the pion and the nucleon are on-shell), an
excellent fit to the pion-nucleon scattering phase shift in the
isospin-3/2 spin-3/2 channel is possible, up to the pion labo-
ratory momentum of 500 MeV, by adjusting the coupling,
the isobar’s bare mass and the cut-off in the form factor. The
off-shell parametera, as expected, does not play a significant
role in the energy range of interest. Also, that calculation
showed that the spin-1/2 components of the isobar spectral
function are about two orders of magnitude smaller than the
spin-3/2 ones in the resonance region. The Rarita-Schwinger
propagator in vacuum was recently discussed in Ref.[12],
where some elements of the basis used in the present ap-
proach were introduced(of course, without the terms rel-
evant for the nuclear medium).

For the in-medium calculation of the isobar self-energy
we also use the interaction Lagrangian(14), but with the
off-shell parametera put to zero. This is mainly done for
simplicity and is motivated by the observation of Ref.[11]
that this parameter has a very small effect on the isobar
propagator(in vacuum) in the resonance region, i.e., not far
off-shell. The coefficients of the self-energy expansion are
given in Appendix A, Eq.(A2), together with the definition
of the pion-nucleon loop integrals appearing in those func-
tions. These loop integrals correspond to the ones defined in
Ref. [10] for the case of kaon-nucleon scattering.

For a comparison with the result of the non-relativistic
approach we calculated the isobar propagator using the pion
spectral function and thepND coupling and form factor of
Ref. [6]. We observe that two entries in the propagator, one

in G̃sQd and one inG̃sPd, are much larger than any of the
remainder, which brings us again to the interpretation of
these matrix elements. As discussed in Sec. II A, the ap-
pearence of the block diagonal structure, i.e., matrices with
superscriptsQ andP, is a reflection of the fact that helicity is
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still a good quantum number and consequently different he-
licity states do not mix. The 232 matrix contains the
helicity-3/2 components(see also Ref.[10]) of the positive
and negative energy states and their mixing. The[11] ele-
ment of this matrix is much larger(for positive energies)
than the others and is referred to as the helicity-3/2 compo-
nent of the in-medium isobar. We repeat that the projectorP+
appearing in this term when on-shell, i.e., forp2=M2, is the
positive energy projector.

The matrixG̃sPd contains the helicity-1/2 components, of
both spin-1/2 and spin-3/2(which mix), and positive-energy
and negative-energy components. The element[55] of this
matrix is the dominant one and is identified with the spin-
3/2 term (also positive energy). The appearance of the 6
36 matrix structure, and not a 434 one, is a consequence of
the number of degrees of freedom of the Rarita-Schwinger
field, which means that there are two spin-1/2 sectors in that
field.

In Fig. 1 we show the spectral functions of the helicity-
1/2 and helicity-3/2 isobar states, i.e., −ImGf55g

sPd /p and

−Im Gf11g
sQd /p, in isospin-symmetric nuclear matter with Fermi

momentumkF=270 MeV, at momentum 0 and 500 MeV.
For comparison we also show the results of the non-
relativistic calculation of Ref.[6], when the isobar propaga-
tor has only one component.

The spectral functions of all the other components are
significantly smaller than the ones shown in Fig. 1 and for
the considered density and for isobar momentum less than
1 GeV they do not exceed a few percent of the dominant
spectral functions, if considering the resonance region. This
implies that we can obtain practically the same results by
calculating only two components of the propagator and that
these can be obtained from only two components of the self-
energy. In vacuum it suffices to calculate only one compo-
nent(saysf11g

sQd ) of the self-energy and then the corresponding

propagator to perform a relativistic treatment with few-
percent accuracy.

We now want to clarify the content of the schemes used in
Refs. [8,9], where the assumption is made that the in-
medium isobar propagator is proportional to the spin-3/2
projector. The latter can be written through the terms of our
basis introduced in Eqs.(5) and (6) as

P3/2
mn = Qf11g

mn + Qf22g
mn + Pf55g

mn + Pf66g
mn , s15d

corresponding to positive-energy and negative-energy
helicity-3/2 and helicity-1/2 terms of the spin-3/2 sector. If
one multiplies Eq.(15) with ap” +b1 (on the left or the right)
to get the complete expression for the propagator(as done in
Refs. [8,9]), only the positive-energy and negative-energy
content will change, while the coefficients giving the
helicity-1/2 and helicity-3/2 components necessarily remain
the same. In this way the splitting between different helicity
states of the spin-3/2 sector is neglected in the approach
mentioned, which is in this respect reminiscent of the non-
relativistic treatment(however, keeping both positive-energy
and negative-energy contributions). We stress that this is not
equivalent(in the medium) to using the general form of the
propagator and then applying the projector(15), which
would take into account the helicity splitting.

III. NUCLEAR PHOTOABSORPTION IN THE
ISOBAR REGION

We now turn to the photon absorption cross section on a
nucleon in the isobar region, i.e., for photon energies be-
tween 0.2 and 0.5 GeV. First we consider the free nucleon
case and subsequently that of a large nucleus, whose nucle-
ons and the isobar are modeled by their nuclear matter prop-
erties.

We start with the absorption of the photon by a free
nucleon. As a consequence of the unitarity of theS matrix
the total photon-absorption cross section on the nucleon is
proportional to the imaginary part of the photon-nucleon
forward-scattering amplitude,

sT =
1

2MNq0
Im AgN, s16d

where we work in the rest frame of the nucleon andq0 is the
photon energy in that frame.

For thegND vertex we use the dominant magnetic dipole
term [13]:

LgND =
3e

2MNsMN + MDd
igmN̄T3

†F̃mn]mDn + h.c., s17d

whereF̃mn;«mnabFab /2 andFmn;]mAn−]nAm, with Am be-
ing the electromagnetic field andgm a dimensionless number
giving the strength of the transition. The photon-nucleon
forward-scattering amplitude through the isobar intermediate
state for arbitraryq photon four-momentum andk nucleon
four-momentum becomes

FIG. 1. The isobar spectral function in the nuclear medium at
saturation density and momentumupu=0 and upu=500 MeV. The
pion spectral function and thepND form factor, as well as the
dotted line result for the isobar spectral function are from a non-
relativistic calculation of Ref.[6]. At zero momentum the two dif-
ferent helicity curves coincide, while atupu=500 MeV there is a
clear distinction.

C. L. KORPA AND A. E. L. DIEPERINK PHYSICAL REVIEW C70, 015207(2004)

015207-4



AgNsq,kd = 2
3

1
4Trfsk” + MNdGm

ask,qdGabsq + kdGbmsk,qdg,

s18d

where the factor 1/4 comes from averaging over the spin of
the nucleon and photon polarization, and

Gmnsk,qd ;
3e

2MNsMN + MDd
gm«mnabkaqb.

Inserting the expansion of the isobar propagator(9b) and
calculating the trace we arrive at the forward-scattering am-
plitude in the form

AgNsq,kd =
1

3
gm

2 hm
2So

i,j=1

2

afi j g
sQdsk,qdGfi j g

sQdsq + kd

+ o
i,j=1

6

afi j g
sPdsk,qdGfi j g

sPdsq + kdD , s19d

where

hm ;
3e

2MNsMN + MDd
,

and the expressions forafi j g
sQdsk,qd andafi j g

sPdsk,qd are given in

the Appendix B, andGfi j g
sQdsq+kd and Gfi j g

sPdsq+kd are the ex-

pansion coefficients of the isobar propagator, as defined by
Eq. (9b).

The calculated cross section is shown in Fig. 2, where the
dressed isobar propagator in vacuum is calculated using the
free propagators of the nucleon and pion. For thepND form
factor we used an exponential function of the isobar’s four-
momentump:

FpNDsp2d = expf− sp2 − smN + mpd2d/L2g, s20d

which has been fitted to reproduce the pion-nucleon scatter-
ing phase shift in the isobar channel up to pion laboratory
momentum of 500 MeV[11], leading toL=0.97 GeV and

the pND coupling multiplying Eq.(20), gpND=20.2 GeV−1.
The solid line in Fig. 2 is obtained without introducing a
form factor for thegND vertex, although the coupling(17)
allows it without affecting the conservation of the current to
which the photon field couples. The dashed line corresponds
to the gND form factor used in Ref.[8]. As one can see in
the energy region of interest the effect of the form factor is
rather small. The points with error bars show measurement
results from Ref.[14], where we did not attempt to subtract
the background in view of its uncertainty[14].

The only terms giving significant contributions in the sum
of Eq. (19) are those containingGf11g

sQd spd andGf55g
sPd spd, where

we find numerically that the first one gives three times the
contribution of the second. This confirms the interpretation
of the Gf11g

sQd spd as corresponding to helicity 3/2 andGf55g
sPd

3spd to helicity 1/2, since for a magnetic dipole transition
thegN→D amplitudes in the isobar helicity basis are related
by a factor ofÎ3 [15].

We now turn to the nuclear medium. Modification of the
following ingredients of the calculation can be expected: the
nucleon spectral function, the delta spectral function and the
gND vertex. For the nucleons we use the Fermi-gas approxi-
mation, which means that we neglect the small broadening of
the nucleon-hole spectral function, but take care of its Fermi
motion which contributes significantly to the broadening of
the cross-section energy distribution. The small shift of the
spectral-function peak due to binding we accommodate by
allowing a mean-field shift of the isobar’s mass, since only
the difference of the two values plays a role. The main effect
of the medium(apart from the nucleon’s Fermi motion)
comes from the modified isobar propagator which we com-
pute using an in-medium pion propagator. To assure a rea-
sonable width of the isobar it is necessary to include a rather
soft pND form factor in this calculation, giving support to
previous conclusions about its strong momentum depen-
dence[16]. For thegND vertex we assume absence of me-
dium modification.

The pion propagator in the nuclear medium acquires prop-
erties distinguishing it significantly from the vacuum case
[6,8,17,18]. The particle-hole excitation introduces a
spectral-function strength at low energy, while the isobar-
hole one gives a finite width to the main peak and gives rise
to the isobar-hole branch at energies above the central maxi-
mum (with which it can merge). The quantitative result for
the in-medium propagator depends sensitively on the pion-
nucleon-nucleon and pion-nucleon-isobar form factor used,
as well as on the values of the Migdal’sg8 parameters
sgNN8 ,gND8 ,gDD8 d. The low-energy strength in the pion spectral
function and the broadening of the main maximum, usually
accompanied with a shift toward smaller energy, enhance the
decay width of the isobar into a nucleon and pion, while the
Pauli blocking decreases the decay probability. The last
mechanism is effective only at small isobar momenta. In
self-consistent calculations(or in ones using a dressed pion)
this pronounced broadening of the isobar can cause prob-
lems. In Ref.[8] a large mean-field shift of the isobar energy
was used to suppress this unwelcome result, while in Ref.[6]
the pion-momentum dependentpND form factor achieved
the same effect.

FIG. 2. The total photoabsorption cross section on free nucleon,
with the isobar propagator taken from Ref.[11]. The calculation
leading to the solid line is based on magnetic-dipolegND vertex
without form factor, with couplinggm=3. The dashed line shows
the effect of the form factor used in Ref.[8].
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Our point of view is that it is plausible to use a suitable
form factor which suppresses the far off-shell(with energy
around zero and momentum of few hundred MeV) pion con-
tribution to the isobar self energy and in the following we
applied this strategy. This is corroborated by considerations
of deep inelastic scattering on nucleon in the pion-cloud
model [16], where the pion can be far off-shell, and soft
pNN andpND form factors prevent overestimation of anti-
quark distributions. To be consistent with the vacuum calcu-
lation of the isobar self energy, we introduce an(exponential)
form factor depending on the pion four-momentum squared
(which reduces to unity for an on-shell pion):

fpNDsqp
2d = expf− sqp

2 − mp
2d2/LpND

4 g. s21d

Expression(21) multiplies Eq. (20) to give the full pND
form factor:

F̃pNDsp2,qp
2d = FpNDsp2d · fpNDsqp

2d. s22d

We remark that a hard form factor depending onqp
2 was

introduced also in Ref.[8], but it did not provide a significant
suppression of the off-shell pion contribution. The parameter
LpND is expected to be of the order of a fewmp.

In order to be able to take into account the Fermi motion
of the nucleons we start with the photon-absorption cross
section on a nucleon moving with momentumk:

sTsk,qd =
1

2q0fENskd − uk ucosug
Im AgNsq,kd, s23d

whereq is the photon’s four-momentum andu is the angle
between the photon and nucleon three-momenta. The expres-
sion (19) for the forward-scattering amplitude and the coef-
ficient functionsafi j g

sQdsk,qd andafi j g
sPdsk,qd are general and ap-

ply also in this case. The numerical computation is
performed in the rest frame of the medium and involves av-
eraging over the nucleon’s momentum:

sTsq0d =
4

r
E

0

kF k2dk

s2pd2E
−1

1

dmsTsq,kd, s24d

with r=2kF
3 /3p 2.

In Fig. 3 we show the calculated results, solid, dashed and
dot-dash lines, compared to experimental points from Ref.
[19] for uranium and lead nuclei. The dash-dot line is ob-
tained using a free pion propagator, in which case we ob-
serve that the isobar becomes too narrow to describe the
width of the measured data, even with included smearing due
to Fermi motion of the nucleons.

For the two other curves the dressed pion propagator was
taken from the result of a self-consistent calculation based on
the pion-nucleon scattering amplitude, Ref.[20]. We also
checked that using a pion propagator from some other com-
putations, i.e., from Ref.[6] and Ref.[18] does not produce
significantly different results(with small adjustments of
form-factor cutoffs). Actually, using a non-self-consistently
calculated pion propagator needs a softer form factor(21)
because of the more pronounced strength of the particle-hole
branch. The mentioned latter two curves, solid and dashed
line, show the sensitivity to theLpND cut-off in the pND

vertex, the solid line corresponding toLpND=0.7 GeV and
the dashed line toLpND=0.8 GeV. In both cases apNN form
factor with LpNN=0.5 GeV was used and we introduced a
mean-field shift of the isobar mass(relative to that of the
nucleon) of −30 MeV, to better match the position of the
experimental peak. The need for very softpNN form factor
we attribute to the properties of the calculational scheme of
Ref. [20], in which case no form factor was used in the
computation of the loop integrals, determining the self-
energy of nucleon excitations. We did not include a form
factor for thegND vertex, which would affect little the basic
shape of the curves, only introducing some suppression at
photon energies larger than 0.3 GeV. Subtraction of the
background of the experimental points was not attempted.
The relative importance of the background is expected to
increase with leaving the central part of the isobar resonance.

In Fig. 4 we show the isobar spectral function(helicity-
1/2 and helicity-3/2 components) in the nuclear medium for
different momenta, for parameter values leading to the solid
line in Fig. 3. We observe a non-negligible splitting between
the two helicity states and the width is, though increasing
with momentum, not very different from that in vacuum. The
positions of the maxima are shifted with respect to the
vacuum case by slightly less than the introduced −30 MeV
mean-field shift. More detailed examination of the momen-
tum dependence of the two helicities shows that their split-
ting is relatively small belowupu=200 MeV, reaches maxi-
mum around 300 MeV and then decreases with increasing
momentum, becoming again small above 900 MeV.

IV. CONCLUSION

We studied the in-medium behavior of the isobar, using a
relativistically covariant approach for describing its self-

FIG. 3. The total photoabsorption cross section on an in-
medium nucleon at saturation density. The dash-dot line is based on
the free pion propagator. The other two curves have been calculated
using the pion propagator from Ref.[20] with gNN8 =0.8, gND8
=gDD8 =0.6. For the solid line the form-factor cutoffs are:LpNN

=0.5 GeV, LpND=0.7 GeV, while for the dashed lineLpNN

=0.5 GeV,LpND=0.8 GeV. When using the dressed pion propaga-
tor a mean-field shift of −30 MeV has been introduced for the iso-
bar mass. No form factor has been used for thegND vertex. The
experimental points are from Ref.[19] for uranium and lead.
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energy and propagator. A convenient basis is provided by the
subset of terms used for the in-medium generalization of the
partial-wave expansion introduced in Ref.[10]. Using a gen-
eralized pion-nucleon-isobar vertex that allows for spin-1/2
components we observed a small(on the order of a few
percent of the spin-3/2 spectral function) presence of spin-
1/2 components both in vacuum and in nuclear matter of
saturation density. In the nuclear medium the two helicity
states appear with different spectral functions at nonzero iso-
bar momentum(in the rest frame of the medium).

The dominance of the spin-3/2 states allows a much sim-
plified, approximate calculation(not used in the present case)
with only one component in the vacuum(when the two he-
licity states are degenerate) and two components in the me-
dium with high precision, if the density of the medium does
not significantly exceed the saturation density. Actually it
suffices to calculate the relevant one or two components of
the self-energy to obtain the appropriate components of the
dressed propagator. Physical quantities are expressed in
terms of these propagator components. These considerations
apply to the energy region where the isobar resonance is
prominent, further off shell the non-spin-3/2 terms in the
propagator may become sizable compared to the spin-3/2
components.

Computation of the total photoabsorption cross section on
the free and in-medium nucleon in the isobar region shows
reasonable agreement with the data, even without introduc-
ing a form factor for the photon-nucleon-isobar vertex. In the
medium one has to take into account the dressing of the pion
propagator, which leads to an additional broadening of the
isobar, mainly due to the particle-hole excitation. This broad-
ening is reduced by the use of an off-shell pion-nucleon-
isobar form factor. The required cut-off for the exponential
form of (21) turns out be 5–6mp.
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APPENDIX A

The nonzero expansion coefficients of the inverse of the
free isobar propagator, Eq.(13), are given forp2.0 by

gf11g
sQd−1 = Îp2 − M, gf22g

sQd−1 = Îp2 + M ,

gf11g
sPd−1 = 2sÎp2 + Md, gf13g

sPd−1 = Î3M

gf22g
sPd−1 = − 2sÎp2 − Md, gf24g

sPd−1 = − Î3M

gf31g
sPd−1 = Î3M, gf42g

sPd−1 = − Î3M

gf55g
sPd−1 = Îp2 − M, gf66g

sPd−1 = − sÎp2 + Md, sA1d

with M being the bare mass of the isobar.
The expansion coefficients,sfi j g

sQd and sfi j g
sPd, of the isobar

self-energy form a symmetric 232 and a symmetric 636
matrix, with entries given fori ø j by

sf11g
sQd = MNL3 + L7,

sf12g
sQd = − iL8,

sf22g
sQd = MNL3 − L7,

sf11g
sPd = 1

3fMNs2L3 − L5d − 2L7 + L12g,

sf12g
sPd =

i

3
s− 2L8 + L11d,

sf13g
sPd =

1
Î3

f− Îp2s2L3 − L5d − 2L7 + L12g,

sf14g
sPd =

i
Î3

fMNsÎp2L2 − L6d − Îp2L6 + L10g,

sf15g
sPd =

iÎ2

3
s2L8 − L11d,

sf16g
sPd =

Î2

3
fMNsL3 + L5d − L7 − L12g,

sf22g
sPd = 1

3fMNs2L3 − L5d − 2L7 + L12g,

sf23g
sPd =

i
Î3

fMNsÎp2L2 − L6d − Îp2L6 − L10g,

FIG. 4. The isobar spectral function in the medium, calculated
using the pion propagator from Ref.[20] and with Lp=0.6 GeV
(leading to the solid line in Fig. 3). The dashed line shows the
helicity-1/2 and the solid line the helicity-3/2 component. The
three groups of curves, from left to right, correspond to momenta
upu=0, upu=300 MeV andupu=600 MeV.
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sf24g
sPd =

1
Î3

f− Îp2s2L3 − L5d + 2L7 − L12g,

sf25g
sPd =

Î2

3
fMNsL3 + L5d + L7 + L12g,

sf26g
sPd =

iÎ2

3
s2L8 − L11d,

sf33g
sPd = MNp2L0 + sp2 − 2MN

Îp2dL1 + sMN − 2Îp2dL4 + L9,

sf34g
sPd = is− p2L2 + 2Îp2L6 − L10d,

sf35g
sPd = iÎ2

3
f− MN

Îp2L2 + sMN − Îp2dL6 + L10g,

sf36g
sPd =Î2

3
f− Îp2sL3 + L5d + L7 + L12g,

sf44g
sPd = Mnp

2L0 − sp2 + 2MN
Îp2dL1 + sMN + 2Îp2dL4 − L9,

sf45g
sPd =Î2

3
f− Îp2sL3 + L5d + L7 + L12g,

sf46g
sPd = iÎ2

3
f− MN

Îp2L2 + sMN + Îp2dL6 − L10g,

sf55g
sPd =

1

3
fMNsL3 − 2L5d + L7 − 2L12g,

sf56g
sPd =

i

3
s5L8 + 2L11d,

sf66g
sPd =

1

3
fMNsL3 − 2L5d − L7 + 2L12g. sA2d

The pion-nucleon loop integralsLisi =0, . . . ,12d are regu-
larized by the form factor present in the pion-nucleon-isobar
vertex. The imaginary part of the loop integrals is first com-
puted from the imaginary parts of the nucleon and pion
propagator and with the help of the form factor made to
approach zero at large energy. The real part is then computed
from a convergent dispersion integral. For the nucleons we
use a Fermi-gas description, while the pion propagator can
be any result, obtained in an independent calculation.

The imaginary part of the loop integrals is then given by

Im Lisp,ud =
gpND

2

8p2 E
kF

` k2dk

Ek
E

−1

1

dmFsp,kd2

3ImfDpsp0 − Ek,up − k udgKisp,kd, sA3d

whereFsp,kd is the pND form factor, m;cosusp ,kd, Dp

the pion propagator and the functionsKisp,kd are

K0 = 1, K1 = k · p̂, K2 = − X ·k,

K3 =
1

2
fMN

2 − sk · p̂d2 + sX ·kd2g,

K4 = sk · p̂d2, K5 = sX ·kd2, K6 = − sX ·kdsk · p̂d,

K7 = sk · p̂dK3, K8 = − sX ·kdK3, K9 = sk · p̂d3,

K10 = − sX ·kdsk · p̂d2, K11 = − sX ·kd3, K12 = sk · p̂d2sX ·kd,

sA4d

with k·p̂;k·p/Îp2 andX;Xsp,ud defined in Eq.(4).

APPENDIX B

The termsafi j g
sQdsk,qd andafi j g

sPdsk,qd in Eq. (19) are symmet-

ric under the exchange ofi and j , thus we give them only for
i ø j . DefiningM± ;MN±k·p/Îp2 and writing simplyXm for
Xmsp,ud, the nonzero values are as follows:

a11
sQd =

p2

2
M+f− M+M− + sX ·kd2g,

a12
sQd =

− ip2

2
sX ·kdfM+M− + sX ·kd2g,

a22
sQd =

p2

2
M−f− M+M− + sX ·kd2g,

a11
sPd =

− 2p2

3
M+M−

2,

a12
sPd =

2ip2

3
M+M−sX ·kd,

a15
sPd =

iÎ2p2

3
M+M−sX ·kd,

a16
sPd =

Î2p2

2
M−F1

3
M+M− + sX ·kd2G ,

a22
sPd =

− 2p2

3
M+

2M−,

a25
sPd =

Î2p2

2
M+F1

3
M+M− + sX ·kd2G ,
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a26
sPd =

iÎ2p2

3
M+M−sX ·kd,

a55
sPd =

− p2

2
M+F5

3
M+M− + sX ·kd2G ,

a56
sPd = − i

sX · pd
2

M−F7

3
M+M− + 3sX ·kd2G ,

a66
sPd =

− p2

2
M−F5

3
M+M− + sX ·kd2G , sB1d

We note that all terms containing index 3 or 4 are identically
zero.
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