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We study the thermodynamics of the linear sigma model with constituent quarks beyond the mean-field
approximation. By integrating out the quark degrees of freedom we derive an effective action for the meson
fields which is then linearized around the ground state including field fluctuations. We propose a new method
for performing exact averaging of complicated functions over the meson field fluctuations. Both thermal and
zero-point fluctuations are considered. The chiral condensate and the effective meson masses are determined
self-consistently in a rigorous thermodynamic framework. At zero chemical potential the model predicts a
chiral crossover transition which separates two distinct regimes: heavy quarks and light pions at low tempera-
tures, but light quarks and heavy mesons at high temperatures. The crossover becomes a first order phase
transition if the vacuum pion mass is reduced from its physical value.
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[. INTRODUCTION Despite many studies the status of theM. remains
somewhat controversial. In most applications of this model
It is commonly accepted that quantum chromodynamic®nly mesonic degrees of freedom are included explicitly
(QCD) is the true theory of strong interactions. Therefore, in[4,8,14. Then the model shows a chiral phase transition, but
principle, it should describe all phases of strongly interactinghe high-temperature phase is very different from what is
matter at all densities and temperatures. In practice QCD ca@xpected for QCD, since there are no free quarks but only
be exactly solved only in some limiting cases: first, at veryheavy mesons. On the other hand, if quark degrees of free-
high densities and temperatures when the property oflom are |r_1cIl_Jded from the beginning while fluctuatl_ons in
asymptotic freedom allows a perturbative expansion to b&h€ mesonic fields are ignor¢dl], the model also predicts a
used, and second, at zero density and high enough temper%h'ral transition at about the same temperature. Now, how-
tures when it can be discretized on a Euclidean lattice. AIVE" -th.e Iow-pemperature phase has tl?e wrong ﬁtructure
though some improvements at finite chemical potential havé'r:ge Itis d(_)m|?ated by COTSt't“ent Iq“?)rhs ?‘n?l’ m;[ € mean
been achieved recent|yt], the direct application of QCD at I€ld approximation, pions play no role. Fhysicaiy, of course,

high baryon density, or for real-time processes, is still uitepions are expected to be the most relevant degrees of free-
9 Yo Y, . P ’ g om at low temperatures. There have been several attempts
problematic at present. This makes it necessary to build e

) : . fo improve matters by including both constituent quarks and
fective models which respect only general properties of)ijns (see, e.g., Ref[10]), but the calculations have been

QCD, such as chiral symmetry, and operate with effectivgimjted to the lowest order loop expansion. A more satisfac-
degrees of freedom, such as mesons and constituent quarkgyy approach has been pursued recently, namely(dpe

The linear sigma modellL.oM) [2] is one of the most proximate solution of the renormalization group flow equa-
popular models of this kind which has been studied alreadyions [17,18 which include effects due to field fluctuations.
for several decadetsee, e.g., Refg[3,4]). It incorporates This appears to be particularly valuable in the neighborhood
correctly the phenomenology of low-energy strong interac-of critical points.
tions, including chiral symmetry. At low density and tem-  In the present paper we study a different, and possibly
perature the matter is assumed to be in a phase where chii@lore transparent, approach to including field fluctuations.
symmetry is spontaneously broken. A phase transition thajVe deal with the full loM including both constituent quarks
restores chiral symmetry was predicted at high temperaturesnd mesonic excitations and our goal is to proceed as far as
[5] or baryon densitie§6]. According to Ref[7] QCD with  possible without invoking any kind of mean-field approxima-
two massless flavors belongs to the same universality clasin or perturbative expansion. We shall demonstrate below
as the @4) LoM and therefore the phase transition is of thethat one can indeed develop a practical computational
same order. In the case of nonzero quark masses chiral syrseheme where the field fluctuations are incorporated in the
metry is explicitly broken and universality arguments cannotthermodynamic potential to all orders in a self-consistent
be applied. Then the character of the chiral transition deway. This formalism corresponds to summing up the infinite
pends on the detailed pattern of the symmetry brea@hg series of daisy and superdaisy diagrams. Of course, this is
In recent years there have been many attempts to use diffgpossible only within the Hartree approximation where the
ent versions of the &M to model QCD phase transitions at exchange diagrams are disregarded. The resulting physical
finite temperaturg4,8,9, baryon density{10,11, and for  picture appears to be close to QCD-based expectations, e.g.
nonequilibrium condition§12-1§. Ref.[19]. Namely, the model exhibits a smooth chiral cross-
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over transition at temperatures of 150—200 MeV from a low- Z=Tr exo— B(H - uN
temperature phase made of heavy constituent quarks and A= BH = uN)}
light pions to a high-temperature phase composed of light

B
— Y= 3. ~~0
quarks and heavy mesonic excitations. We regard these re- _fDquD‘TD" ex fo deVd X (L+pay q)},
sults as quite satisfactory for modeling QCD, even though

the model has no confinement. For effective theories that ©)
Eg?rporate both chiral symmetry and confinement see Re]:/'vhereN is the quark number operatg8=T-L is the inverse

}emperaturep, is the quark chemical potentidV, is the vol-

The paper is organized as follows. In Sec. Il @ generaume of the system, ane=it denotes the imaginary time.

LoM is formulated and its partition function is represented
within the path integral formalism. We integrate out the
quark degrees of freedom and approximately reduce the B. Integrating out the quarks
problem to a purely mesonic theory with a very nonlinear
effective potential. This potential is then linearized around
the correct ground state including equilibrium field fluctua-
tions to all orders. Finally, the mesonic contribution to the - B R
thermodynamic potential is calculated in closed form. In Sec. Zgy= f DgDg ex f drf d*xaDq ¢, (6)

[l we describe a general method for evaluating averages of 0 v

complicated functions over the fluctuations of the fields. Thisynere

permits easy consistency checks and allows the equations to

be put into a simple form. Results obtained by including or . a . .

excluding zero-point contributions, in addition to the thermal D=- 705. tiy- Voglotiyer- m+py’. (7)
fluctuations, are presented in Sec. IV. Here we also assess ) ] )
simplified approximations to the complete results. Our conf-0ormally one can integrate out the quark fields with the re-
clusions are presented in Sec. V. The relationship of théult

First we integrate out the quark degrees of freedom. The
relevant part of the partition function is

present approach to earlier wojk1,27 is discussed in Ap- B A
pendix A, and the proof of a useful identity is given in Ap- In qu:f dq-f d® In deD. (8)
pendix B. 0 Y%
The analysis of such an expression has been discussed in
Il. THEORY detail by Frasef24]. Accordingly, one proceeds by moving
_ - _ the operators to the left and the fields which depend and
A. LoM Lagrangian and partition function x to the right. This generates a series of commutators which

In this paper we employ a standard version of theM. in\_/olve the derivatives (_)f the meson fields. Since our interest
model with SU2), X SU(2)r symmetry. The corresponding 1S I low energy properues we will discard these co.mmutator
Lagrangian for quarks interacting with theand = meson terms, tacitly assuming that the meson mode amplltude:s vary
fields is written as slowly in position and time. Then, evaluating the operdor

in a frequency-three-momentum representation we get

L=Lag+ Lgm=U(o,m), (1) .
In deD ==L (In{ 4w+ (E- )]}
where the quark Lagrangian is 28V on
. : +In{ g wf+ (E+w)1}), 9
Lag=aliy,# - glo+iys7-m]q, ) Gt 2
where the Matsubara frequenay,=(2n+1)#T, the quark
the meson kinetic energy is degeneracyy is 12 for the two flavors employed here, and
E?=p?+n?. The quark effective mass is given by
_1
Lxm= 5(9u00 0+ dym - am), © M2 = G202 + 7). (10)
and the meson potential is given by After performing the summation ovem we get InZg=
—fg drfy d Qgq(m), where the quark-antiquark thermody-
U(o,m) = \(0? + 72— {)? - Ho. (4)  namic potential density is expressed as
Here we have included an explicit chiral symmetry breaking Q= (m) = - vql f dpp{ BE + In[1 + e AE ]
term of the conventional typeio. As is well known, the a 212
choice of the symmetry breaking term is not unique. The + In[1+e—,3(E+’u)]}. (11)

parameters of the moded, \, ¢, andH, will be specified

later. The partition function of the grand canonical ensembléNote that this differs from the standard result in that the mass
can be written as a functional integral over the quark andiepends on the meson fields according to #@). Thus the
meson fieldg23], partition function(5) can be written as
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Z:JDaDwex Jﬁdff XL (12 e = FUw+Am) ) P = F0+A,m)
0 v v JA? T aml '

(18)

We now linearize the complicated effective mesonic poten-
L= Lxm—U(o,m) (13)  tial by setting

U U 1 2(A2_ /A2
is the effective meson Lagrangian. Here the effective poten- U@ +Aa,m) — (Uv+A,m)) +3m (A% - (A%)
tial, including the contribution of quarks and antiquarks with +iml (w2 - (7). (19)
effective massn, is 2

where

Obviously, this becomes an identity if we average over the
Iy _ _ field fluctuations on both sides. The terms on the right con-
Ulo,m) =U(o,m) + Qgg(m). (14) taining the average quantities should be included directly in

. . ' .. the total thermodynamic potential density. The remaining
The Lagrangiar(13) now contains only meson fields and it o\ containingA? and =2 are combined with the kinetic

constitutes an effective meson theory with the very nonlinear . . i S
) . . energy to give the mesonic partition function:
interaction potentia{14).

B
S S Zn= f DADm ex J dq-f &3 Lgm— M2 A2
C. Linearization of the mesonic action 0 v
Let us consider the equations of motion for meson fields 1 2 2
which follow from the effective meson Lagrangi@h3): — My ] : (20
U Following standard stepg3] one arrives at the thermody-
oo+ P 0, (15  namic potential density associated with the meson field fluc-
tuations:
~ InzZ
U Qn=—-—"T=0,+Q,, (21)
#9,m+—=0. (16) BV
Jdm
We average these equations over the meson field fluctua- Qg=lfdpp2{%BEg+ |n(1_e—ﬁEa)}, (22)
tions. Since ther field is expected to develop a nonvanishing 27

expectation value, we decompose it as=v+A whereA is
the fluctuating part. By definition the average bfis zero 3T ~

and this is also true for any odd power ®fi.e.,(A"=0 for 0:=53 f dppA{3BE, +In(1 -5}, (293)
odd n. A similar remark applies to the pion field. Here and

below angle brackets indicate averaging over the field flucwhere E,=p?+n?, and E,=p?+mZ. Two consistency re-
tuations. A practical scheme for evaluating such averages igtions for the meson masses follow directly from E20):
discussed in the following section.

As the thermal average of an odd number of fluctuating (A% = 2%; (7 = 2&, (24)
fields is zero, only the terms id with odd powers ofA will M du=
contribute to Eq(15), yielding Finally, we can write the total thermodynamic potential den-
5 sity as
dU(v +A,
<%> =0. (17) Q=(U@ +A, @) + (Qgg(m) - 3mE(A?) - Sme(m?)
+ Qm(m(r: mw) . (25)

st'i?ﬁerézee%f?oﬁZldchvagse?’;cﬁl aj;vz s;ngilzldde;r:/aglc\jls The subtraction of the third and fourth terms on the right is
P P ! yS Y necessary to avoid double countifZp].

number of fluctuating fields and thus the thermal average
automatically vanishes. Notice that E@L7) includes all

powers of the fluctuating fields, so the equation of motion IIl. EVALUATION OF FIELD FLUCTUATIONS
contains fluctuations of the fields to all orders. This makes .
our approach different from numerous previous attempts to A. Averaging procedure

include fluctuations where an expansion is made around the Consider now the average of a complicated function
mean field ground state. The second derivatives of the effe¢9(y + A, #2) over the fluctuating fieldd and . The aver-

tive potential pick out the even powers of the fluctuatingaging can be carried out by generalizing the technique intro-
fields inU and these we identify with the meson masses: duced in Ref[26]. First, we expand the function in a Taylor
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series about the poiriv,0), then take the average term by 90 U 1a<A2> ,
term — =\ — —/ -m
Jv Jdv 2 Jdv &A
k 11_2n o
(O@w+A,m)=> 0kn(y, 0)<——>, (26) A A ST S, (32)
kn n! 2 Jdv (97Ti2 ﬂ
where This vanishes due to the equation of motick¥) and the
mass definition$18). Thus we have the nontrivial result that
K on Q) is a minimum with respect to variations in the scalar con-
OkN(g,b) = a_a_@(a b) (27) densatev, as is required for sensible thermodynamics. This
k n Ut . . - .
ab analysis amounts to the formal justification of the approach

of Refs.[21,22 where the thermal averages were evaluated
The next step is to reduce a general veKtd%r?") to powers  approximately in series form, and therefore thermodynamic
of (A?) and(#?). The necessary counting factors for joining consistency was obtained only approximately.
the meson fields at this vertex in all possible w23 are:
(AM=(k=1)!1 (AH¥2 for k even, and zero fok odd. For
pions, all species are equivalent enf) <172> <773> 3<172)
and therefore(sm2"=(2n+1)!1(% @2)". After substituting Zero-point and thermal fluctuations. The former are divergent
these factors in the serig¢26) We notice that the resulting and thus require a proper renormalization procedure. The

averaging is equivalent to performing integrations with thenonf[rlwal issue of renormahza_\tlon in self-consistent approxi-
following Gaussian weighting functions: mation schemes has been discussed for thsl lmodel by

several author§27-29. We adopt their result for the regu-
larization in four dimensions, namely

B. Zero-point fluctuations
The general formulagll), (22), and (23) include both

2
P,(2) = (2m(A?)) ™2 exp(— m) :

(28) dleTpt p2 1 m2 2 2
Zd—nﬁ-_mfo dpE—(rﬂﬁ{m In—+A ".:|,
- E i 3 4_ 3y2 ) zpt 2 2
Paly) = \/;<(772>> Aoy (29 d?ng = Pj dpE— - miﬂz{m In— +AZ-m ]
T 0 m™

Then, resumming the Taylor series, we obtain (33

o o Note that the Afn term may be removed by redefinition of
(O +A,7?) :f dzPG(z)f dyy?’P.(y)O(v +z,y?). the constant in the sigma model potentigh). The zero-
—w 0 point contributions td) then follow by integratiorisee Egs.
(30) (35) and (36) belowj.
For the quark case it is natural to adopt a similar form,

This is a general result for any analytic functiéh Note that setting

(O(w+A,7)—Ov,0) in the limit when (A?) and (7?) szpt v (% p? 2

—0. The correspondence between &) and the approxi- Zd—m2 - ﬁf dpz — - 8172{m In— +AG- mz].
mate expressions used in Ref21,27 is discussed in Ap- 0 Aq

pendix A. We also need the derivative of E§0) with re-

(34)

spect to some variable. After two integrations by parts one

obtains As is reasonable in a phenomenological model we have al-

lowed the renormalization scalg, in the fermion sector to

900 +A, ) d!ffer from thg scale{\m in the meson sector to aIIovv_ for t_he
—<(’)(v +A, 7)) = o =R different physics in the two sectors. Again, integration gives
Ja dv the result fordg, [see Eq(39) below.
l ‘9<AZ>< FOWw+A4, 11'2)> C. Practical evaluation
T % . : L .
The thermodynamic potential densities including both
19(m?) | PO +A, =) zero-point and thermal fluctuations of the sigma and pion
+§ Ja P) 77|2 fields are, respectively,
39 Q,= 1 {m Inﬁ+ ~(Bm2 - A2)(AZ-m?)
Using this equation one can easily check that the deriva- 64 An 2

tive of the total thermodynamic potential density with re-

spect tov is (395

+ lﬂz J dpp? In(1 - e %),
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2

Q.= ﬂz{m Inm—+2(3m ~ AL(AR - mi)} n=2';2 J dppXne(E, 1) = Ne(E,— w)). (41)

m
3T _ The entropy density can then be obtained from the standard
o2 f dpp? In(1 - e, (36)  thermodynamic relatio=B(£+P-un).
For the equation of motio(il7) we need the first deriva-
The squared fluctuations of the meson fields are found byive of Qg

using Eq.(24):
(79@ .
aQ 1 m? <—a A > =g%(cA(m)), (42
(Ay=2—7'= o2 e In 2+A2 n,
Jm, 16 where the functiorA(m) is defined by
+— dp—nB(E ), (37) _ 9% _ 2
v A(m) =2 = N In—— + Ag - n?
27 E, (m) am? 8772 "A
IQm_ 3 M2 +ﬂ-j P e (E,p0) + e (E - 43
<,n_2> Za—mi_ﬁ{m In— +A -m :| 272 dpE[nF( ) +ne(E,- )] (43
3 p? Within our approach the quark condensate can be easily ex-
+ o7 J dpE_WnB(E”)’ (38) pressed as
. . 1/ 99q
where the Bose occupation numbemigx)=(exp Bx—1)"%. (qq)=~- p =g(dA(m)). (44)
The thermodynamic potential density associated with quarks v
is For the meson masses in Ed.8) we need second deriva-
tives:
(Qgg(m) =- <m In— += (3m ~ AY(AZ- 2)> PO IA(
327T2 Z 79 A + 29222 m)
T A 9 A? (m) +2g am?
_ Yo J d B(E-p)
ppIn[1 +€ ] 9
2m? <A2>(A(v +A)AM)), (45)
+In[1 +e AEMT), (39)
N O d A(m) 2
whereE=p?+n?. g Am) + 2222l ) = 9_ 2A
Since the total thermodynamic potent@b) is a mini- Y (m) +29°m Come (1) mAm),
mum with respect to variations in the scalar condensate (46)
the thermodynamic quantities can be found in standard fash-
ion. The pressur®=- and the energy density is where for the latter equalities we have used B€). Explic-
itly
1
E=(U+A,m) - —m2<A2> - —m2<772> +— {m In— dAM) _ f
64 - ein—; - dp=[Nne(E, ) + ne(E, -
; A Py 8772 A2 4772 p [Ne(E, p0) + Ne(E,— )]
1 m.
+=(3m% - AZ)(AZ - i In—2 (47
2 (3~ A (A= M) 64772 N2 N
When deriving Eqs(43), (45), and (46) we have used the
1 2 2ua2_ 2 1 fact thatQg,(m) andA(m) are even functions ah. For sim-
" 2(3mW A (A=) | + w? dpp’| E,ne(E,) plicity we have suppressed the dependence of these functions
uponT and .
+ 3E7rnB(E7T):| m? |n"_‘2 + 1(3mZ—A2) Finally, we need to average the bare potentiflv
327 2 a +A,7) and its derivatives. Using the expressi(80), or

more elementary means, one obtains
X(AZ- mz)> + ﬁz f dppX(E[N:(E, w) + ne(E,~ w)]), (U +A,m) = (AN (0?+ 72 - )2~ Ha)
(40) = M3 +(a2)% + W2+ (7?)?
where the Fermi-Dirac occupation number i%(X,y) + 2(m2)2 + A7) - 2L(v? + (A?)

=[exp B(x-y)+1]L. Here we do not explicitly show a con- Nl noAl
stant which must be subtracted from the pressure and added =30 -3 } Ho. (48)

to the energy density in order to renderand £ zero in the  The first derivative ofU needed in the equation of motion
vacuum. The quark number density is A7) is
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IU@ +A, TABLE |. Model parameters.
<%> =hv(w?+3(A% + () - ) - H.
Parameter ZPT NOZPT
(49)
o . 7.114 27.58
1E'he it;cond derivatives &f needed for the meson masses maMeVg) ~8.733x 10° 7,847 105
g.(18) are H(MeV3) 1.760% 10° 1.760x 10°
PU@ +A,m) 5 ) ) g 2.844 3.387
<T = MBo%+ (AT + (7 =), An(MeV) 453.4
Ay(MeV) 951.8
PUw +A,m)
<—a = ) =N @) 3@ -0). (50)
I

pion decay constant i§,=92.4 MeV. Goldstone’s theorem
The equation of motioil7) involves the sum of Eqg$42)  states that in the absence of explicit symmetry breakhg,
and(49). It is interesting to note that the quark contribution =0, the pion, as a Goldstone boson, should have zero mass in
of Eqg. (42) vanishes ifv=0. This is becauséocA(m)) be- the phase with spontaneously broken symmetry. Then Eq.
comes{AA(gVA2+ 7)) which is an odd function oA. Inthe  (52) gives in the vacuum
absence of explicit symmetry breaking=0, Eq.(49) per- 22 v+A
mits a solutionv=0 which is the true solution above the 2)\(<7Ti2>—<A2>)+92 (—'— )A(m) =0.
critical point. () v
The equation of motion and the equations for the meson (53)
masses have to be solved self-consistently. The integrals in i o o
Eq.(30) were evaluated numerically using 32-point Gaussiart IS natural to assume t.hat this equation is 2also valid in the
integration [30]. The necessary thermodynamic integralscasem,# 0, or, stated differently, to Ztaklglzmwfw. The so-
were obtained by using the numerical approximation schemBition of Eq. (53) at T=0 is (A%=(m7) since, as shown in
of Ref. [31]. Appendix B, the quark contribution vanishes in this limit.
Assembling the contributions to the meson masses in Eqlhis same condition was used by Lenaghan and Ris[2iKe
(18) and using the equation of motici7) for the casev  In the pure meson sector. For the NOZPT c448&=(?)
#0, we find =0 in the vacuum so the equation is automatically satisfied.
1 In the ZPT case Eq(53) requiresA,, to be intermediate

m2 = 2\0v2 + gz<(A - _)(v ¥ A)A(m)> + ﬂ, (51  between the pion and sigma masses. Choosing vacuum
v

(A% masses m,=700 MeV and m,=138 MeV gives A,
=453 MeV, as listed in Table I; values of similar order have
2 i ; .
_ ) m v+A H been employed in Ref§28,29,32. This should not be di-
mfr— 2N(mr) = (4%) + 92<(ﬁ T, )A(m)> + o rectly viewed as a cutoff parameter. If thef‘T term in Eq.
! (35 or them(zr term in Eq.(37) is compared with the result of
(52 using a four-dimensional cutoff to evaluate the integral, the

It is interesting to consider the high temperature limit Whenappg%priate cutoff pararr;/ezter is more reasonable, namely
(A% and(7?) become equal. In this limit the first term on the Ane”"=960 MeV or Ae"“=748 MeV, respectively. The

right in Eq.(52) vanishes, but so does the second quark tern)(ﬁluehof the coupling lfonstalg'éis fixed by the Irequirr](_argerf]t H
(see Appendix B Therefore we regain the usual high tem- that the vacuum quark mass be approximately a third of the

H n\11/n H
perature resultm_=H/v. Since in this regiony is very ~ Nucleon mass. We can define the mass/y={(m")}™". It is

small, the quark contribution in Eq51) also vanishes ap- Not & priori obvious which power of the mass should be
proximately and the first term in the equation can be ne&veraged. We examine the two lowest moments il

glected, returningn,=m_ as expected. andn=2 which are
IV. RESULTS My =(m)=g(\o? + @), (54)
A. Choice of parameters M, = (MP)Y2 = g(v2 + (A2) + (7)) V2, (55)

We need to choose the parameterg, H, g, Ay, andA _— . .
in the case where zero-point fluctuations are included As we shall see below, the two definitions give masses which
beled ZPT. We also present calculations where zero-point2™® closely similar, so it is of little consequence which choice
fluctuations are excludedabeled NOZPT for two reasons. IS Mmade. We actually used the second definition, setiing

First they have often been excluded in the literature and secz939/3 MeV. To determina. and A, in the ZPT case we

ond it is important to assess their influence in the ZPT casd€duire the vacuumm, to be 700 MeV in Eq(51) and con-
Note that the parameters,, and A, are irrelevant to the ~Strain the vacuum quark condensate in @d). For the latter

NOZPT analysis. we choose the valuégq),..= (uu+dd)=—-2X (225 MeV)3
Since chiral symmetry is spontaneously broken in the33,34. In the NOZPT case the vacuum quark condensate is
vacuum, the axial current requires that.=f., where the zero and only ther mass equation is required. The value of
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NOZPT' (&) ] perature increases so that chiral symmetry is approximately
restored at high temperatures. Thus there is no sharp phase

transition, but rather a crossover. The crossover temperature,

determined from the maximum value @b /4T|, is 150 and

198 MeV in the NOZPT and ZPT cases, respectively. We

remark that if quark contributions are omitted this tempera-

ture is about 70 MeV higher in accordance with Rgf7],

and in that case falls off less rapidly with temperature.

Lattice calculations suggest a smooth crossover, as we have

found, and extrapolation to the chiral limit yields a phase

transiiton with a critical temperature of 173+8 Me\9].

The phase transition is thought to be of second order, al-

though first order is a possibility7]. Our model is unlikely

—
(=]
(=]

v

(<]
(=]

<AZ>1/2
[ <21
P

o

- ZPT ]
100 |- .

o
o

Mean Field & rms Fluctuations (MeV)

i :A;,\RJ ] to be accurate enough to distinguish the order, but it is of
ol L o 10 00 S —— interest to examine the qualitative predictions as we ap-
0 100 200 300 400 500

proach the chiral limit. We do this in the simplest fashion by
multiplying the physical vacuum pion mass by a factot

FIG. 1. Theo mean fieldv and the root mean square fluctua- (the ZPT parameters are refitted with the remaining quanti-
tions as a function of temperatute) without and(b) with zero-  ties unchanged, as specified in Sec. 1)/ We find that when
point fluctuations. the pion mass reduction factor %the smooth crossover

becomes a first order phase transition with a critical tempera-
the scaleA, in Table | is about twice that in the meson Ure of 197 MeV. This temperature is little changed by fur-
sector, as seems intuitively reasonable. We remark thy if ther reduct|0rl1 in the pion mass. For example, with a reduc-
is chosen to be equal td,, and the quark condensate is tion fac_tor of; the temperature |s_194 MeV. This appears to
predicted, rather than fitted, it turns out to be more than a®€ an improvement on the prediction of theM without
order of magnitude smaller than the physical value useduarks[36] since it agrees with the lattice finding of a weak
above. Furthermore, even when these renormalization scaléépendence of the critical temperature on the quark mass
differ, it is not possible to carry out the fit outlined above [19]- In comparison the renormalization group calculations
with m, =600 MeV. This is why we have chosen a somewhat/17] Show a somewhat stronger dependence on the pion mass
larger value of 700 MeV for this poorly known mass. Thus&nd further a phase transitiosecond orderis obtained only
the vacuum value of the quark condensate is a strong cod? the chiral limit. The transition temperature of
straint. It is also responsible for the quite different values oft00—130 MeV found in Refl17] is substantially below the
¢ listed in columns two and three of Table I. These werevalues given apove, no doubt due to the rather small value of
obtained from the equation of motigt7). 430 MeV obtained for ther mass. i

Finally, we mention that we have examined results with a  Figure 1 also shows the mean square fluctuatioh®;!
number of different parameter sets and qualitatively they ar@nd ()2 We required them to be equal a0 (see pre-
all very similar. Therefore the parameters of Table | will vious subsection and they are equal again at high tempera-
provide a representative set of results for this model. tures wherv becomes small. As can be seen from Fig) 1

We should further point out that while we require Gold- the thermal contribution in the intermediate region is larger
stone’s theorem to be satisfiedTat 0, this does not guaran- for the pion since it has the smaller mass. We do not see the
tee that it will be fulfilled in general. This is because for significant enhancement of the field fluctuations in the cross-
T, # 0 the right-hand side of E¢52) does not vanish even over region that would be expected were there to be a second
when the explicit symmetry-breaking terkhis set to zero. order phase transition. The reason is that large thermal fluc-
The nonvanishing terms can be cancelled by including aiuations are developed only at, <T, which never holds in
additional (exchangg diagram[15,35 which is missing in  our calculations: in fact Fig. 2 shows thay, does not drop
our treatment. However, we focus on the more realistic casbelow 300 MeV. The shallow dip in{A?? in the
where the pion has its physical vacuum mass, 100-200-MeV temperature range which is seen in F) 1
=138 MeV. Since we find that the contribution of these non-arises from the decrease im,. This causes the zero-point
vanishing terms is relatively small, we shall keep the formcontribution to the fluctuations in E¢37) to decrease, be-
(52) for the pion mass so as to preserve the structure of theoming zero atm,=A,. At higher temperaturesn, rises
theory. with increasingT, causing the zero-point contribution to in-
crease strongly and dominate over the thermal contribution
for T>300 MeV. This is clearly seen by comparing Figs.
B. Full model 1(a) and 1b).

In this paper we consider the case where the quark chemi- The behavior of the meson and quark masses is illustrated
cal potentialu is zero, corresponding to a net quark densityin Fig. 2. For the meson masses the NOZPT and ZPT calcu-
n of zero. The behavior of the sigma mean fielis shown lations give qualitatively similar results. As expected, the
for the NOZPT case in Fig.(&) and for the ZPT case in Fig. pion mass is an increasing function &fwhile the sigma
1(b). The value ofv decreases smoothly to zero as the tem-mass develops a minimum in the transition region. Here the

T (MeV)
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FIG. 2. The meson and quark masses as a function of tempera- F1g. 3. The thermodynamic quantitie® 874, £/ T4 andS/ T as
ture (a) without and(b) with zero-point fluctuations. a function of temperaturg¢a) without and (b) with zero-point

pion and sigma masses become nearly equal signaling tHctuations.

approximate restoration of chiral symmetry. At high tempera- o
tures, T>250 MeV, the meson masses become large and C. Approximations

grow according to/H/v. For the qguark mass it is seen from
Fig. 2 that the definitiong54) and(55) for M, (dotted curve
and M, (short-dashed curyegive closely similar results. At

The expressions above which invol¢ky, all require the
calculation of two integrals over the Gaussian weighting
high temperatures the mass is small in comparison to tthCt'onS_ as well as a momentum Integration. Thus it is
temperature in the NOZPT ca$Big. 2a)], as it is in the V\{orth_\/\_/hlle_z to examine simpler procedures. The most natural
renormalization group approagh?]. In contrast in the zPT  Simplification is to thermally average the quark mass and
case the increase in the fluctuations seen in Fig. 1 causes H¥gn insert it in Eqs(42), (45), and(46). We first consider
increase in the quark mass, such that it is of the same ordéiie M; mass definition in Eq(54) which was the approxi-
as the temperature. Caldetsal. [37] report a similar resultin  mation adopted in Ref22]. Replacingm with M, the ther-
their approach to including fluctuations. In this highee- ~ modynamic potential density is approximatg@g,(m))
gime the meson masses in FigbPare approximately twice — Qg(M,). In the equation of motion
the quark mass, as would be expected for loosely bound
states of quarks and antiquarks. It should be emphasized that

ﬁﬂaq o
<W> =9<w>M1A(M1), (56)
be gv, so that it vanishes at high temperatures. v -

The thermodynamic quantities, energy density, pressure,
and entropy density, as functions of temperature are presng for the meson masses

this behavior is qualitatively different from the mean-field
approximation where the constituent quark mass is defined to
sented in Fig. 3. At high temperatures these are dominated by
quarks. For a massless quark gas of degeneracy AZT*3

=£/T*=6.91 andS/T3=9.21, and in the NOZPT case in Fig. 0-005 pr—
3(a) these values are achieved at high temperatures. There is r ]
only a small contribution from mesons, since they are heavy, o= = ]
indicating that the system has effectively become a massless
quark gas. The same cannot be said for the ZPT case in Fig. g —0.005 - -
3(b), where the asymptotic values are smaller than the mass- 1 r ]
less limit. This is due the quark mass remaining comparable :’a_ -0.01 [ _'
to the temperature. The quark condensate is displayed in Fig. = L ]
4 for the ZPT case since the NOZPT case has only a small _0.015 F E
thermal contribution. The condensate is dominated by the ’ r y
zero-point contribution. Even though one might expect the C ]
thermal part to increase witl, the condensaté44) is ap- -0.02 - .
proximately gv{A(m)), so the decrease in is sufficient to L I
0 100 200 300 400 500

bring the thermal contribution to zero at high temperature. T (MeV)

Thus{qq) starts afT=0 with the chosen empirical value and

rapidly becomes negligible whemn becomes small. This is FIG. 4. Thermal, zero-point, and total values of the quark con-
the physically expected behavior. densate as a function of temperature in the ZPT case.
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PO~ 2 (b) quark condensate.
9
e :g<(a2+n2)3/2>M1A(M1)’ .
at temperatures just above 300 MeV. We conclude that the
M, approximation is to be preferred and that it describes the
PO o?+2q? trends of the exact results quite well, being most accurate at
=9 M;AMy). (57)

57Ti2 (o2 + 72)32 high temperature.
The M, case defined in Eq55) is even simpler. Here the V. CONCLUSIONS
thermodynamic potential density is approximaté,(m)) '
— Qgy(My), and in the equation of motion Our main goal in this paper was to understand the role

played by field fluctuations in effective chiral models. We
D\ _ 5 have shown how to average field functions of arbitrary com-
ox /9 ()AMy) = gvAMy). (58)  plexity over the field fluctuations. This allowed a set of self-
consistent equations for the average field and the masses to
The second derivatives agéA(M,) for both sigma and pion. be formulated which led to consistent thermodynamics. We
In this case the quark contributions to the meson masses imave applied this approach to the linear sigma model, includ-
Egs.(51) and(52) vanish. ing both mesonic and quark degrees of freedom. The quark
Note that ambiguity in the evaluation of Eq42), (45,  degrees of freedom were integrated out and the effective ac-
and (46) when using a thermally averaged quark mass idion was linearized according to E(L9). Thus we described
resolved by using Eq:32) to require that¥()/dv be identi- the o and = mesons as quasiparticles and their properties
cally zero. Then the thermodynamic potential density is avere properly taken into account in the thermodynamic po-
minimum with respect to variations in the scalar condensatg¢ential.
v, as it should be. We have considered two versions of the model: ZPT
In Figs. 5 and 6 we compare the full ZPT results with where both zero-point and thermal fluctuations are included,
those obtained by using tHd,; and M, approximations for and NOZPT where only thermal fluctuations are present. The
various quantities of interest. The parameters in the left colformer was able to describe the quark condensate and the
umn of Table | are used throughout. At temperatures abovegacuum value was chosen according to QCD-based esti-
220 MeV both approximations are able to reproduce the exmates. To accommodate this value a sigma mass of 700 MeV
act results reasonably well with, perhaps, a slight preferenceas employed which, while within the broad range set by the
for the M, case. Below that temperature there are larger deParticle Data Grouf38], is 100 MeV larger than the tradi-
viations between the exact and the approximate results. ThHenal value. We also needed to employ separate renormal-
crossover occurs at a 15-MeV higher temperature inMhe ization scales for the mesonic and quark zero-point contribu-
approximation. At lower temperatures thvg approximation tions of 450 and 950 MeV, respectively. For both versions of
gives a reasonable, although not extremely accurate accoutiite model we required the constituent quark mass in vacuum
of the exact results. Thd, approximation, on the other to be 1/3 of the free nucleon mass.
hand, shows marked deviations for the sigma mean field and Numerical results were presented only for the case of zero
mass,v andm,, and the quark condensate. Of course, thisnet quark density, i.e.u=0. The calculations revealed an
can be much improved by refitting the parameter§a0. interesting and consistent picture. With increasing tempera-
However, then one finds that there are no physical solutiontire we saw a gradual decrease of the condensate and an
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increase of the sigma and pion fluctuations. The model gavél1/0-1, the U.S. Department of Energy under Grant No.
a crossover type of chiral transition at a temperature of aboUDE-FG02-87ER40328, and the Russian Fund of Fundamen-
198 MeV (150 MeV) in the ZPT(NOZPT) case. In the tran-  tal ResearcliRFFR) under Grant No. 03-02-04007.

sition region the rms field fluctuations became comparable in

magnitude to the condensate. On the other hand we did not

observe the strong increase in the sigma field fluctuations APPENDIX A: CONNECTION TO PREVIOUS WORK

which would appear in the vicinity of a true critical point. )

The restoration of chiral symmetry was seen in the behavior The strategy followed in Ref§21,22 was to assume for
of the sigma and pion masses, which became degeneralfge purposes of counting that

above the transition region, and in the behavior of the quark 1 1

condensate which decreased to zero. (M%) =(m?) = 2(A% + @) = {(4), (A1)

_The effective quark mass first showed a modest decreasgihough in the numerical evaluation of the final expressions
with temperature, but above the transition region it started t9,o ctual values of the thermal averages were used. Equa-
increase and this trend was quite strong for the ZPT cas fon (A1) is strictly true only in the high temperature limit,

was indiced entirely by the moson field lLciuations. In con JNere the sigma and pion masses become degenerate, hov
densed matter physics this phenomenon is known J8ver, at low temperatures one can also show that the correct

pseudogap formation. At high temperatures the mesoff<Pressions are obtained. Now, writing?+m*=0%+y?
masses increased much more rapidly than the quark mass, 45'3?’A’ the troublesome Cross term 2 was expanded_ out.
that they effectively decoupled from the system and we had ¥SINd EA-(A1) tr;e expressions needed could be cast in terms
nearly ideal gas of quarks. In the ZPT case the quark effecf & functionf(v +7). _
tive mass was comparable to the temperature, however, in Equation(Al) allows the general expressig80) to be
the NOZPT case the mass was much smaller so that thafritten as a four-dimensional integral for the thermal average
thermodynamics closely resembled a massless quark gas. @hthe function in question:
the other hand, at low temperatures quarks were heavy in 4 202
comparison to the temperature while pions were relatively  (f(y?+ ,pz)): 55 f d*¢ exp(— —)f(vz+€2),
light so that we had an ideal gas of pions with mass close to (Y7 (¥
the physical mass. Certainly, a qualitatively similar behavior (A2)
is expected on the basis of QCD. The transition between . D p2s p2 2. 02 )
these two regimes occurs at a temperature which is surpri2i"Ce only the magnitudé®=£o+£7+£5+ €3 occurs in the
ingly close to that found in lattice QCD simulatiof&d]. In integrand, the angular integration may be carried out giving
addition we considered simplified approaches in which the 8 [ 202
quark mass was treated as a number rather than a function of (f(v?+ ¢?)) = —2f deed exp(— —)f(v2+ €?).
the meson fields; these were found to be quite successful in W) )
the high-temperature, chiral-restored regime, but less accu- (A3)
rate at low temperatures. _ ) _
We also briefly discussed the dependence of the chiral Eduation(A3) then allows an easy evaluation of the prin-
transition on the vacuum pion mass. As the chiral limit wasciPal expressions used in Re[ZQ.’L,ZZ.ZDeZﬁmng anew '”tf'
approached by reducing the pion mass to a fractién75 of ~ 9ration variable according t&"=1+(</v%, then settingz
its true vacuum value the crossover transition became a first20>/(¥%), and integrating by parts twice one obtains
order phase transition. The critical temperature was found to V24 V2
be quite insensitive to the value of the pion mass, as in lattice In( 5 ) = In(7> +1+(1-DEED),
analyseq19]. Uvac Uvac
In the future it would be interesting to perform calcula- (A4)
tions for a nonzero quark chemical potential. This would ) , ) ,
give the possibility of exploring the phase diagram of the@S given in Refs{21,22, with v, denoting the vacuum
model in theT-x plane and comparing it with the predictions Valué of v. _-Eh_et exponential integral is defineB0] by
of other QCD-motivated models. It would also be interestingE(Y)=/1 dtt™e’. A similar procedure yields
to optimize the model in order to achieve better correspon- 3 2 _
dence with QCD. Some obvious omissions from the present (Vv + P = —[22+ (1 ——22) \f“wezz erfc(z)] (A5)
approach include vector mesons, strange quarks, the gluon 4z 3
condensate and gluonlike excitatioi6,39. The latter as given in Ref[22], with the complementary error function
would provide _the correct degrees of fre_edom at high temaefined[30] by erfdz):l—zq-r'l’ng ot
perature. Also in the future, more realistic patterns of sym-
metry breaking, including for instance the(1), anomaly,

should be considered. APPENDIX B: AN IDENTITY FOR THE CASE (A?%)=(n?)
ACKNOWLEDGMENTS Here we show that the quark contribution to E§2)

This work was supported in part by the Deutsche Forsvanishes in the casg@\?)=(w?). First we prove by induction
chung GemeinschatDFG) under Grant No. 436 RUS 113/ that in this case
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(AZ™2y2) = (2n + (AP T2yP™), (B1)

wheren andm are integers. It is simple to verify this equa-
tion in the casesn=0 andm=1. After integrating by parts
the following relations are obtained:

(A2 %) = (AP)[(2n + (AP + 24T 2y,

(A2t = (m))[(A% ) + 21 (A" wP P2, (B2)

Since<A2)=<7ri2> these relations show that if E¢B1) holds
for m=j-1 then it holds fom=j and, since it holds fom

=0 and 1, it therefore holds in general. The relation can also

be proved by using combinatorial arguments.
Now consider a functionf(nm?), where m?=g?(v+A)>?
+7%]. Expanding 8%A in a Taylor series

PHYSICAL REVIEW C70, 015204(2004)

A (g (w? + ¢)
(2j +1)!

(2920)2j+1A2j+2> ,

(B3)

where we have used the fact that odd powers\ajive a
vanishing contribution, ané™ denotes theith derivative of
f. Utilizing Eq. (B1)

” 2j+1}(n2(,,2
<Af<m2>>:2gﬁvE<f o +‘”2”w?<zgsz>2">
=0 :

= 2g%(m 1 (mP)), (B4)

again using the fact that odd powers bfgive zero contri-
bution. Thus in the casg\?=(x?) we have the relation

f(m? i A
2 ZM>:<(m-”Z )f(m2)>

Af(mP)
<_ v tagim an?
=0, (B5)

where the second equality is obtained using the reladén
Equation(B5) was used in the text.

(Af(mP)y =2, <

j=0
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