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The existence of phase transitions from liquid to gas phases in asymmetric nuclear matter(ANM ) is related
with the instability regions which are limited by the spinodals. In this work we investigate the instabilities in
ANM described within relativistic mean field hadron models, both with constant and density dependent cou-
plings at zero and finite temperatures. In calculating the proton and neutron chemical potentials we have used
an expansion in terms of Bessel functions that is convenient at low densities. The role of the isovector scalar
d-meson is also investigated in the framework of relativistic mean field models and density dependent hadronic
models. It is shown that the main differences occur at finite temperature and large isospin asymmetry close to
the boundary of the instability regions.
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I. INTRODUCTION

Recently there has been a big development in the descrip-
tion of nuclei and nuclear matter in terms of relativistic many
body theory. In particular, the phenomenological models de-
veloped using the relativistic mean field theory describe well
the ground state of both stable and unstable nuclei[1,2].
These same models, with conveniently adjusted parameters,
are used to describe the properties of neutron stars and su-
pernovae[3,4]. Therefore, it is important to test these models
at finite temperature and different densities.

The discussion of the properties of asymmetric nuclear
matter(ANM ) systems, namely their instabilities and phase
transitions, are presently a topic of great insterest[5–11]. The
instabilities present in ANM may manifest themselves as an
isospin distillation or fractionation[12]. It has recently been
discussed[8,10] that in an ANM system not only the me-
chanical but also the chemical instabilities appear as an in-
stability of the system against isoscalar fluctuations. Hence
the spinodal instability is dominated by density fluctuations
which lead to a liquid gas separation with restoration of the
isospin symmetry in the dense phase. This is known as the
fractionation effect. Multifragmentation also takes place
when the system enters the spinodal region through nucle-
ation or through spinodal decomposition. The correlation be-
tween spinodal decomposition and negative heat capacity
evidences the fact that the spinodal decomposition is the dy-
namics underlying the liquid gas phase transition[13]. In the
afore mentioned work, the authors point out the fact that
systematic measurements including correlations between
these signals and also the inclusion of the isospin degree of
freedom are important sources of future experimental work.

On the other hand it is expected that neutron stars have a
solid crust formed by nonuniform neutron rich matter in
b-equilibrium above a liquid mantle. In the inner crust, nu-
clei which form a lattice to reduce the Coulomb energy, co-
exist with a gas of neutrons which have dripped out. The
solid crust has an important role in explaining the sudden
spin jumps known asglitchesin neutron stars[14]. Recently
it has been proposed that there is a relationship between the
neutron skin of heavy nuclei and the properties of neutron

star crusts[4], namely the thicker the neutron skin of a heavy
nucleus the thinner the solid crust of a neutron star. Proper-
ties of the crust, namely its thickness and pressure at the
crust-core interface, depend largely on the density depen-
dence of the equation of state(EOS). It is of particular im-
portance the transition density below which uniform neutron
rich matter becomes unstable. In Ref.[4] it was also shown
that the thicker the neutron skin the lower the transition den-
sity form a uniform to a nonuniform neutron rich matter.

Within the framework of relativistic models, the liquid
gas phase transition in nuclear matter has been investigated
at zero and finite temperatures for symmetric and asymmet-
ric infinite systems[5,15–17]. With the help of the Thomas-
Fermi approximation, we have investigated droplet forma-
tion in the liquid gas phase transition in cold[18] and hot
[19] asymmetric nuclear matters using relativistic mean field
(RMF) models [1,20]. In Ref. [21] we have considered a
droplet immersed in a gas of evaporated particles, in such a
way that they mimic a source of changing mass. As tempera-
ture increases particles evaporate, mainly neutrons, and the
fraction of protons in the droplet increases leading to isospin
fractionation. In Ref.[22] we have shown that at finite tem-
perature droplet properties within different parametrizations
of the RMF model have different behaviors with tempera-
ture.

The EOS of neutron rich matter is in particular sensitive
to the density dependence of the symmetry energy. In Ref.
[4] the effect of changing this dependence was studied
through the inclusion of nonlinears-r and v-r couplings.
On the other hand the authors of Ref.[23] claim that the
isovector scalar mesond is of vital importance in finding the
stability conditions of drip-line exotic nuclei because the
structure of relativistic interactions with a scalar(attractive)
and a vector(repulsive) potential, which balance each other,
is also present in the isovector channel. Thed-field also has
important effects on the symmetry properties of the nuclear
system.

Standard RMF interactions have their limitations even for
describing nuclei close to the stablility line. This is due to the
fact that the isovector channel is poorly constrained by ex-
perimental data. An example is the systematic overestimate
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of the neutron skins[24]. Some of these limitations are over-
come by quantum hadrodynamical models with density de-
pendent meson-nucleon couplings(which we refer to as TW)
[25–27], which have been used with success to describe both
nuclear matter and finite nuclei. In these models the cou-
plings are either taken from Dirac-Brueckner-Hartree-Fock
calculations or are fitted to data of nuclear matter or finite
nuclei.

We may ask whether the recent improvements of the RMF
models, both through the inclusion of density dependent
meson-nucleon couplings and/or thed scalar-isovector me-
son, present different features at subnuclear densities of
nuclear asymmetric matter which could have consequences
for the properties of the inner crust of neutron stars or in
multifragmentation or isospin fractionation reactions. The
parametrizations of these models take generally into account
saturation properties of nuclear matter and properties of
stable nuclei. Extension of the model for very asymmetric
nuclear matter or to finite temperatures may show different
behaviors. The simplest test between the models is a com-
parison of the regions of uniform unstable matter.

In the present work we direct out investigation to some of
the topics we have briefly mentioned before. We study the
liquid gas phase transition and, in particular, determine the
instability regions occurring within the density dependent
hadronic models[25,28] and the nonlinear relativistic mean
field models. We also study models including thed meson.

In order to determine the instability regions, we found
convenient to generalize the calculation of the chemical po-
tentials as prescribed in Ref.[29] to relativistic models with
density dependent effective masses. The expansion we
present in our paper is accurate in the range of temperatures
and densities discussed and allows us to perform explicit
derivatives on the chemical potentials.

This paper is organized as follows. In Sec. II we present
the whole formalism in which our calculations are based,
namely the relativistic models, the chemical potential expan-
sions and the thermodynamical conditions for the description
of the instability regions; in Sec. III a brief explanation re-
garding the introduction of the isovector-scalar meson is re-
ported; in Sec. IV the results are presented and the conclu-
sions are drawn. Finally we include an Appendix with some
important formulas not given in the main text.

II. THE FORMALISM

We start from the lagrangian density of the relativistic TW
model [25]

L = c̄FgmSi]m − GvV
m −

Gr

2
t ·bmD − sM − GsfdGc

+ 1
2s]mf]mf − ms

2f2d − 1
4VmnVmn + 1

2mv
2VmVm

− 1
4Bmn ·Bmn + 1

2mr
2bm ·bm, s1d

whereVmn=]mVn−]nVm, Bmn=]mbn−]nbm−Grsbm3bnd. The
parameters of the model are the nucleon massM
=939 MeV, the masses of the mesonsms, mv, mr, and the
density dependent coupling constantsGs, Gv, andGr, which

are adjusted in order to reproduce some of the nuclear matter
bulk properties, using the following parametrization:

Gisrd = Gisrsatdf isxd, i = s,v s2d

with

f isxd = ai
1 + bisx + did2

1 + cisx + did2 , s3d

wherex=r /rsat and

Grsrd = Grsrsatdexpf− arsx − 1dg, s4d

with the values of the parametersmi, Gi, ai, bi, ci, anddi, i
=s,v ,r given in Ref.[25]. Other possibilities for these pa-
rameters are also found in the literature[30]. Notice that in
this model the nonlinear terms are not present, in contrast
with the usual nonlinear Walecka model(NLWM ).

Within the Thomas-Fermi approximation, the thermody-
namic potential is obtained. After it is minimized with re-
spect to the meson fields, the following equations are ob-
tained:

f0 =
Gs

ms
2rs, s5d

V0 =
Gv

mv
2r, s6d

b0 =
Gr

2mr
2r3, s7d

with

r = rp + rn, r3 = rp − rn, ri = 2E d3p

s2pd3sf i+ − f i−d, i = p,n,

s8d

rs = rsp+ rsn, rsi = 2E d3p

s2pd3

M*

E*
sf i+ + f i−d,

M * = M −Gsf0, E* = Îp2+M*2 and f i±=1/h1
+expfsE* 7nid /Tgj, where the effective chemical potential
is

ni = mi − GvV0 − ti3
Gr

2
b0 − S0

R, tp3 = 1, tn3 = − 1 s9d

with the rearrangement term given by

S0
R =

]Gv

]r
rV0 +

]Gr

]r
r3

b0

2
−

]Gs

]r
rsf0. s10d

The energy density in the mean field approximation reads

EsGs,Gv,Grd = 2o
i
E d3p

s2pd3E * sf i+ + f i−d +
ms

2

2
f0

2 +
mv

2

2
V0

2

+
mr

2

2
b0

2. s11d

The pressure becomes
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PsGs,Gv,Grd =
1

3p2o
i
E dp

p4

E*
sf i+ + f i−d

−
ms

2

2
f0

2S1 + 2
r

Gs

]Gs

]r
D +

mv
2

2
V0

2S1 + 2
r

Gv

]Gv

]r
D

+
mr

2

2
b0

2S1 + 2
r

Gr

]Gr

]r
D . s12d

For two of the usual NLWM parametrizations, namely
NL3 [31] and TM1 [32], the above equations read

ENL3 = Esgs,gv,grd +
kf0

3

6
+

lf0
4

24
,

PNL3 = Psgs,gv,grd −
kf0

3

6
−

lf0
4

24
s13d

and

ETM1 = Esgs,gv,grd +
kf0

3

6
+

lf0
4

24
+

jgv
4V0

4

8
,

PTM1 = Psgs,gv,grd −
kf0

3

6
−

lf0
4

24
+

jgv
4V0

4

24
, s14d

where the meson-nucleon coupling constants,gs, gv, andgr

substituteGs, Gv, andGr. They are not density dependent and
consequently all derivative terms in the pressure cancel out
and k, l, and j are the self-coupling constants multiplying
the nonlinear terms.

In order to study the instability region at low densities it is
convenient to invert Eq.(8) and obtain the effective chemical
potential that appear inside the distribution functions. We
have followed the prescription given in Refs.[6,29], where
just the particle distribution function is considered. The ef-
fective chemical potential reads

ni =
1

b
Slnshid + o

l=1

`

blhi
lD, i = p,n, s15d

where

hi =
ri

gQsbM * d
, s16d

g is the spin multiplicity,b=1/T and

QsbM * d =E d3p

s2pd3e−bE* =
M*2

2p2b
K2sbM * d,

with Kn the modified Bessel function. The coefficientsbl are
defined in terms of the ratios

Sn =
QsnbM * d
QsbM * d

=
K2snbM * d
nK2sbM * d

,

and have been calculated in Ref.[29]. We list the first three

b1 = a2, b2 = a3 − a2
2/2, b3 = a4 − a2a3 + a2

3/3,

with a2=S2sbM * d, a3=2S2
2sbM * d−S3sbM * d, a4

=5S2
3sbM * d−5S3sbM * dS2sbM * d+S4sbM * d. The chemical

potentialsmi, i =p,n are obtained from Eq.(9) and they read

mi = GvV0 + ti3
Gr

2
b0 + S0

R +
1

b
Slnshid + o

l=1

`

blhi
lD , s17d

where the rearrangement term is given in Eq.(10).
We have checked the range of applicability of the expan-

sion given in Eq.(15) by comparing it with the exact results.
We have concluded that, for symmetric matter, the expansion
works very well for temperaturesTù7 MeV and subsatura-
tion densities,r,r0. This agreement improves for higher
temperatures within the range of temperatures involved in
the present work, where the antiparticles do not play a cru-
cial role. For ANM, T=7 MeV, the agreement is still good
for the proton chemical potential. The neutron chemical po-
tential is well reproduced only forr,0.8r0 as can be seen in
Fig. 1, where we have plotted the effective chemical poten-
tials for protons and neutrons for asymmetric matter with the
proton fractionyp=0.1, whereyp=rp/r. This result is still
adequate for the range of densities we have considered in the
present work

The stability conditions for asymmetric nuclear matter,
keeping volume and temperature constant, are obtained from
the free energy densityF, imposing that this function is a
convex function of the densitiesrp andrn, i.e., the symmet-
ric matrix with the elements[5,7,10]

Fi j = S ]2F
]ri]r j

D
T
,

is positive. This is equivalent to imposing[33]

]mp

]rp
. 0, s18d

FIG. 1. Chemical potential curves forT=7 MeV, NL3 param-
eter set andyp=0.1. The curves for the exact proton chemical po-
tential and its expansion are coincident(short dashed line). The
straight long dashed line represents the exact neutron chemical po-
tential and the bending one(dotted line) its expansion. The expan-
sions are taken up to fifth order.
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]smp,mnd
]srp,rnd

. 0, s19d

where we have usedmi = u]F /]riuT,r jÞi
. In terms of the proton

fraction the conditions(18) and(19) can be rewritten, respec-
tively, in the form

S ]P

]r
D

T,yp

. 0

and

S ]P

]r
D

T,yp

S ]mp

]yp
D

T,P
. 0. s20d

It has recently been argued[8,10] that in ANM the spinodal
instabilities cannot be separately classified as mechanical or
chemical instabilities. In fact, the two conditions that give
rise to the instability of the system are coupled so that it
appears as a mixture of baryon density and concentration
fluctuations. Therefore, we define the stability region as de-
termined by(20).

In order to calculate the boundaries of the spinodal insta-
bility regions we use the Gibbs-Duhem relation, at a fixed
temperature and isospin asymmetry,

S ]P

]r
D

T,d
=

r

2
Fs1 + dd

]mn

]r
+ s1 − dd

]mp

]r
G = o

i=p,n
riS ]mi

]r
D

d

s21d

with d=−r3/r=1−2yp, and

S ]m

]d
D

T,P
= S ]m

]d
D

T,r
− S ]m

]r
D

T,d
S ]P

]r
D

T,d

−1S ]P

]d
D

T,r
, s22d

where

S ]P

]d
D

T,r
=

r

2
Fs1 + dd

]mn

]d
+ s1 − dd

]mp

]d
G = o

i=p,n
riS ]mi

]d
D

r

.

s23d

With the expressions given in this section the spinodal re-
gions can be obtained for both different temperatures and
different parametrizations.

III. INCLUDING ISOVECTOR-SCALAR MESONS

To investigate the influence of thed-meson in the stability
conditions we have included in the NLWM the isovector-
scalar meson terms[23]:

L = c̄FgmSi]m − gvV
m −

gr

2
t ·bmD − sM − gsf − gdt · ddGc

+ 1
2s]mf]mf − ms

2f2 − 1
3kf3 − 1

12lf4d − 1
4VmnVmn

+ 1
2mv

2VmVm − 1
4Bmn ·Bmn + 1

2mr
2bm ·bm + 1

2s]md]md

− md
2d2d, s24d

wheregd and md are, respectively, the coupling constant of
the d meson with the nucleons and its mass. Self-interacting

terms for thes-meson are also included,k and l denoting
the corresponding coupling constants. The set of constants is
defined by gi =Îf imi

2, i =s, v, d, gr /2=Îfrmr
2, ms

=550 MeV, mv=783 MeV, mr=763 MeV, md=980 MeV,
fs=10.33 fm2, fv=5.42 fm2, fr=3.15 fm2, fd=2.5 fm2, k
=0.066gs

3 andl=−630.0048gs
4 [23] and we call it NLd. For

reference, in Table I we show the properties of nuclear matter
reproduced by the models we discuss in the present work.
From the minimization of the thermodynamic potential ob-
tained in a Thomas-Fermi approach, the equation of motion
for this field becomes

d3 =
gd

md
2rs3, s25d

with rs3=rsp−rsn. The energy density and the pressure are
also affected by the presence of the new meson. The term
+1/2md

2d3
2 should be added to the energy density and the

−1/2md
2d3

2 should be added to the expression of the pressure,
both given in Eq.(13). The effective masses for protons and
neutrons acquire different values, namely,

Mi
* = M − gsf0 − ti3gdd3 i = p,n.

For completeness, we have also included thed-meson in a
model where ther andd couplings are density dependent, as
done in Ref.[28], where it is called density dependent had-
ronic modelsDDHrdd. For this purpose, we have considered
the density dependence of ther andd-nucleon vertices given
in Fig. 1 of Ref.[28] which have been extracted from DBHF
calculations of Ref.[34]. In this case the coupling constants
gs, gv, gr, andgd used in Eq.(24) should be replaced byGs,
Gv, Gr, andGd and the nonlinear scalar terms do not appear.
For Gs andGv we take the parametrizations given in Eqs.(2)
and(4). For Gr andGd, we propose the following parametri-
zation:

Gi = Gsrsatdf isxd, x = r/rsat

with

TABLE I. Nuclear matter properties.

NL3a TM1b TWc NLdd DDHrde

B/A (MeV) 16.3 16.3 16.3 16.0 16.3

r0 sfm−3d 0.148 0.145 0.153 0.160 0.153

K (MeV) 272 281 240 240 240

Esym (MeV) 37.4 36.9 32.0 30.5 25.1

M * / M 0.60 0.63 0.56 0.60 0.56

L (MeV) 123 117 55 101 44

Ksym (MeV) 108 36 −124 112 45

aReference[31].
bReference[32].
cReference[25].
dReference[23].
eReference[28].
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fsxd = ai expf− bisx − 1dg − cisx − did, i = r,d,

and the parametersai, bi, ci, anddi are defined in Table II.
This parametrization reproduces the curves given in Fig. 1 of
Ref. [28] and is also displayed in Fig. 2 of the present work.
We point out that in the present work there is a factor 2
difference in the definition ofr-meson coupling constant. We
take for the effective chemical potential Eq.(9), with the
rearrangement term given by

S0
R =

]Gv

]r
rV0 +

]Gr

]r
r3

b0

2
−

]Gs

]r
rsf0 −

]Gd

]r
rs3d3

and for the pressure

PsGs,Gv,Gr,Gdd = PsGs,Gv,Grd −
md

2

2
d3

2S1 + 2
r

Gd

]Gd

]r
D .

IV. RESULTS AND CONCLUSIONS

A quantity of interest in ANM is the nuclear bulk symme-
try energy discussed in Ref.[23]. This quantity is important
in studies involving neutron stars and radioactive nuclei. The
behavior of the symmetry energy at densities larger than
nuclear saturation density is still not well established. In gen-
eral, relativistic and nonrelativistic models give different pre-
dictions for the symmetry energy.

It is usually defined as

Esym= U1

2

]2E/r

]d2 U
d=0

, s26d

which, for the models not including thed-meson, can be
analytically rewritten as

Esym=
kF

2

6EF
* +

Gr
2

8mr
2r, s27d

where

kFp = kFs1 + dd1/3, kFn = kFs1 − dd1/3,

with kF=s1.5p2rd1/3. If the d meson is included the symme-
try energy reads[23]

Esym=
kF

2

6EF
* +

r

2
F Gr

2

4mr
2 −

Gd
2

md
2SM*

EF
* D2G . s28d

In Fig. 3 we show the symmetry energy for the different
models used in this work, calculated atT=0 andyp=0.5. We
can see that at subsaturation densities where the instability
regions occur(0 up to 0.1 fm−3), NL3 and TM1 parametri-
zations give very similar behaviors. The NLd parametriza-
tion describes saturation at 0.16 fm−3 and this fact affects the
symmetry energy at low densities, in particular it is the
model with the lowest symmetry energy in this range of den-
sities (see Table I). The TW model presents a different be-
havior, after a faster increase at low densities, the symmetry
energy increases much slower than most of the other models
at larger densities. A very low value of the symmetry energy
was obtained with the DDHrd parametrization. It amounts to
25 MeV, in contrast with the value mentioned in Ref.[28]
s33.4 MeVd. Nevertheless, in the same reference[28], the
authors show a curve in Fig. 2, which confirms our number.
The density dependent hadronic models show a softer sym-
metry energy at the densities shown. At higher densities the
models containing thed-meson are expected to get a harder
behavior due to relativistic effects, namely thed contribution
goes to zero and only the repulsive contribution from the
r-meson remains[23]. We point out that in present work we
are only testing the low density region of the symmetry en-
ergy, namely our discussion is concerned with the behavior
of nuclear matter at densities below 0.7r0, wherer0 is the
saturation density. In this region the quantities which
better distinguish the different models are the
slope L= u3r0s]Esym/]rdur=r0

and curvature Ksym

= u9r0
2s]2Esym/]r2dur=r0

of the symmetry energy[35] given in
Table I. The TW model is the only one with a negative cur-

TABLE II. Parameters of the DDHrd model.

i Gi ai bi ci di

r 5.8635 0.095268 2.171 0.05336 17.8431

d 7.58963 0.01984 3.4732 −0.0908 −9.811

FIG. 2. Density dependent couplings as obtained from the pro-
posed parametrization given in the text and which reproduce the
curves given in Ref.[28].

FIG. 3. Symmetry energy results for the NL3, TM1, TW, NLd,
and DDHrd parameter sets.
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vature at saturation density. In fact, the DDHrd also has a
negative curvature at densites below 0.13 fm−3 but at satura-
tion the curvature has already a positive value.

In Fig. 4 we plot the spinodals for the NL3 parameter set
and different temperatures, varying fromT=0 up to T
=14 MeV, already close to the critical temperature,TNL3,c
,15 MeV. All the other models present a similar behavior,
namely the larger the temperature the smaller the instability
region. These same conclusions have already been discussed
in Ref. [6] for Skyrme-type phenomenologial EOS for ANM.
After a critical temperature the liquid-gas phase transition is
a smooth transition. A consequence of this behavior is the
greater stability against density flucutations of neutron-rich
systems. Also, in intermediate energy collisions fragmenta-
tion or fractionation occurs later after the system has cooled
down.

In Fig. 5 we display the spinodals for different parameter
sets obtained withT=0, 10, 14 MeV. ForT=0 MeV the
differences are not significant, occurring at the higher density
branch,,0.1 fm−3. In particular, in the NLd parametrization
the boundary lies at a larger density than in the other models
for d,0.5. The spinodals for the density dependent hadronic
models are decreasing less with the asymmetry parameterd
than the others. At finite temperature the differences are
larger. These differences occur again in the larger density
branch, and it is again the NLd which presents a boundary at
larger densities in the small asymmetry region followed by
the TW and the DDHrd models. In the large asymmetry
region we are already testing both the critical temperatures
and asymmetries of the models and the differences between
the models are larger. For the DDHrd model, as temperature
increases, the instability boundaries extend to higher asym-
metries as compared with all the other models. This is pos-
sibly due to a lower symmetry energy. The opposite occurs
with the NL3 parametrization which has the larger symmetry
energy. We conclude that the information obtained from the
spinodal decomposition sensitive to the underlying model
comes from the phase space close to the spinodal boundary
at large isospin asymmetry.

In conclusion, we have compared the spinodal boundary
as a function of density and isospin asymmetry, at several

temperatures, for different relativistic models. We have con-
sidered both quantum hadrodynamical approaches with non-
linear terms(NL3, TM1, NLd) and density dependent had-
ronic models with density dependent coupling parameters
(TW, DDHrd). The largest differences between the models
occur at finite temperature and are more clearly shown in the
high isospin asymmetry region. Only physical quantities that
explore this region in phase space, as for example the
neutron-proton differential flow suggested in Ref.[36], will
bring possible information about the EOS of ANM. Another
physical system that could be sensitive to present results is a
protoneutron star in the process of stellar colapse. The physi-
cal structure of the matter, namely a smaller or larger non-
uniform nuclear matter region, may affect properties such as
the neutrino scattering processes[37].

Another point to be investigated is the role of the Cou-
lomb interaction and finite size effects in the instabilities of
ANM. We have already shown that the electromagnetic force
cannot be neglected in nucleation processes, where droplets
of lower asymmetry are formed in a very asymmetric gas
background either atT=0 or finite temperatures[18,19]. The

FIG. 4. Spinodal regions obtained with the NL3 parametrization
and different temperatures. The instability regions lie inside the
curves. The curves are drawn forT=0 (solid line), 8 (dotted line),
10 (short-dashed line), 12 (dashed-dotted line), and 14(long dashed
line) MeV.

FIG. 5. Spinodal regions for different parameter sets andT=0
(upper panel), T=10 MeV (middle panel), andT=14 MeV (lower
panel).
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authors of Ref.[9] have included the Coulomb interaction
and surface tension in their calculation of the binodals in a
simplified way and they have shown that the minimum pres-
sure for a given temperature do not occur for symmetric
nuclear matter and that surface effects lower the binodal
pressure. It has also been shown that the Coulomb interac-
tion affects the growth of instabilities[38]. A natural exten-
sion of the present work would be the inclusion of the Cou-
lomb interaction in the same spirit as done in Ref.[9] and
consequent construction of the binodal sections and spinodal
regions for different temperatures. We expect, however, that
the overall effect of the inclusion of the Coulomb interaction
will be the same for all the models and the main conclusions
of the present work will not change.

APPENDIX: SOME FORMULAS

In what followsT is considered fixed. We give the main
expressions needed to obtain the conditions which define the
boundaries of the instability regions. We first consider the
derivatives of the chemical potential with respect tor, for a
given d. For this purpose we need the derivative of the ef-
fective chemical potential that reads

S ]ni

]r
D

d

=
]ni

]hi

]hi

]r
+

1

b
o
k

hi
k dbk

dM*

]M*

]r
,

where

]ni

]hi
=

1

bF 1

hi
+ o

k

kbkhi
k−1G ,

and

]hi

]r
=

hi

r
−

b4p2ri

2
F4K2sxd − xsK1sxd + K3sxdd

x3K2
2sxd G ]M*

]r
,

x = bM*.

So, in the NLWM model, one has

S ]mi

]r
D

d

= S ]ni

]r
D

d

+
gv

2

mv
2 − ti3

gr
2

4mr
2d.

Instead, for the TW model, the previous equation reads

S ]mi

]r
D

d

= S ]ni

]r
D

d

+
]

]r
S Gv

2

mv
2rD − ti3

]

]r
S Gr

2

4mr
2drD +

]S0
R

]r
,

with

S0
R =

Gv

mv
2

]Gv

]r
r2 +

Gr

4mr
2

]Gr

]r
r2d2 −

ms
2

Gs
3

]Gs

]r
sM − M * d2,

M − M* = S Gs

ms
D2

rs.

To evaluate the expressions involved in(22) we obtain the
derivative of the chemical potential with respect tod for a
fixed r

S ]ni

]d
D

r

=
]ni

]hi

]hi

]d
+

1

b
o
k

hi
k dbk

dM*

]M*

]d
,

where

]hi

]d
= −

t3ir

2gQsxd
−

b4p2ri

2
F4K2sxd − xsK1sxd + K3sxdd

x3K2
2sxd G ]M*

]d
.

Both the derivatives]M* / ]r and]M* / ]d are calculated
numerically.

The expressions fors]mi /]ddr become

S ]mi

]d
D

r

= S ]ni

]d
D

r

− t3iS gr

2mr
D2

r

in the NLWM, and

S ]mi

]d
D

r

= S ]ni

]d
D

r

− t3iS Gr

2mr
D2

r +
Gr

2mr
2

]Gr

]r
r2d +

]S0
R

]d
,

in the TW model.
Some derivatives of the coefficientsbl are also listed:

db1

dM*
= b

dS2

dx
,

db2

dM*
= b

db2

dx
= bS3S2

dS2

dx
−

dS3

dx
D ,

with

dSnsxd
dx

=
1

2nK2
2sxd

fK2snxdsK1sxd + K3sxdd

− nK2sxdsK1snxd + K3snxddg.
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