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Instabilities in asymmetric nuclear matter
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The existence of phase transitions from liquid to gas phases in asymmetric nuclear(Afdleris related
with the instability regions which are limited by the spinodals. In this work we investigate the instabilities in
ANM described within relativistic mean field hadron models, both with constant and density dependent cou-
plings at zero and finite temperatures. In calculating the proton and neutron chemical potentials we have used
an expansion in terms of Bessel functions that is convenient at low densities. The role of the isovector scalar
5-meson is also investigated in the framework of relativistic mean field models and density dependent hadronic
models. It is shown that the main differences occur at finite temperature and large isospin asymmetry close to
the boundary of the instability regions.
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I. INTRODUCTION star crustg§4], namely the thicker the neutron skin of a heavy

Recently there has been a big development in the descriﬁ?—“deus the thinner the solid crust of a neutron star. Proper-

tion of nuciei and nuclear matter in terms of relativistic manyi€S Of the crust, namely its thickness and pressure at the
body theory. In particular, the phenomenological models deS'Ust-core interface, depend largely on the density depen-
veloped using the relativistic mean field theory describe welf€nce of the equation of sta(EOS,. It is of particular im-

the ground state of both stable and unstable nuded]. portance the transition density below which uniform neutron

These same models, with conveniently adjusted parameterdch matter becomes unstable. In Rgf] it was also shown
are used to describe the properties of neutron stars and stiiat the thicker the neutron skin the lower the transition den-
sity form a uniform to a nonuniform neutron rich matter.

pernovag3,4. Therefore, it is important to test these models Within the framework of relativistic models, the liquid

at finite temperature and different densities. gas phase transition in nuclear matter has been investigated

The discussion of the properties .Of asymmetric nUCIGaat zero and finite temperatures for symmetric and asymmet-
matter(ANM) systems, namely their instabilities and phaseriC infinite systemg5,15-17. With the help of the Thomas-

transitions, are presently a topic of great instef8sil. The  permi approximation, we have investigated droplet forma-
!nstal:.nlltu.es'pre.sent in ANM may manifest themselves as anign, in the liquid gas phase transition in caltig] and hot
isospin distillation or fractionatiofil2]. It has recently been [19] asymmetric nuclear matters using relativistic mean field
discussed8,1q] that in an ANM system not only the me- (RMF) models[1,20. In Ref. [21] we have considered a
chanical but also the chemical instabilities appear as an iI'Urop|et immersed in a gas of evaporated partidesy in such a
stability of the system against isoscalar fluctuations. Hencevay that they mimic a source of changing mass. As tempera-
the spinodal instability is dominated by density fluctuationsture increases particles evaporate, mainly neutrons, and the
which lead to a liquid gas separation with restoration of thefraction of protons in the droplet increases leading to isospin
isospin symmetry in the dense phase. This is known as thigactionation. In Ref[22] we have shown that at finite tem-
fractionation effect. Multifragmentation also takes placeperature droplet properties within different parametrizations
when the system enters the spinodal region through nuclesf the RMF model have different behaviors with tempera-
ation or through spinodal decomposition. The correlation beture.
tween spinodal decomposition and negative heat capacity The EOS of neutron rich matter is in particular sensitive
evidences the fact that the spinodal decomposition is the dyto the density dependence of the symmetry energy. In Ref.
namics underlying the liquid gas phase transifib8]. In the  [4] the effect of changing this dependence was studied
afore mentioned work, the authors point out the fact thathrough the inclusion of nonlinear-p and w-p couplings.
systematic measurements including correlations betwee®n the other hand the authors of R§3] claim that the
these signals and also the inclusion of the isospin degree @ovector scalar mesaofis of vital importance in finding the
freedom are important sources of future experimental workstability conditions of drip-line exotic nuclei because the
On the other hand it is expected that neutron stars have structure of relativistic interactions with a scalattractive
solid crust formed by nonuniform neutron rich matter in and a vectorepulsive potential, which balance each other,
B-equilibrium above a liquid mantle. In the inner crust, nu-is also present in the isovector channel. Thield also has
clei which form a lattice to reduce the Coulomb energy, coimportant effects on the symmetry properties of the nuclear
exist with a gas of neutrons which have dripped out. Thesystem.
solid crust has an important role in explaining the sudden Standard RMF interactions have their limitations even for
spin jumps known aglitchesin neutron star$14]. Recently  describing nuclei close to the stablility line. This is due to the
it has been proposed that there is a relationship between thact that the isovector channel is poorly constrained by ex-
neutron skin of heavy nuclei and the properties of neutrorperimental data. An example is the systematic overestimate
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of the neutron sking24]. Some of these limitations are over- are adjusted in order to reproduce some of the nuclear matter
come by quantum hadrodynamical models with density debulk properties, using the following parametrization:
pendent meson-nucleon couplingehich we refer to as TW _ .
[25—-27, which have been used with success to describe both Ti(p) =Ti(psadfi(x), i =50 2
nuclear matter and finite nuclei. In these models the couwith
plings are either taken from Dirac-Brueckner-Hartree-Fock )
calculations or are fitted to data of nuclear matter or finite f.(x) = M (3)
nuclei. ' 1+c(x+dp)?’

We may ask whether the recent improvements of the RMF herex=p/ pe. and
models, both through the inclusion of density dependean P! Psat
meson-nucleon couplings and/or thescalar-isovector me- [, (p) =T (psa€xd—a,(x—1)], (4)
son, present different features at subnuclear densities of.

nuclear asymmetric matter which could have consequencé’¥'th the values of the parameteny, I', &, by, G, andd, i
=s,v,p given in Ref.[25]. Other possibilities for these pa-

for the properties of the inner crust of neutron stars or in . . . .
brop rameters are also found in the literatyiB9]. Notice that in

multifragmentation or isospin fractionation reactions. The . del th i .
parametrizations of these models take generally into accourtltf'_'s model the nonlinear terms are not present, in contrast
ith the usual nonlinear Walecka mod®LWM).

saturation properties of nuclear matter and properties of''" 1€ . : -
prop prop Within the Thomas-Fermi approximation, the thermody-

stable nuclei. Extension of the model for very asymmetric ; L . o S .
amic potential is obtained. After it is minimized with re-

nuclear matter or to finite temperatures may show differenf!

behaviors. The simplest test between the models is a conpPect to the meson fields, the following equations are ob-

parison of the regions of uniform unstable matter. tained:
In the present work we direct out investigation to some of 'y
the topics we have briefly mentioned before. We study the $o=—3ps %)
liquid gas phase transition and, in particular, determine the ms
instability regions occurring within the density dependent
hadronic model$25,28 and the nonlinear relativistic mean Vo= —2p, (6)
field models. We also study models including heneson. mf
In order to determine the instability regions, we found
convenient to generalize the calculation of the chemical po- _ I,
tentials as prescribed in RgR9] to relativistic models with bo = 2sz’3' (7)
density dependent effective masses. The expansion we ’
present in our paper is accurate in the range of temperatur&gth
and densities discussed and allows us to perform explicit 4
derivatives on the chemical potentials. P=Pp+ Py P3=Pp= Py Pi = zf —ps(fH -f), i=p,n,
This paper is organized as follows. In Sec. Il we present (2m)
the whole formalism in which our calculations are based, (8)
namely the relativistic models, the chemical potential expan-
sions and the thermodynamical conditions for the description dp M*
of the instability regions; in Sec. Il a brief explanation re- Ps=Pspt Psm Psi= Zf ——a = (fu+ 1),
garding the introduction of the isovector-scalar meson is re- (2m)° E
ported; in Sec. IV the results are presented and the concluf* = M —T"y¢, E*=\p?+M™ and fo=1/{1
sions are drawn. Finally we include an Appendix with some+exd (E* ¥ 1)/ T]}, where the effective chemical potential
important formulas not given in the main text. is

r
1. THE EFORMALISM Vi=Mi— FUVO_ Ti3_22b0 - E(F;! Tp3: 11 3= " 1 (9)

We start from the lagrangian density of the relativistic TW with the rearrangement term given by

model [25]
ar, ar, by oI
r S§= Vot —Eoa - Spsdo.  (10)
L=y 7ﬂ<ic7"—FUV"——227-b">—(M—Fs¢) o P p p
The energy density in the mean field approximation reads
30,6 =)~ 10,0+ iV, v & P
_ %B#V .BM¥ + %mib,u -b*, (1) 5(F51rvlrp) = 22 f (27T)3E (fi+ + fi—) + ?d’o"’ ?VO

whereQ,,=4d,V,-d,V,,B,,=d,b,-d,b,-T,(b,xb,). The n,

parameters of the model are the nucleon mads 5 bg. (1)
=939 MeV, the masses of the mesang m,, m,, and the

density dependent coupling constahts I',, andI’,, which  The pressure becomes
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P(Fs,Fv,Tp)— Ef p—(f|++f)

m p L,

als
1+2 v2(1+2— )
%( rsap> 20 T, dp
2
m pdl,
+—2b2(1+2 ) 12
> r, o (12)

For two of the usual NLWM parametrizations, namely
NL3 [31] and TM1[32], the above equations read

Kby Ny
Enis = £(05.0,.9,) + 60 5 4°,
Kby ANbg
Pais = P(0:0,.9,) = =5~ = 5 (13)
and
Kby Mo E9Vo
Erm = €(9s.9,,9,) + 6 240 g
ke N . EG,Vo
Prv1 = P(95,9,,9,) — 6 —2- 240 YR (14)

where the meson-nucleon coupling constagisg,, andg,

substitutd’s, I',, andI’,. They are not density dependent and
consequently all der|vat|ve terms in the pressure cancel out

and k, \, and ¢ are the self-coupling constants muIt|pIy|ng
the nonlinear terms.

In order to study the instability region at low densities it is
convenient to invert Eq8) and obtain the effective chemical

potential that appear inside the distribution functions. We

have followed the prescription given in Ref§,29, where

just the particle distribution function is considered. The ef-

fective chemical potential reads

_1(
"B

In(7) + > by7

.), —pn

(15
1=1
where
Pi
=, 16
QM) (18
v is the spin multiplicity,3=1/T and
M2
* —BE*
Q(BM*) = f(z )3 2712,3K2(BM )

with K, the modified Bessel function. The coefficiebfsare
defined in terms of the ratios

QINAM *) _ Kp(nBM * )
QBM*)  nKy(BM*)’

and have been calculated in REZ9]. We list the first three

S,]:

bl: o, b2:a3_a§/2, b3:a4_a2a3+a§/3,

with a,=S,(BM*), 33:2§2(BM*)—S3(,8M*), a,
=5S3(BM* ) —5S5(BM* )S,(BM* ) +S,(BM* ). The chemical
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FIG. 1. Chemical potential curves fdr=7 MeV, NL3 param-
eter set and/,=0.1. The curves for the exact proton chemical po-
tential and its expansion are coincidgishort dashed line The
straight long dashed line represents the exact neutron chemical po-
tential and the bending or(eotted ling its expansion. The expan-
sions are taken up to fifth order.

potentialsu;, i=p,n are obtained from Eq9) and they read

r 1 -
mi=TVo+ ﬂaf.zebo‘*Eg““ E('n(ﬂi) +2 b 77!) , (17)
I=1

where the rearrangement term is given in Ed).

We have checked the range of applicability of the expan-
sion given in Eq(15) by comparing it with the exact results.
We have concluded that, for symmetric matter, the expansion

works very well for temperatureb=7 MeV and subsatura-
tion densities,p<py. This agreement improves for higher
temperatures within the range of temperatures involved in
the present work, where the antiparticles do not play a cru-
cial role. For ANM, T=7 MeV, the agreement is still good
for the proton chemical potential. The neutron chemical po-
tential is well reproduced only fg¥<<0.8py as can be seen in
Fig. 1, where we have plotted the effective chemical poten-
tials for protons and neutrons for asymmetric matter with the
proton fractiony,=0.1, wherey,=p,/p. This result is still
adequate for the range of densities we have considered in the
present work

The stability conditions for asymmetric nuclear matter,
keeping volume and temperature constant, are obtained from
the free energy densityF, imposing that this function is a
convex function of the densitigs, andp,, i.e., the symmet-
ric matrix with the element§5,7,1Q

(),

is positive. This is equivalent to imposifg3]

PF
Ipidp;

o
_E>0

18
o (18)
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I s ) ~ 0, 19 TABLE I. Nuclear matter properties.
A ppsPn) NL3®  TM1°  Tw®  NL&'  DDHps®
where we have used, = r?f/(?pihvpj#i. In terms of the proton BIA (MeV) 163 163 163 16.0 63
fraction the condition§18) and(19) can be rewritten, respec- : : : : -
tively, in the form po (fm™9) 0.148 0.145 0.153 0.160 0.153
K (MeV) 272 281 240 240 240
(£> >0 Esym (MeV) 37.4 36.9 32.0 30.5 251
ap TYp M*/M 0.60 0.63 0.56 0.60 0.56
and L (MeV) 123 117 55 101 44
Ksym (MeV) 108 36 -124 112 45
(£> (a—'ue> > 0. (200  °“Reference31].
ap /1y, \ Np/ 1P bReference32].
‘Referencg25].

It has recently been argug8,1Q] that in ANM the spinodal dReferencd23].
instabilities cannot be separately classified as mechanical ®Reference28].
chemical instabilities. In fact, the two conditions that give
rise to the instability of the system are coupled so that it

appears as a mixture of baryon density and concentratio rms for thecr-_meson are also included, and A denoting .
fluctuations. Therefore, we define the stability region as de_he'correspondmg_co;lphng constants. The Setfc’f §°”Sta”ts IS
termined by(20). defined by g=Vfim’, i=s, v, & g,/2=vfm, m

In order to calculate the boundaries of the spinodal insta> 220 MeV, m,=783 MeV, m,=763 MeV, m;=980 MeV,

bility regions we use the Gibbs-Duhem relation, at a fixed's=10-33 frif, ,=5.42 fir?, f,=3.15 fif, f;=25 ff, «
temperature and isospin asymmetry, =0.06@y; and\=-6x0.0048); [23] and we call it NL5. For

reference, in Table | we show the properties of nuclear matter
JP p A Ipp | _ ;i reproduced by the models we discuss in the present work.
(%)T(S‘ 5{(1 +5)(9_p +(1-9) i | i_zn P\ op s From the minimization of the thermodynamic potential ob-
’ - tained in a Thomas-Fermi approach, the equation of motion
(21)  for this field becomes

with 6=-p5/p=1-2y,, and

(2],12), 2.2, =
6/tp \d6/7, \dp/ts\dp/75\30/1,
where with pg=psp—psy The energy density and the pressure are
also affected by the presence of the new meson. The term
(f) :B{(1+5)%+(1_5)’9_/’“9} -3 (%) +1/Zn§62 should be added to the energy density and the
5)r, 2 2 a8 | o N5/, —1/2mi65 should be added to the expression of the pressure,
(23) both given in Eq(13). The effective masses for protons and

neutrons acquire different values, namely,
With the expressions given in this section the spinodal re-
gions can be obtained for both different temperatures and M’ =M = gsbo— i0sds i = p,N.
different parametrizations.

For completeness, we have also includeddmeson in a
model where thep and § couplings are density dependent, as

Ill. INCLUDING ISOVECTOR-SCALAR MESONS done in Ref[28], where it is called density dependent had-

To investigate the influence of thimeson in the stability ~fonic model(DDHp4). For this purpose, we have considered

conditions we have included in the NLWM the isovector- the density dependence of theind 5-nucleon vertices given
scalar meson term@3]: in Fig. 1 of Ref.[28] which have been extracted from DBHF

calculations of Ref[34]. In this case the coupling constants
_ . 9 Os 9., 0,, andg, used in Eq(24) should be replaced bly,,
= o w_ 2P pe| — - - . s Jus Ip ) S
£ E{m(lﬁ 9,V 27 b ) (M =05t =Go7- 0) | I, I'p, andl'; and the nonlinear scalar terms do not appear.
ForI's andI", we take the parametrizations given in E(®.

1 ) 1 1 1 Y
+3(0,00" ¢ - mEd? - 5x¢® - HAg?) - 10,07 and(4). ForT, andT 5, we propose the following parametri-
BV 1B,, B b, b s Mg aes 2alon
- m;6), 24 1= T(psad i), X= plpsay

wheregs; and mg are, respectively, the coupling constant of
the § meson with the nucleons and its mass. Self-interactingvith
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TABLE Il. Parameters of the DDpl5 model.

PHYSICAL REVIEW C 70, 015203(2004)

i Ik a; b G d;

p 5.8635 0.095268 2.171 0.05336 17.8431

gof NL3 ... »
T™1 - Rtk

- TW — ,*"’" ,_;
60| NL& == L e

DDHp§ = ¥ e

<
b}
1) 7.58963 0.01984 3.4732 -0.0908 -9.811 E
E
[7]
w

f(x) =g exd - b(x- )] -ci(x-dy), i =p, 8,

and the parameteis, b;, ¢;, andd; are defined in Table II.

This parametrization reproduces the curves given in Fig. 1 of 0 0.05 0.1 0.15 0.2 025 03
Ref.[28] and is also displayed in Fig. 2 of the present work. p (fm -3 )

We point out that in the present work there is a factor 2

difference in the definition gf-meson coupling constant. We FIG. 3. Symmetry energy results for the NL3, TM1, TW, 8L
take for the effective chemical potential E@), with the  and DDHS parameter sets.

rearrangement term given by

ar ar, by oI al' s
SR 2o+ —Lpg— - —2 - 25,8
0 ap PVo Jp pP3 2 op pso Jp Ps303

and for the pressure

m3 p s
Pa;rmrmrgzpagrwrg—zyg 1+%§3;

k2 T2
E =—F+ s 27
sym 6E. 8m§P (27)

where
kep=ke(1 + &', Ken=ke(1 - 9™,

with ke=(1.572p)*3. If the § meson is included the symme-
try energy read$23]

IV. RESULTS AND CONCLUSIONS k2 1—~2 1—~2 *\2
.o =—F 4 Pl 2lp 2o M (29)
A quantity of interest in ANM is the nuclear bulk symme- ¥ o6E. 2[4m’ mi\Ep ) |

try energy discussed in ReR23]. This quantity is important

in studies involving neutron stars and radioactive nuclei. The In Fig. 3 we show the symmetry energy for the different
behavior of the symmetry energy at densities larger thafnodels used in this work, calculated &0 andy,=0.5. We
nuclear saturation density is still not well established. In gen€an see that at subsaturation densities where the instability

eral, relativistic and nonrelativistic models give different pre-regions occur0 up to 0.1 fm®), NL3 and TM1 parametri-

dictions for the symmetry energy.
It is usually defined as

1%Elp

= (26)

5 P 1
sym 2 (962 5=0

zations give very similar behaviors. The Blparametriza-
tion describes saturation at 0.16fhand this fact affects the
symmetry energy at low densities, in particular it is the
model with the lowest symmetry energy in this range of den-
sities (see Table)l The TW model presents a different be-
havior, after a faster increase at low densities, the symmetry

which, for the models not including th&-meson, can be energy increases much slower than most of the other models

analytically rewritten as

22

at larger densities. A very low value of the symmetry energy
was obtained with the DDp#5 parametrization. It amounts to

20}
18
16
14
~ 12
\o
101~

25 MeV, in contrast with the value mentioned in REZS]
(33.4 MeV). Nevertheless, in the same refererj@g], the
authors show a curve in Fig. 2, which confirms our number.
The density dependent hadronic models show a softer sym-
metry energy at the densities shown. At higher densities the
models containing thé&-meson are expected to get a harder
behavior due to relativistic effects, namely theontribution
goes to zero and only the repulsive contribution from the
p-meson remainf23]. We point out that in present work we
are only testing the low density region of the symmetry en-
ergy, namely our discussion is concerned with the behavior

p (fm =)

FIG. 2. Density dependent couplings as obtained from the pro

0 005 01 015 02 025 03 035 04 045 05 of nuclear matter at densities below f,7wherep, is the

saturation density. In this region the quantities which
better distinguish the different models are the
slope L= 3py(dEeyml p)l,=p, and  curvature Kgyp

posed parametrization given in the text and which reproduce th& gpg(ﬁzgsym/ﬁpzﬂp:po of the symmetry energB5] given in

curves given in Ref[28].

Table I. The TW model is the only one with a negative cur-
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:? 0.06
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0.02 DDHpS =.ve. ]
° ]
0

o1} .
FIG. 4. Spinodal regions obtained with the NL3 parametrization __
and different temperatures. The instability regions lie inside the®  0.08
curves. The curves are drawn for0 (solid line), 8 (dotted ling,

10 (short-dashed line 12 (dashed-dotted lineand 14(long dashed = 0.06 1
line) MeV. Q@ o |
vature at saturation density. In fact, the Dp#Halso has a
negative curvature at densites below 0.13%tout at satura- 0.02 i
tion the curvature has already a positive value. 0

In Fig. 4 we plot the spinodals for the NL3 parameter set
and different temperatures, varying from=0 up to T 0.1 .
=14 MeV, already close to the critical temperatufg, s —_

~15 MeV. All the other models present a similar behavior, 7 008
namely the larger the temperature the smaller the instability £
region. These same conclusions have already been discuss: ~=
in Ref.[6] for Skyrme-type phenomenologial EOS for ANM. & 04
After a critical temperature the liquid-gas phase transition is
a smooth transition. A consequence of this behavior is the 0.02} 1
greater stability against density flucutations of neutron-rich
systems. Also, in intermediate energy collisions fragmenta- 0 0.2 0.4 0.6 08 1
tion or fractionation occurs later after the system has coolec S
down.
In Fig. 5 we display the spinodals for different parameter FIG. 5. Spinodal regions for different parameter sets @ard
sets obtained withT=0, 10, 14 MeV. ForT=0 MeV the (upper pang| T=10 MeV (middle pane), and T=14 MeV (lower
differences are not significant, occurring at the higher densitpane).
branch,~0.1 fni3. In particular, in the NIS parametrization
the boundary lies at a larger density than in the other modelteemperatures, for different relativistic models. We have con-
for §<0.5. The spinodals for the density dependent hadronisidered both quantum hadrodynamical approaches with non-
models are decreasing less with the asymmetry paranieterlinear terms(NL3, TM1, NL§) and density dependent had-
than the others. At finite temperature the differences areonic models with density dependent coupling parameters
larger. These differences occur again in the larger densityTW, DDHpé). The largest differences between the models
branch, and it is again the Mlwhich presents a boundary at occur at finite temperature and are more clearly shown in the
larger densities in the small asymmetry region followed byhigh isospin asymmetry region. Only physical quantities that
the TW and the DDIHé models. In the large asymmetry explore this region in phase space, as for example the
region we are already testing both the critical temperatureseutron-proton differential flow suggested in RE#6], will
and asymmetries of the models and the differences betweding possible information about the EOS of ANM. Another
the models are larger. For the DpBImodel, as temperature physical system that could be sensitive to present results is a
increases, the instability boundaries extend to higher asynprotoneutron star in the process of stellar colapse. The physi-
metries as compared with all the other models. This is poseal structure of the matter, namely a smaller or larger non-
sibly due to a lower symmetry energy. The opposite occursiniform nuclear matter region, may affect properties such as
with the NL3 parametrization which has the larger symmetrythe neutrino scattering proces4&s].
energy. We conclude that the information obtained from the Another point to be investigated is the role of the Cou-
spinodal decomposition sensitive to the underlying modelomb interaction and finite size effects in the instabilities of
comes from the phase space close to the spinodal boundaANM. We have already shown that the electromagnetic force
at large isospin asymmetry. cannot be neglected in nucleation processes, where droplets
In conclusion, we have compared the spinodal boundargf lower asymmetry are formed in a very asymmetric gas
as a function of density and isospin asymmetry, at severdbackground either ai=0 or finite temperatured 8,19. The

0.06
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authors of Ref[9] have included the Coulomb interaction
and surface tension in their calculation of the binodals in a
simplified way and they have shown that the minimum pres-

PHYSICAL REVIEW C 70, 015203(2004)

-
- m, Ps-

sure for a given temperature do not occur for symmetric To evaluate the expressions involved 22) we obtain the
nuclear matter and that surface effects lower the binodadlerivative of the chemical potential with respectddor a
pressure. It has also been shown that the Coulomb interafixed p

tion affects the growth of instabilitie88]. A natural exten-

sion of the present work would be the inclusion of the Cou-

lomb interaction in the same spirit as done in Ré&f. and

. db, M*

(91/,(977, 12
KETYER

3)-

consequent construction of the binodal sections and spinodal
regions for different temperatures. We expect, however, thavhere

the overall effect of the inclusion of the Coulomb interaction
will be the same for all the models and the main conclusion< -

of the present work will not change.

APPENDIX: SOME FORMULAS

In what follows T is considered fixed. We give the main
expressions needed to obtain the conditions which define the
boundaries of the instability regions. We first consider the

derivatives of the chemical potential with respeciptdor a

given 4. For this purpose we need the derivative of the ef-

fective chemical potential that reads

(@) oy 1 " db, oM*
s amap g MaMr gp
where
gy 1] 1 H}
an, ,Bl U/ '
and
am _ i _ Bpi| AKa(x) = X(Ka(X) + Ka(x)) | IM*
b p 2 *K5(%) ap

X=pBM*,
So, in the NLWM model, one has
<‘9/'Li) _(Wi) g 9
— | =] + 573 50.
dpls \dp)s mg At
Instead, for the TW model, the previous equation reads
2

() ) o)) -5
- =\ p| =T P ;
opls \dpls ﬁpmﬁ r?p am? ap

with

e Bp [ AK(x) = X(Ky(X) + K3<x)>} M *
35 29Q(X) 2 x*K3(x) a8

Both the derivativesM*/ dp and IM*/ 96 are calculated
numerically.
The expressions foidu;/ 96), become

I v g 2
()2 -l
o/, \dsé/, 2m,
in the NLWM, and
o I, r,\2 TI,d 35
(%) =(52) ~nlm ) o PG
P P 4 4
in the TW model.
Some derivatives of the coefficientsare also listed:

db, d_&
dM* 'B
db, _ db, 45 _ds
dM*_B _B< SZdX dX)
with
S _ 1 [K(nX)(K1(x) + K3(X))

dx  2nK3(x)
= nK;(x) (Ky(nx) + K5(nx))].
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