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We study the thermodynamics of the linear sigma model with constituent quarks beyond the mean-field
approximation. By integrating out the quark degrees of freedom we derive an effective action for the meson
fields which is then linearized around the ground state including field fluctuations. We propose a new method
for performing exact averaging of complicated functions over the meson field fluctuations. Both thermal and
zero-point fluctuations are considered. The chiral condensate and the effective meson masses are determined
self-consistently in a rigorous thermodynamic framework. At zero chemical potential the model predicts a
chiral crossover transition which separates two distinct regimes: heavy quarks and light pions at low tempera-
tures, but light quarks and heavy mesons at high temperatures. The crossover becomes a first order phase
transition if the vacuum pion mass is reduced from its physical value.
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I. INTRODUCTION

It is commonly accepted that quantum chromodynamics
(QCD) is the true theory of strong interactions. Therefore, in
principle, it should describe all phases of strongly interacting
matter at all densities and temperatures. In practice QCD can
be exactly solved only in some limiting cases: first, at very
high densities and temperatures when the property of
asymptotic freedom allows a perturbative expansion to be
used, and second, at zero density and high enough tempera-
tures when it can be discretized on a Euclidean lattice. Al-
though some improvements at finite chemical potential have
been achieved recently[1], the direct application of QCD at
high baryon density, or for real-time processes, is still quite
problematic at present. This makes it necessary to build ef-
fective models which respect only general properties of
QCD, such as chiral symmetry, and operate with effective
degrees of freedom, such as mesons and constituent quarks.

The linear sigma modelsLsMd [2] is one of the most
popular models of this kind which has been studied already
for several decades(see, e.g., Refs.[3,4]). It incorporates
correctly the phenomenology of low-energy strong interac-
tions, including chiral symmetry. At low density and tem-
perature the matter is assumed to be in a phase where chiral
symmetry is spontaneously broken. A phase transition that
restores chiral symmetry was predicted at high temperatures
[5] or baryon densities[6]. According to Ref.[7] QCD with
two massless flavors belongs to the same universality class
as the Os4d LsM and therefore the phase transition is of the
same order. In the case of nonzero quark masses chiral sym-
metry is explicitly broken and universality arguments cannot
be applied. Then the character of the chiral transition de-
pends on the detailed pattern of the symmetry breaking[8].
In recent years there have been many attempts to use differ-
ent versions of the LsM to model QCD phase transitions at
finite temperature[4,8,9], baryon density[10,11], and for
nonequilibrium conditions[12–16].

Despite many studies the status of the LsM remains
somewhat controversial. In most applications of this model
only mesonic degrees of freedom are included explicitly
[4,8,14]. Then the model shows a chiral phase transition, but
the high-temperature phase is very different from what is
expected for QCD, since there are no free quarks but only
heavy mesons. On the other hand, if quark degrees of free-
dom are included from the beginning while fluctuations in
the mesonic fields are ignored[11], the model also predicts a
chiral transition at about the same temperature. Now, how-
ever, the low-temperature phase has the wrong structure
since it is dominated by constituent quarks and, in the mean
field approximation, pions play no role. Physically, of course,
pions are expected to be the most relevant degrees of free-
dom at low temperatures. There have been several attempts
to improve matters by including both constituent quarks and
pions (see, e.g., Ref.[10]), but the calculations have been
limited to the lowest order loop expansion. A more satisfac-
tory approach has been pursued recently, namely the(ap-
proximate) solution of the renormalization group flow equa-
tions [17,18] which include effects due to field fluctuations.
This appears to be particularly valuable in the neighborhood
of critical points.

In the present paper we study a different, and possibly
more transparent, approach to including field fluctuations.
We deal with the full LsM including both constituent quarks
and mesonic excitations and our goal is to proceed as far as
possible without invoking any kind of mean-field approxima-
tion or perturbative expansion. We shall demonstrate below
that one can indeed develop a practical computational
scheme where the field fluctuations are incorporated in the
thermodynamic potential to all orders in a self-consistent
way. This formalism corresponds to summing up the infinite
series of daisy and superdaisy diagrams. Of course, this is
possible only within the Hartree approximation where the
exchange diagrams are disregarded. The resulting physical
picture appears to be close to QCD-based expectations, e.g.
Ref. [19]. Namely, the model exhibits a smooth chiral cross-
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over transition at temperatures of 150–200 MeV from a low-
temperature phase made of heavy constituent quarks and
light pions to a high-temperature phase composed of light
quarks and heavy mesonic excitations. We regard these re-
sults as quite satisfactory for modeling QCD, even though
the model has no confinement. For effective theories that
incorporate both chiral symmetry and confinement see Ref.
[20].

The paper is organized as follows. In Sec. II a general
LsM is formulated and its partition function is represented
within the path integral formalism. We integrate out the
quark degrees of freedom and approximately reduce the
problem to a purely mesonic theory with a very nonlinear
effective potential. This potential is then linearized around
the correct ground state including equilibrium field fluctua-
tions to all orders. Finally, the mesonic contribution to the
thermodynamic potential is calculated in closed form. In Sec.
III we describe a general method for evaluating averages of
complicated functions over the fluctuations of the fields. This
permits easy consistency checks and allows the equations to
be put into a simple form. Results obtained by including or
excluding zero-point contributions, in addition to the thermal
fluctuations, are presented in Sec. IV. Here we also assess
simplified approximations to the complete results. Our con-
clusions are presented in Sec. V. The relationship of the
present approach to earlier work[21,22] is discussed in Ap-
pendix A, and the proof of a useful identity is given in Ap-
pendix B.

II. THEORY

A. L sM Lagrangian and partition function

In this paper we employ a standard version of the LsM
model with SUs2dL3SUs2dR symmetry. The corresponding
Lagrangian for quarks interacting with thes and p meson
fields is written as

L = Lq̄q + LKm − Uss,pd, s1d

where the quark Lagrangian is

Lq̄q = q̄figm]m − gss + ig5t · pdgq, s2d

the meson kinetic energy is

LKm = 1
2s]ms]ms + ]mp · ]mpd, s3d

and the meson potential is given by

Uss,pd = 1
4lss2 + p2 − zd2 − Hs. s4d

Here we have included an explicit chiral symmetry breaking
term of the conventional type,Hs. As is well known, the
choice of the symmetry breaking term is not unique. The
parameters of the model,g, l, z, and H, will be specified
later. The partition function of the grand canonical ensemble
can be written as a functional integral over the quark and
meson fields[23],

Z = Tr exph− bsH − mN̂dj

=E Dq̄DqDsDp expHE
0

b

dtE
V

d3x sL + mq̄g0qdJ ,

s5d

whereN̂ is the quark number operator,b=T−1 is the inverse
temperature,m is the quark chemical potential,V is the vol-
ume of the system, andt= it denotes the imaginary time.

B. Integrating out the quarks

First we integrate out the quark degrees of freedom. The
relevant part of the partition function is

Zq̄q =E Dq̄Dq expHE
0

b

dtE
V

d3x q̄D̂qJ , s6d

where

D̂ = − g0 ]

] t
+ ig · = − gss + ig5t · pd + mg0. s7d

Formally one can integrate out the quark fields with the re-
sult

ln Zq̄q =E
0

b

dtE
V

d3x ln detD̂. s8d

The analysis of such an expression has been discussed in
detail by Fraser[24]. Accordingly, one proceeds by moving
the operators to the left and the fields which depend ont and
x to the right. This generates a series of commutators which
involve the derivatives of the meson fields. Since our interest
is in low energy properties we will discard these commutator
terms, tacitly assuming that the meson mode amplitudes vary

slowly in position and time. Then, evaluating the operatorD̂
in a frequency-three-momentum representation we get

ln detD̂ =
nq

2bV
o
pn

slnhb2fvn
2 + sE − md2gj

+ lnhb2fvn
2 + sE + md2gjd , s9d

where the Matsubara frequencyvn=s2n+1dpT, the quark
degeneracynq is 12 for the two flavors employed here, and
E2=p2+m2. The quark effective mass is given by

m2 = g2ss2 + p2d. s10d

After performing the summation overn we get lnZq̄q=
−e0

b dteV d3x Vq̄qsmd, where the quark-antiquark thermody-
namic potential density is expressed as

Vq̄qsmd = −
nqT

2p2 E dpp2hbE + lnf1 + e−bsE−mdg

+ lnf1 + e−bsE+mdgj . s11d

Note that this differs from the standard result in that the mass
depends on the meson fields according to Eq.(10). Thus the
partition function(5) can be written as
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Z =E DsDp expHE
0

b

dtE
V

d3xLmJ , s12d

where

Lm = LKm − Ũss,pd s13d

is the effective meson Lagrangian. Here the effective poten-
tial, including the contribution of quarks and antiquarks with
effective massm, is

Ũss,pd = Uss,pd + Vq̄qsmd. s14d

The Lagrangian(13) now contains only meson fields and it
constitutes an effective meson theory with the very nonlinear
interaction potential(14).

C. Linearization of the mesonic action

Let us consider the equations of motion for meson fields
which follow from the effective meson Lagrangian(13):

]m]ms +
] Ũ

] s
= 0, s15d

]m]mp +
] Ũ

] p
= 0. s16d

We average these equations over the meson field fluctua-
tions. Since thes field is expected to develop a nonvanishing
expectation valuev, we decompose it ass=v+D whereD is
the fluctuating part. By definition the average ofD is zero
and this is also true for any odd power ofD, i.e., kDnl=0 for
odd n. A similar remark applies to the pion field. Here and
below angle brackets indicate averaging over the field fluc-
tuations. A practical scheme for evaluating such averages is
discussed in the following section.

As the thermal average of an odd number of fluctuating

fields is zero, only the terms inŨ with odd powers ofD will
contribute to Eq.(15), yielding

K ] Ũsv + D,pd
] D

L = 0. s17d

Since the pion field always occurs asp2, a single derivative
with respect to a componentpi will always yield an odd
number of fluctuating fields and thus the thermal average
automatically vanishes. Notice that Eq.(17) includes all
powers of the fluctuating fields, so the equation of motion
contains fluctuations of the fields to all orders. This makes
our approach different from numerous previous attempts to
include fluctuations where an expansion is made around the
mean field ground state. The second derivatives of the effec-
tive potential pick out the even powers of the fluctuating

fields in Ũ and these we identify with the meson masses:

ms
2 =K ]2Ũsv + D,pd

] D2 L ; mp
2 =K ]2Ũsv + D,pd

] pi
2 L .

s18d

We now linearize the complicated effective mesonic poten-
tial by setting

Ũsv + D,pd → kŨsv + D,pdl + 1
2ms

2sD2 − kD2ld

+ 1
2mp

2sp2 − kp2ld. s19d

Obviously, this becomes an identity if we average over the
field fluctuations on both sides. The terms on the right con-
taining the average quantities should be included directly in
the total thermodynamic potential density. The remaining
terms containingD2 and p2 are combined with the kinetic
energy to give the mesonic partition function:

Zm =E DDDp expHE
0

b

dtE
V

d3xfLKm − 1
2ms

2 D2

− 1
2mp

2p2gJ . s20d

Following standard steps[23] one arrives at the thermody-
namic potential density associated with the meson field fluc-
tuations:

Vm = −
ln Zm

bV
; Vs + Vp, s21d

Vs =
T

2p2 E dpp2h 1
2bEs + lns1 − e−bEsdj , s22d

Vp =
3T

2p2 E dpp2h 1
2bEp + lns1 − e−bEpdj , s23d

whereEs=Îp2+ms
2 and Ep=Îp2+mp

2. Two consistency re-
lations for the meson masses follow directly from Eq.(20):

kD2l = 2
] Vs

] ms
2 ; kp2l = 2

] Vp

] mp
2 . s24d

Finally, we can write the total thermodynamic potential den-
sity as

V = kUsv + D,pdl + kVq̄qsmdl − 1
2ms

2kD2l − 1
2mp

2kp2l

+ Vmsms,mpd. s25d

The subtraction of the third and fourth terms on the right is
necessary to avoid double counting[25].

III. EVALUATION OF FIELD FLUCTUATIONS

A. Averaging procedure

Consider now the average of a complicated function
Osv+D ,p2d over the fluctuating fieldsD and p. The aver-
aging can be carried out by generalizing the technique intro-
duced in Ref.[26]. First, we expand the function in a Taylor
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series about the pointsv ,0d, then take the average term by
term

kOsv + D,p2dl = o
k,n

Osk,ndsv,0dKDk

k!

p2n

n!
L , s26d

where

Osk,ndsa,bd ;
] k

] ak

] n

] bnOsa,bd. s27d

The next step is to reduce a general vertexkDkp2nl to powers
of kD2l andkp2l. The necessary counting factors for joining
the meson fields at this vertex in all possible ways[21] are:
kDkl=sk−1d ! ! kD2lk/2 for k even, and zero fork odd. For
pions, all species are equivalent sokp1

2l=kp2
2l=kp3

2l= 1
3kp2l

and thereforekp2nl=s2n+1d ! ! k 1
3p2ln. After substituting

these factors in the series(26) we notice that the resulting
averaging is equivalent to performing integrations with the
following Gaussian weighting functions:

Psszd = s2pkD2ld−1/2 expS−
z2

2kD2lD , s28d

Ppsyd =Î 2

p
S 3

kp2l
D3/2

expS−
3y2

2kp2lD . s29d

Then, resumming the Taylor series, we obtain

kOsv + D,p2dl =E
−`

`

dzPsszdE
0

`

dyy2PpsydOsv + z,y2d.

s30d

This is a general result for any analytic functionO. Note that
kOsv+D ,p2dl→Osv ,0d in the limit when kD2l and kp2l
→0. The correspondence between Eq.(30) and the approxi-
mate expressions used in Refs.[21,22] is discussed in Ap-
pendix A. We also need the derivative of Eq.(30) with re-
spect to some variablea. After two integrations by parts one
obtains

]

] a
kOsv + D,p2dl =

] v
] a
K ] Osv + D,p2d

] v
L

+
1

2

] kD2l
] a

K ]2Osv + D,p2d
] D2 L

+
1

2

] kp2l
] a

K ]2Osv + D,p2d

] pi
2 L .

s31d

Using this equation one can easily check that the deriva-
tive of the total thermodynamic potential density with re-
spect tov is

] V

] v
=K ] Ũ

] v
L +

1

2

] kD2l
] v

HK ]2Ũ

] D2L − ms
2J

+
1

2

] kp2l
] v

HK ]2Ũ

] pi
2L − mp

2J = 0. s32d

This vanishes due to the equation of motion(17) and the
mass definitions(18). Thus we have the nontrivial result that
V is a minimum with respect to variations in the scalar con-
densatev, as is required for sensible thermodynamics. This
analysis amounts to the formal justification of the approach
of Refs.[21,22] where the thermal averages were evaluated
approximately in series form, and therefore thermodynamic
consistency was obtained only approximately.

B. Zero-point fluctuations

The general formulas(11), (22), and (23) include both
zero-point and thermal fluctuations. The former are divergent
and thus require a proper renormalization procedure. The
nontrivial issue of renormalization in self-consistent approxi-
mation schemes has been discussed for the LsM model by
several authors[27–29]. We adopt their result for the regu-
larization in four dimensions, namely

2
dVs

zpt

dms
2 =

1

4p2E
0

`

dp
p2

Es

→ 1

16p2Fms
2 ln

ms
2

Lm
2 + Lm

2 − ms
2G ,

2
dVp

zpt

dmp
2 =

3

4p2E
0

`

dp
p2

Ep

→ 3

16p2Fmp
2 ln

mp
2

Lm
2 + Lm

2 − mp
2G .

s33d

Note that the +Lm
2 term may be removed by redefinition of

the constantz in the sigma model potential(4). The zero-
point contributions toV then follow by integration[see Eqs.
(35) and (36) below].

For the quark case it is natural to adopt a similar form,
setting

2
dVq̄q

zpt

dm2 = −
nq

2p2E
0

`

dp
p2

E
→ −

nq

8p2Fm2 ln
m2

Lq
2 + Lq

2 − m2G .

s34d

As is reasonable in a phenomenological model we have al-
lowed the renormalization scaleLq in the fermion sector to
differ from the scaleLm in the meson sector to allow for the
different physics in the two sectors. Again, integration gives
the result forVq̄q [see Eq.(39) below].

C. Practical evaluation

The thermodynamic potential densities including both
zero-point and thermal fluctuations of the sigma and pion
fields are, respectively,

Vs =
1

64p2Fms
4 ln

ms
2

Lm
2 +

1

2
s3ms

2 − Lm
2 dsLm

2 − ms
2dG

+
T

2p2 E dpp2 lns1 − e−bEsd, s35d
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Vp =
3

64p2Fmp
4 ln

mp
2

Lm
2 +

1

2
s3mp

2 − Lm
2 dsLm

2 − mp
2dG

+
3T

2p2 E dpp2 lns1 − e−bEpd. s36d

The squared fluctuations of the meson fields are found by
using Eq.(24):

kD2l = 2
] Vm

] ms
2 =

1

16p2Fms
2 ln

ms
2

Lm
2 + Lm

2 − ms
2G

+
1

2p2 E dp
p2

Es

nBsEsd, s37d

kp2l = 2
] Vm

] mp
2 =

3

16p2Fmp
2 ln

mp
2

Lm
2 + Lm

2 − mp
2G

+
3

2p2 E dp
p2

Ep

nBsEpd, s38d

where the Bose occupation number isnBsxd=sexp bx−1d−1.
The thermodynamic potential density associated with quarks
is

kVq̄qsmdl = −
nq

32p2Km4 ln
m2

Lq
2 +

1

2
s3m2 − Lq

2dsLq
2 − m2dL

−
nqT

2p2 E dpp2klnf1 + e−bsE−mdg

+ lnf1 + e−bsE+mdgl , s39d

whereE=Îp2+m2.
Since the total thermodynamic potential(25) is a mini-

mum with respect to variations in the scalar condensatev,
the thermodynamic quantities can be found in standard fash-
ion. The pressureP=−V and the energy density is

E = kUsv + D,pdl −
1

2
ms

2kD2l −
1

2
mp

2kp2l +
1

64p2Fms
4 ln

ms
2

Lm
2

+
1

2
s3ms

2 − Lm
2 dsLm

2 − ms
2dG +

3

64p2Fmp
4 ln

mp
2

Lm
2

+
1

2
s3mp

2 − Lm
2 dsLm

2 − mp
2dG +

1

2p2 E dpp2FEs nBsEsd
1

1

+ 3Ep nBsEpdG −
nq

32p2Km4 ln
m2

Lq
2 +

1

2
s3m2 − Lq

2d

3sLq
2 − m2dL +

nq

2p2 E dpp2kEfnFsE,md + nFsE,− mdgl ,

s40d

where the Fermi-Dirac occupation number isnFsx,yd
=fexp bsx−yd+1g−1. Here we do not explicitly show a con-
stant which must be subtracted from the pressure and added
to the energy density in order to renderP andE zero in the
vacuum. The quark number density is

n =
nq

2p2 E dpp2knFsE,md − nFsE,− mdl. s41d

The entropy density can then be obtained from the standard
thermodynamic relationS=bsE+P−mnd.

For the equation of motion(17) we need the first deriva-
tive of Vq̄q:

K ] Vq̄q

] D
L = g2ksAsmdl, s42d

where the functionAsmd is defined by

Asmd = 2
] Vq̄q

] m2 = −
nq

8p2Fm2 ln
m2

Lq
2 + Lq

2 − m2G
+

nq

2p2 E dp
p2

E
fnFsE,md + nFsE,− mdg. s43d

Within our approach the quark condensate can be easily ex-
pressed as

kq̄ql =
1

g
K ] Vq̄q

] s
L = gksAsmdl. s44d

For the meson masses in Eq.(18) we need second deriva-
tives:

K ]2Vq̄q

] D2 L = g2KAsmd + 2g2s2] Asmd
] m2 L

=
g2

kD2l
kDsv + DdAsmdl, s45d

K ]2Vq̄q

] pi
2 L = g2KAsmd + 2g2pi

2] Asmd
] m2 L =

g2

kpi
2l

kpi
2Asmdl,

s46d

where for the latter equalities we have used Eq.(30). Explic-
itly

] Asmd
] m2 = −

nq

8p2ln
m2

Lq
2 −

nq

4p2 E dp
1

E
fnFsE,md + nFsE,− mdg.

s47d

When deriving Eqs.(43), (45), and (46) we have used the
fact thatVq̄qsmd andAsmd are even functions ofm. For sim-
plicity we have suppressed the dependence of these functions
uponT andm.

Finally, we need to average the bare potentialUsv
+D ,pd and its derivatives. Using the expression(30), or
more elementary means, one obtains

kUsv + D,pdl = k 1
4lss2 + p2 − zd2 − Hsl

= 1
4lh3sv2 + kD2ld2 + sv2 + kp2ld2

+ 2
3kp2l2 + 2kD2lkp2l − 2zsv2 + kD2l

+ kp2l − 1
2zd − 3v4j − Hv. s48d

The first derivative ofU needed in the equation of motion
(17) is
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K ] Usv + D,pd
] D

L = lvsv2 + 3kD2l + kp2l − zd − H.

s49d

The second derivatives ofU needed for the meson masses in
Eq. (18) are

K ]2Usv + D,pd
] D2 L = ls3v2 + 3kD2l + kp2l − zd,

K ]2Usv + D,pd
] pi

2 L = lsv2 + kD2l + 5
3kp2l − zd . s50d

The equation of motion(17) involves the sum of Eqs.(42)
and (49). It is interesting to note that the quark contribution
of Eq. (42) vanishes ifv=0. This is becauseksAsmdl be-
comeskDAsgÎD2+p2dl which is an odd function ofD. In the
absence of explicit symmetry breaking,H=0, Eq. (49) per-
mits a solutionv=0 which is the true solution above the
critical point.

The equation of motion and the equations for the meson
masses have to be solved self-consistently. The integrals in
Eq. (30) were evaluated numerically using 32-point Gaussian
integration [30]. The necessary thermodynamic integrals
were obtained by using the numerical approximation scheme
of Ref. [31].

Assembling the contributions to the meson masses in Eq.
(18) and using the equation of motion(17) for the casev
Þ0, we find

ms
2 = 2lv2 + g2KS D

kD2l
−

1

v
Dsv + DdAsmdL +

H

v
, s51d

mp
2 = 2lskpi

2l − kD2ld + g2KS pi
2

kpi
2l

−
v + D

v
DAsmdL +

H

v
.

s52d

It is interesting to consider the high temperature limit when
kD2l andkpi

2l become equal. In this limit the first term on the
right in Eq.(52) vanishes, but so does the second quark term
(see Appendix B). Therefore we regain the usual high tem-
perature result,mp.H /v. Since in this regionv is very
small, the quark contribution in Eq.(51) also vanishes ap-
proximately and the first term in the equation can be ne-
glected, returningms.mp as expected.

IV. RESULTS

A. Choice of parameters

We need to choose the parametersl, z, H, g, Lm, andLq
in the case where zero-point fluctuations are included(la-
beled ZPT). We also present calculations where zero-point
fluctuations are excluded(labeled NOZPT) for two reasons.
First they have often been excluded in the literature and sec-
ond it is important to assess their influence in the ZPT case.
Note that the parametersLm and Lq are irrelevant to the
NOZPT analysis.

Since chiral symmetry is spontaneously broken in the
vacuum, the axial current requires thatvvac= fp, where the

pion decay constant isfp=92.4 MeV. Goldstone’s theorem
states that in the absence of explicit symmetry breaking,H
=0, the pion, as a Goldstone boson, should have zero mass in
the phase with spontaneously broken symmetry. Then Eq.
(52) gives in the vacuum

2lskpi
2l − kD2ld + g2KS pi

2

kpi
2l

−
v + D

v
DAsmdL = 0.

s53d

It is natural to assume that this equation is also valid in the
casempÞ0, or, stated differently, to takeH=mp

2 fp. The so-
lution of Eq. (53) at T=0 is kD2l=kpi

2l since, as shown in
Appendix B, the quark contribution vanishes in this limit.
This same condition was used by Lenaghan and Rischke[27]
in the pure meson sector. For the NOZPT casekD2l=kpi

2l
=0 in the vacuum so the equation is automatically satisfied.
In the ZPT case Eq.(53) requiresLm to be intermediate
between the pion and sigma masses. Choosing vacuum
masses ms=700 MeV and mp=138 MeV gives Lm
=453 MeV, as listed in Table I; values of similar order have
been employed in Refs.[28,29,32]. This should not be di-
rectly viewed as a cutoff parameter. If thems

4 term in Eq.
(35) or thems

2 term in Eq.(37) is compared with the result of
using a four-dimensional cutoff to evaluate the integral, the
appropriate cutoff parameter is more reasonable, namely
Lme3/4=960 MeV or Lme1/2=748 MeV, respectively. The
value of the coupling constantg is fixed by the requirement
that the vacuum quark mass be approximately a third of the
nucleon mass. We can define the mass byMn=hkmnlj1/n. It is
not a priori obvious which power of the mass should be
averaged. We examine the two lowest moments withn=1
andn=2 which are

M1 = kml = gkÎs2 + p2l, s54d

M2 = km2l1/2 = gsv2 + kD2l + kp2ld1/2. s55d

As we shall see below, the two definitions give masses which
are closely similar, so it is of little consequence which choice
is made. We actually used the second definition, settingM2
=939/3 MeV. To determinel and Lq in the ZPT case we
require the vacuumms to be 700 MeV in Eq.(51) and con-
strain the vacuum quark condensate in Eq.(44). For the latter

we choose the valuekq̄qlvac;kūu+ d̄dl=−23 s225 MeVd3

[33,34]. In the NOZPT case the vacuum quark condensate is
zero and only thes mass equation is required. The value of

TABLE I. Model parameters.

Parameter ZPT NOZPT

l 7.114 27.58

zsMeV2d −8.7333104 7.8473103

HsMeV3d 1.7603106 1.7603106

g 2.844 3.387

LmsMeVd 453.4

LqsMeVd 951.8
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the scaleLq in Table I is about twice that in the meson
sector, as seems intuitively reasonable. We remark that ifLq
is chosen to be equal toLm, and the quark condensate is
predicted, rather than fitted, it turns out to be more than an
order of magnitude smaller than the physical value used
above. Furthermore, even when these renormalization scales
differ, it is not possible to carry out the fit outlined above
with ms=600 MeV. This is why we have chosen a somewhat
larger value of 700 MeV for this poorly known mass. Thus
the vacuum value of the quark condensate is a strong con-
straint. It is also responsible for the quite different values of
z listed in columns two and three of Table I. These were
obtained from the equation of motion(17).

Finally, we mention that we have examined results with a
number of different parameter sets and qualitatively they are
all very similar. Therefore the parameters of Table I will
provide a representative set of results for this model.

We should further point out that while we require Gold-
stone’s theorem to be satisfied atT=0, this does not guaran-
tee that it will be fulfilled in general. This is because for
T,mÞ0 the right-hand side of Eq.(52) does not vanish even
when the explicit symmetry-breaking termH is set to zero.
The nonvanishing terms can be cancelled by including an
additional (exchange) diagram[15,35] which is missing in
our treatment. However, we focus on the more realistic case
where the pion has its physical vacuum mass,mp

=138 MeV. Since we find that the contribution of these non-
vanishing terms is relatively small, we shall keep the form
(52) for the pion mass so as to preserve the structure of the
theory.

B. Full model

In this paper we consider the case where the quark chemi-
cal potentialm is zero, corresponding to a net quark density
n of zero. The behavior of the sigma mean fieldv is shown
for the NOZPT case in Fig. 1(a) and for the ZPT case in Fig.
1(b). The value ofv decreases smoothly to zero as the tem-

perature increases so that chiral symmetry is approximately
restored at high temperatures. Thus there is no sharp phase
transition, but rather a crossover. The crossover temperature,
determined from the maximum value ofu]v /]Tu, is 150 and
198 MeV in the NOZPT and ZPT cases, respectively. We
remark that if quark contributions are omitted this tempera-
ture is about 70 MeV higher in accordance with Ref.[27],
and in that casev falls off less rapidly with temperature.
Lattice calculations suggest a smooth crossover, as we have
found, and extrapolation to the chiral limit yields a phase
transiiton with a critical temperature of 173±8 MeV[19].
The phase transition is thought to be of second order, al-
though first order is a possibility[7]. Our model is unlikely
to be accurate enough to distinguish the order, but it is of
interest to examine the qualitative predictions as we ap-
proach the chiral limit. We do this in the simplest fashion by
multiplying the physical vacuum pion mass by a factor,1
(the ZPT parameters are refitted with the remaining quanti-
ties unchanged, as specified in Sec. IV A). We find that when
the pion mass reduction factor is34 the smooth crossover
becomes a first order phase transition with a critical tempera-
ture of 197 MeV. This temperature is little changed by fur-
ther reduction in the pion mass. For example, with a reduc-
tion factor of 1

4 the temperature is 194 MeV. This appears to
be an improvement on the prediction of the LsM without
quarks[36] since it agrees with the lattice finding of a weak
dependence of the critical temperature on the quark mass
[19]. In comparison the renormalization group calculations
[17] show a somewhat stronger dependence on the pion mass
and further a phase transition(second order) is obtained only
in the chiral limit. The transition temperature of
100–130 MeV found in Ref.[17] is substantially below the
values given above, no doubt due to the rather small value of
430 MeV obtained for thes mass.

Figure 1 also shows the mean square fluctuations,kD2l1/2

and kpi
2l1/2. We required them to be equal atT=0 (see pre-

vious subsection), and they are equal again at high tempera-
tures whenv becomes small. As can be seen from Fig. 1(a)
the thermal contribution in the intermediate region is larger
for the pion since it has the smaller mass. We do not see the
significant enhancement of the field fluctuations in the cross-
over region that would be expected were there to be a second
order phase transition. The reason is that large thermal fluc-
tuations are developed only atms!T, which never holds in
our calculations: in fact Fig. 2 shows thatms does not drop
below 300 MeV. The shallow dip inkD2l1/2 in the
100–200-MeV temperature range which is seen in Fig. 1(b)
arises from the decrease inms. This causes the zero-point
contribution to the fluctuations in Eq.(37) to decrease, be-
coming zero atms=Lm. At higher temperaturesms rises
with increasingT, causing the zero-point contribution to in-
crease strongly and dominate over the thermal contribution
for T.300 MeV. This is clearly seen by comparing Figs.
1(a) and 1(b).

The behavior of the meson and quark masses is illustrated
in Fig. 2. For the meson masses the NOZPT and ZPT calcu-
lations give qualitatively similar results. As expected, the
pion mass is an increasing function ofT while the sigma
mass develops a minimum in the transition region. Here the

FIG. 1. Thes mean fieldv and the root mean square fluctua-
tions as a function of temperature(a) without and(b) with zero-
point fluctuations.
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pion and sigma masses become nearly equal signaling the
approximate restoration of chiral symmetry. At high tempera-
tures, T.250 MeV, the meson masses become large and
grow according toÎH /v. For the quark mass it is seen from
Fig. 2 that the definitions(54) and(55) for M1 (dotted curve)
andM2 (short-dashed curve) give closely similar results. At
high temperatures the mass is small in comparison to the
temperature in the NOZPT case[Fig. 2(a)], as it is in the
renormalization group approach[17]. In contrast in the ZPT
case the increase in the fluctuations seen in Fig. 1 causes an
increase in the quark mass, such that it is of the same order
as the temperature. Caldaset al. [37] report a similar result in
their approach to including fluctuations. In this high-T re-
gime the meson masses in Fig. 2(b) are approximately twice
the quark mass, as would be expected for loosely bound
states of quarks and antiquarks. It should be emphasized that
this behavior is qualitatively different from the mean-field
approximation where the constituent quark mass is defined to
be gv, so that it vanishes at high temperatures.

The thermodynamic quantities, energy density, pressure,
and entropy density, as functions of temperature are pre-
sented in Fig. 3. At high temperatures these are dominated by
quarks. For a massless quark gas of degeneracy 12, 3P/T4

=E /T4=6.91 andS /T3=9.21, and in the NOZPT case in Fig.
3(a) these values are achieved at high temperatures. There is
only a small contribution from mesons, since they are heavy,
indicating that the system has effectively become a massless
quark gas. The same cannot be said for the ZPT case in Fig.
3(b), where the asymptotic values are smaller than the mass-
less limit. This is due the quark mass remaining comparable
to the temperature. The quark condensate is displayed in Fig.
4 for the ZPT case since the NOZPT case has only a small
thermal contribution. The condensate is dominated by the
zero-point contribution. Even though one might expect the
thermal part to increase withT, the condensate(44) is ap-
proximatelygvkAsmdl, so the decrease inv is sufficient to
bring the thermal contribution to zero at high temperature.
Thuskq̄ql starts atT=0 with the chosen empirical value and
rapidly becomes negligible whenv becomes small. This is
the physically expected behavior.

C. Approximations

The expressions above which involveVq̄q all require the
calculation of two integrals over the Gaussian weighting
functions as well as a momentum integration. Thus it is
worthwhile to examine simpler procedures. The most natural
simplification is to thermally average the quark mass and
then insert it in Eqs.(42), (45), and (46). We first consider
the M1 mass definition in Eq.(54) which was the approxi-
mation adopted in Ref.[22]. Replacingm with M1, the ther-
modynamic potential density is approximatedkVq̄qsmdl
→Vq̄qsM1d. In the equation of motion

K ] Vq̄q

] D
L = gK s

Îs2 + p2LM1AsM1d, s56d

and for the meson masses

FIG. 2. The meson and quark masses as a function of tempera-
ture (a) without and(b) with zero-point fluctuations.

FIG. 3. The thermodynamic quantities 3P/T4, E /T4 andS /T3 as
a function of temperature(a) without and (b) with zero-point
fluctuations.

FIG. 4. Thermal, zero-point, and total values of the quark con-
densate as a function of temperature in the ZPT case.
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K ]2Vq̄q

] D2 L = gK p2

ss2 + p2d3/2LM1AsM1d,

K ]2Vq̄q

] pi
2 L = gK s2 + 2

3p2

ss2 + p2d3/2LM1AsM1d. s57d

The M2 case defined in Eq.(55) is even simpler. Here the
thermodynamic potential density is approximatedkVq̄qsmdl
→Vq̄qsM2d, and in the equation of motion

K ] Vq̄q

] D
L = g2kslAsM2d = g2vAsM2d. s58d

The second derivatives areg2AsM2d for both sigma and pion.
In this case the quark contributions to the meson masses in
Eqs.(51) and (52) vanish.

Note that ambiguity in the evaluation of Eqs.(42), (45),
and (46) when using a thermally averaged quark mass is
resolved by using Eq.(32) to require that]V /]v be identi-
cally zero. Then the thermodynamic potential density is a
minimum with respect to variations in the scalar condensate
v, as it should be.

In Figs. 5 and 6 we compare the full ZPT results with
those obtained by using theM1 and M2 approximations for
various quantities of interest. The parameters in the left col-
umn of Table I are used throughout. At temperatures above
220 MeV both approximations are able to reproduce the ex-
act results reasonably well with, perhaps, a slight preference
for the M1 case. Below that temperature there are larger de-
viations between the exact and the approximate results. The
crossover occurs at a 15-MeV higher temperature in theM1
approximation. At lower temperatures theM1 approximation
gives a reasonable, although not extremely accurate account
of the exact results. TheM2 approximation, on the other
hand, shows marked deviations for the sigma mean field and
mass,v and ms, and the quark condensate. Of course, this
can be much improved by refitting the parameters atT=0.
However, then one finds that there are no physical solutions

at temperatures just above 300 MeV. We conclude that the
M1 approximation is to be preferred and that it describes the
trends of the exact results quite well, being most accurate at
high temperature.

V. CONCLUSIONS

Our main goal in this paper was to understand the role
played by field fluctuations in effective chiral models. We
have shown how to average field functions of arbitrary com-
plexity over the field fluctuations. This allowed a set of self-
consistent equations for the average field and the masses to
be formulated which led to consistent thermodynamics. We
have applied this approach to the linear sigma model, includ-
ing both mesonic and quark degrees of freedom. The quark
degrees of freedom were integrated out and the effective ac-
tion was linearized according to Eq.(19). Thus we described
the s and p mesons as quasiparticles and their properties
were properly taken into account in the thermodynamic po-
tential.

We have considered two versions of the model: ZPT
where both zero-point and thermal fluctuations are included,
and NOZPT where only thermal fluctuations are present. The
former was able to describe the quark condensate and the
vacuum value was chosen according to QCD-based esti-
mates. To accommodate this value a sigma mass of 700 MeV
was employed which, while within the broad range set by the
Particle Data Group[38], is 100 MeV larger than the tradi-
tional value. We also needed to employ separate renormal-
ization scales for the mesonic and quark zero-point contribu-
tions of 450 and 950 MeV, respectively. For both versions of
the model we required the constituent quark mass in vacuum
to be 1/3 of the free nucleon mass.

Numerical results were presented only for the case of zero
net quark density, i.e.,m=0. The calculations revealed an
interesting and consistent picture. With increasing tempera-
ture we saw a gradual decrease of the condensate and an

FIG. 5. Comparison of the full results with theM1 and M2

approximations:(a) s mean fieldv and (b) meson masses. FIG. 6. Comparison of the full results with theM1 and M2

approximations:(a) thermodynamic quantities 3P/T4 andE /T4 and
(b) quark condensate.
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increase of the sigma and pion fluctuations. The model gave
a crossover type of chiral transition at a temperature of about
198 MeV s150 MeVd in the ZPT(NOZPT) case. In the tran-
sition region the rms field fluctuations became comparable in
magnitude to the condensate. On the other hand we did not
observe the strong increase in the sigma field fluctuations
which would appear in the vicinity of a true critical point.
The restoration of chiral symmetry was seen in the behavior
of the sigma and pion masses, which became degenerate
above the transition region, and in the behavior of the quark
condensate which decreased to zero.

The effective quark mass first showed a modest decrease
with temperature, but above the transition region it started to
increase and this trend was quite strong for the ZPT case.
Since the condensate was already nearly zero, this growth
was induced entirely by the meson field fluctuations. In con-
densed matter physics this phenomenon is known as
pseudogap formation. At high temperatures the meson
masses increased much more rapidly than the quark mass, so
that they effectively decoupled from the system and we had a
nearly ideal gas of quarks. In the ZPT case the quark effec-
tive mass was comparable to the temperature, however, in
the NOZPT case the mass was much smaller so that the
thermodynamics closely resembled a massless quark gas. On
the other hand, at low temperatures quarks were heavy in
comparison to the temperature while pions were relatively
light so that we had an ideal gas of pions with mass close to
the physical mass. Certainly, a qualitatively similar behavior
is expected on the basis of QCD. The transition between
these two regimes occurs at a temperature which is surpris-
ingly close to that found in lattice QCD simulations[19]. In
addition we considered simplified approaches in which the
quark mass was treated as a number rather than a function of
the meson fields; these were found to be quite successful in
the high-temperature, chiral-restored regime, but less accu-
rate at low temperatures.

We also briefly discussed the dependence of the chiral
transition on the vacuum pion mass. As the chiral limit was
approached by reducing the pion mass to a fractionø0.75 of
its true vacuum value the crossover transition became a first
order phase transition. The critical temperature was found to
be quite insensitive to the value of the pion mass, as in lattice
analyses[19].

In the future it would be interesting to perform calcula-
tions for a nonzero quark chemical potential. This would
give the possibility of exploring the phase diagram of the
model in theT-m plane and comparing it with the predictions
of other QCD-motivated models. It would also be interesting
to optimize the model in order to achieve better correspon-
dence with QCD. Some obvious omissions from the present
approach include vector mesons, strange quarks, the gluon
condensate and gluonlike excitations[26,39]. The latter
would provide the correct degrees of freedom at high tem-
perature. Also in the future, more realistic patterns of sym-
metry breaking, including for instance the Us1dA anomaly,
should be considered.
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APPENDIX A: CONNECTION TO PREVIOUS WORK

The strategy followed in Refs.[21,22] was to assume for
the purposes of counting that

kD2l = kpi
2l = 1

4kD2 + p2l ; 1
4kc2l, sA1d

although in the numerical evaluation of the final expressions
the actual values of the thermal averages were used. Equa-
tion (A1) is strictly true only in the high temperature limit,
where the sigma and pion masses become degenerate, how-
ever, at low temperatures one can also show that the correct
expressions are obtained. Now, writings2+p2=v2+c2

+2vD, the troublesome cross term 2vD was expanded out.
Using Eq.(A1) the expressions needed could be cast in terms
of a function fsv2+c2d.

Equation(A1) allows the general expression(30) to be
written as a four-dimensional integral for the thermal average
of the function in question:

kfsv2 + c2dl =
4

p2kc2l2 E d4, expS−
2,2

kc2l
D fsv2 + ,2d.

sA2d

Since only the magnitude,2=,0
2+,1

2+,2
2+,3

2 occurs in the
integrand, the angular integration may be carried out giving

kfsv2 + c2dl =
8

kc2l2E
0

`

d,,3 expS−
2,2

kc2l
D fsv2 + ,2d.

sA3d

Equation(A3) then allows an easy evaluation of the prin-
cipal expressions used in Refs.[21,22]. Defining a new inte-
gration variable according tox2=1+,2/v2, then settingz2

=2v2/ kc2l, and integrating by parts twice one obtains

KlnSv2 + c2

vvac
2 DL = lnS v2

vvac
2 D + 1 + s1 − z2dez2

E1sz2d,

sA4d

as given in Refs.[21,22], with vvac denoting the vacuum
value of v. The exponential integral is defined[30] by
E1syd=e1

` dtt−1e−yt. A similar procedure yields

kÎv2 + c2l =
3v
4z
F2z+ S1 −

2

3
z2DÎpez2

erfcszdG , sA5d

as given in Ref.[22], with the complementary error function
defined[30] by erfcszd=1−2p−1/2e0

z e−t2dt.

APPENDIX B: AN IDENTITY FOR THE CASE ŠD2
‹=Špi

2
‹

Here we show that the quark contribution to Eq.(52)
vanishes in the casekD2l=kpi

2l. First we prove by induction
that in this case
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kD2n+2c2ml = s2n + 1dkD2npi
2c2ml, sB1d

wheren andm are integers. It is simple to verify this equa-
tion in the casesm=0 andm=1. After integrating by parts
the following relations are obtained:

kD2n+2c 2jl = kD2lfs2n + 1dkD2nc 2jl + 2jkD2n+2c 2j−2lg,

kD2npi
2c 2jl = kpi

2lfkD2nc 2jl + 2jkD2npi
2c 2j−2lg. sB2d

SincekD2l=kpi
2l these relations show that if Eq.(B1) holds

for m= j −1 then it holds form= j and, since it holds form
=0 and 1, it therefore holds in general. The relation can also
be proved by using combinatorial arguments.

Now consider a functionfsm2d, where m2=g2fsv+Dd2

+p2g. Expanding 2g2vD in a Taylor series

kDfsm2dl = o
j=0

` K f h2j+1jsg2sv2 + c2dd
s2j + 1d!

s2g2vd2j+1D2j+2L ,

sB3d

where we have used the fact that odd powers ofD give a
vanishing contribution, andf hnj denotes thenth derivative of
f. Utilizing Eq. (B1)

kDfsm2dl = 2g2vo
j=0

` K f h2j+1jsg2sv2 + c2dd
s2jd!

pi
2s2g2vDd2jL

= 2g2vkpi
2f h1jsm2dl, sB4d

again using the fact that odd powers ofD give zero contri-
bution. Thus in the casekD2l=kpi

2l we have the relation

K−
Dfsm2d

v
+ 2g2pi

2] fsm2d
] m2 L =KS pi

2

kpi
2l

−
v + D

v
D fsm2dL

= 0, sB5d

where the second equality is obtained using the relation(46).
Equation(B5) was used in the text.
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