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An analysis of the quasielastic and inelastic peaks of neutrons induced by 1.2 GeV protons on targets with
27øAø232 is presented using the ultrarelativistic quantum molecular dynamics(UrQMD) model. Two dis-
tinct contributions of the nuclear medium are studied in the UrQMD framework, referred to as “in-medium”
and “mean field” effects. The former only includes modifications to theNN-elastic andNN→ND angular
distributions as well as changes to theD-mass distribution. The latter incorporates the(QMD) interaction
potential between nucleons. It is shown that in-medium effect produces an important role for enhancing the
quasi-inelastic peak, while the mean field effect enhances the intensity of both peaks and becomes important in
the quasielastic region. The introduction of both effects in the UrQMD calculations improves the intensity and
location of the quasielastic and inelastic peaks. A rather smooth dependence of the integrated cross sections of
the quasielastic and inelastic peaks on the mass number at both angles is also found and shown to be in
qualitative agreement with the UrQMD incorporating these two effects.
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I. INTRODUCTION

One of the remaining open problems in the transport the-
oretical description of the neutron spectra at intermediate en-
ergiess<1 GeVd is the difficulty of reproducing the location
and intensity of the so-called quasielastic and inelastic peaks
at very forward angles[1–8]. The (quasielastic) peak, cen-
tered near the beam energy, has been interpreted as quasi-
elastic charge exchange nucleon-nucleonsNNd collisions in-
side the target nucleus. The(quasi-inelastic) peak, located at
the beam energy minus<300 MeV, is associated with the
excitation of theD-resonance in inelasticNN-collisions. In
contrast with the quasielastic peak, which can be attributed
to a singlesp,nd elastic scattering, in the quasi-inelastic re-
gion, the singlesp,nd inelastic scattering contribution is su-
perimposed to a background of multiple scattering contribu-
tion.

Over the last few years, various versions of the intra-
nuclear cascade(INC) models have been developed to de-
scribe the neutron double differential cross sections data in
the 200 MeV–2 GeV energy domain[2,3]. Their results,
however, cannot predict the whole neutron spectra. In par-
ticular, the amplitude of the quasielastic and inelastic peaks
are usually underestimated, even when a better parameteriza-
tion of baryon-baryon collisions and a diffuse nuclear surface
are included. Two possible origins of the observed discrep-
ancy are the neglect of “in-medium” and/or “mean field”
effects. It is shown in Ref.[3] that the in-medium cross sec-
tions do not affect the quasielastic region, as expected: since
NN-collisions occur at the surface of the target and are ener-
getic. This may also be true when one considers the angular
distributions of the scatteredNN-elastic collisions. On the

contrary, the angular distribution involvingD-particles in the
quasi-inelastic process may be drastically changed by the
medium. It has indeed been advocated that medium modified
angular distribution is more important for inelastic
NN-collisions than for elastic ones[9–11].

In order to investigate the above mentioned effects, we
analyze the recent experimental data, in which both the
quasielastic and inelastic peaks are prominent, with the ul-
trarelativistic quantum molecular dynamics(UrQMD) model
[12]. The UrQMD model offers, in comparison with the INC
models, two running modes: the cascade mode and the one
that includes the mean field effect. The current stage(version
1.2) UrQMD code only uses free cross sections and free
on-shell particles. Thus, the in-medium effect discussed here
only include medium modification to theNN-elastic and
NN→ND differential cross sections as well as changes to the
D-mass distribution. Note that, the medium modified differ-
ential cross section forNN-elastic scattering is already
implemented in the UrQMD code.

Two points should be stressed here. First, the medium
modified differential cross sections are only used, as in the
UrQMD code, for the angular distributions of the two body
processes but not for the corresponding total cross sections,
which are taken, similar to INC models, to be free ones.
Second, the above mentioned effects are studied without
changing any of the standard UrQMD assumptions and using
always the same default UrQMD parameters.

The organization of this paper is as follows: a brief de-
scription of the basic principles of the UrQMD model,
mainly at intermediate energies, is given in Sec. II. In Sec.
III predictions of both modes of UrQMD model using free
space and medium modifiedNN-elastic andNN→ND angu-
lar distributions are compared with one another and with the
recent measurements[1] of double differential neutron pro-
duction cross sections as a function of neutron kinetic energy
sEnd at 0° and 10° forp+ 27Al, 56Fe, 91Zr, 184W, 208Pb, and
232Th at 1.2 GeV. We summarize and conclude this work in
Sec. IV.
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II. DESCRIPTION OF THE UrQMD MODEL

The details of the UrQMD formalism have been explained
in Ref. [12]. We will only comment on those points which
are important for understanding of the calculation discussed
in Sec. III.

Nuclear collisions are assumed to be described by the sum
of independent binary hadron-hadronshhd collisions. Each
hh collision is assumed to take place at the distance of clos-
est approach, that is, two particles collide if their distance
dtrans fulfills the relation:

dtransøÎstot

p
, stot = ssÎs,typed. s1d

The total cross sectionstot depends on the center-of-mass
(c.m.) energysÎsd and on the species and quantum number
of the incoming particles,dtrans is defined as the covariant
relative distance between the two particles:

dtrans=Îsr1 − r2d2 −
sr1 − r2d · sp1 − p2d

sp1 − p2d2 s2d

with r i being the location andpi the momentum in the rest
frame of the colliding particles.

The inelastichh collisions produce resonances at low and
intermediate energies, while at high energiessÎs=5 GeV for
baryon-baryon and 3 GeV for meson-baryon and meson-
meson reactions) color strings are formed and they decay
into hadrons according to the Lund string model[13]. There
are 55 baryon and 32 meson states as discrete degrees of
freedom in the model as well as their antiparticles and ex-
plicit isospin projected states with masses up to
2.25 GeV/c2. All of these hadronic states can propagate and
reinteract in phase space.

The UrQMD uses a table-look-up for the total and elastic
proton-proton and proton-neutron cross sections. The details
of other hh-cross sections implemented in the UrQMD
model at intermediate energies are given in Appendix A.

Except the medium modified differential cross sections
for NN-elastic scattering, the UrQMD model does not in-
clude any medium effects such as in-medium cross sections
and in-medium masses.

On the basis of quantum molecular dynamics, potential
interactions are enforced for the scattered nucleons. The
single particle wave function of each nucleon is represented
by a Gaussian wave packet, having the phase-space centroid
parameters ofRi andPi for the ith nucleon. The total wave
function is assumed to be a product wave function of
nucleon Gaussian wave packet. The equation of motion for
their centroids(Ri andPi) is given by

dRj

dt
=

] H

] Pj
,

dPj

dt
= −

] H

] Rj
. s3d

The HamiltonianH consists of the kinetic energy and the
effective interaction energy,

H = T + V,

T = o
j

fspj
2 + mj

2d1/2 − mjg,

V = VSkyrme+ VYukawa+ VCoulomb+ VPauli. s4d

In this interaction energy, the following terms are included:
Skyrme-type density dependent interactionsVSkyrmed,
Yukawa potentialsVYukawad, Coulomb potential between pro-
tons sVCoulombd, and the Pauli potentialsVPaulid. The form of
each term is given by

VSkyrme=
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where r ik=Ri −Rk, pik=Pi −Pk, ti and ji denote the spin-
isospin index of nucleon(i), and the “interaction density”
r̃ik=sa /pd3/2e−asRi −Rkd2.

The summation runs over all projectile and target nucle-
ons, r0=0.168 fm−3 is the normal nuclear density, and erf
denotes the error function. The values of the parameters ap-
pearing in Eq.(5) are chosen to be[12], a=0.1152 fm−2,
t1=−84.5 MeV fm3, g=1.46, tg=188.2 MeV fm6, V0

Yuk

=−85.1 MeV fm, gY=1.0 fm, V0
Paul=99.5 MeV, q0=3 fm,

and finally, p0=120 MeV/c, which corresponds to the hard
equation of states.
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In the UrQMD model, the ground state configuration is
obtained by the following packing procedure. The centroids
of the GaussiansRi are randomly distributed within a sphere
with radius,

R= 1.124f 1
2sA + sA1/3 − 1d3dg1/3, s6d

whereA is the mass number of the nucleus. In choosingRi a
minimum distance of 1.6 fm is imposed between identical
nucleons and 1.0 fm for the others. The initial momenta of
the nucleons are randomly chosen between zero and the local
Thomas-Fermi momentum:pF

max="cs3p2rd1/3, with r being
the corresponding local-proton or neutron density. The phase
space density at the location of each nucleon is evaluated: if
the phase space density is too high, then the location of that
nucleon is rejected and a new location is randomly chosen.
This procedure reduces fluctuations in the mean density of
the nucleus.

The UrQMD calculation is carried out up to a time scale
referred to as the transition timettr. We have selectedttr to be
100 fm/c, because this value was enough to obtain stable
neutron spectra from thesp,xnd reaction against a change of
ttr as shown in Ref.[14]. At ttr=100 fm/c, the position of
each nucleon is used to calculate the distribution of mass and
charge numbers(referred to as “prefragments”). In determin-
ing the mass and charge numbers of the prefragments, the
minimum spanning tree method[15] is employed. The pre-
fragments thus identified are then Lorentz boosted into their
rest frames to evaluate their excitation energies. When the
prefragment is in the excited state, the statistical decay via
n,p,d,t , 3He, anda emissions is considered based on the
Weisskopf approximation[16].

In the numerical calculations, the UrQMD(version 1.2) is
run in two modes, the cascade mode(UrQMD/C) and the
one that includes the mean field effect(UrQMD/M).

In addition, the UrQMD predictions are compared using
free space and medium modified differential cross sections
for NN-elastic andNN→ND processes. The used differential
cross sections expressions are given in Appendix B. It is
worth stressing again that the medium modified differential
cross sections are used to determine the scattering angles
between the outgoing particles in elementaryhh collisions
but not for the corresponding total cross sections.

As will be discussed in Sec. III it is not enough to define
the medium modified differential cross section for theNN
→ND reaction but we also need to use an appropriate mass
distribution for theD-resonance,kmDl. We choose[17]

kmDl =

E
mN+mp

Îs−mN

fsmDdmDdmD

E
mN+mp

Îs−mN

fsmDddmD

, s7d

where

fsmDd =
1

p

G0/2

sG0/2d2 + smD − 1232d
. s8d

Inserting Eq.(8) into Eq. (7) one can obtain,

kmDl = 1232 +sarctanZ+ − arctanZ−d−1G0

4
lnF1 + Z+

2

1 + Z−
2G ,

s9d

where

Z+ = sÎs− mN − 1232ds2/G0d,

Z− = smN + mp − 1232ds2/G0d,

with G0=110 MeV. It is shown in Ref.[17] that a successful
reproduction of the empirical freeNN-inelastic cross section
can be realized using the mass distribution of Eq.(9). The
dependence ofkmDl on s is depicted in Fig. 1. One can find
that, as the total energys increases thekmDl increases so
rapidly up to a kinetic energy 1.2 GeVsÎs<2.41 GeVd. Af-
ter reaching the resonance masskmDl=1232 MeV, thekmDl
increases very slowly with the increasing ofs.

In what follows we denote the improvements established
using the medium modifiedNN-elastic andNN→ND differ-
ential cross sections as well as changes to theD-mass distri-
bution in the UrQMD/C and UrQMC/M as “UrQMD/CM”
and “UrQMD/MM,” respectively. In this work, the default
UrQMD parameters are selected, and no adjustment is at-
tempted.

III. RESULTS AND DISCUSSION

In this section, we display the predictions of the UrQMD
model (coupled with free and medium modified differential
cross sections) along with the recent measurements[1] of
double differential neutron production cross sections as a
function of neutron kinetic energysEnd at 0° and 10° forp
+ 27Al, 56Fe, 91Zr, 184W, 208Pb, and232Th at 1.2 GeV, in

FIG. 1. (Color online) The delta mass distributionkmDl as a
function of the total energy of a two particle system in free space
ssd.
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which both the quasielastic and inelastic peaks are promi-
nent. A full comparison between the UrQMD calculations,
without the NN→ND medium modified differential cross
sections, and the data at various angles can be found in Ref.
[14] for p+ 27Al, 56Fe, and91Zr at 1.2 GeV.

The measured energy spectra(see Figs. 3 and 5) are char-
acterized by a narrow peak at a kinetic energy near that of
the beam energy and at lower energy a broad peak centered
around 873 MeV and 760 MeV at 0° and 10°, respectively.
The upper peak(denoted as “quasielastic peak”) is due to a
single sp,nd elastic scattering in the forward direction and
shifted toward large energy losses compared to the quasi-free
kinematics, by 20–30 MeV, more or less independently of
the target mass. The lower peak(denoted as “quasi-inelastic
peak”) is about 400 MeV wide and is thought to be due to
D-resonance excitation:NN→ND (a single sp,nd inelastic
scattering with multiple scattering contributions). Below we
are going to investigate these two peaks by employing the
UrQMD model with different(free and medium modified)
angular distributions. We performed 20000 simulations at
various impact parameters from 0 toR+0.5 fm, whereR is
the target radius given by Eq.(6). In order to have sufficient
statistics, calculations were done for angular bins of 3.5 and
5 at 0° and 10°, respectively.

The error bars in Figs. 3 and 5 include statistical uncer-
tainty only [1]. The thickness of the targets also induces
some distortion in the neutron double differential spectra.
The effect of the target thickness on the neutron spectra re-
sults in a depopulation of the intermediate energy part of the
spectra(between 200 and 600 MeV) and a 30 MeV down-
ward shift of the location of the quasielastic peak[1]. Calcu-
lations using LAHET high energy transport code system[18]
were performed in Ref.[1] for targets with actual geometry
and an infinitely thin one in order to assess the order of
magnitude of the depopulation. It is shown that the differ-

ence is very small for the Pb target and becomes larger as
both the target mass number and angle decrease. The
UrQMD predictions shown here do not include these correc-
tions.

Let us first check the validity of Eq.(B9) for binary col-
lision NN→ND. Figure 2 displays the angular distribution of
the neutron calculated using Eq.(B9) for the reactionpp
→npp+ at Elab=0.97 GeV as compared with experiment
[19]. Note that 90% of this reaction goes throughpp→n
+D++→n+p+p+ and only 10% throughpp→p+D+→p
+n+p+. The results of Eq.(B9) are displayed in Fig. 2(a) for
different values ofkmDl. WhenkmDl=mN+mp the best fit to
the experimental data can be obtained[see Fig. 2(b)]. The
contributions of the direct term, Eq.(B10), and the exchange
term, Eq.(B11), are also shown in Fig. 2(b). One can easily
find that the observed neutron angular distribution can be
reached if only the exchange term is taken into account. The
underestimation of the observed angular distribution around
u=90° is of no importance as far as the numerical simula-
tions are concerned.

In Fig. 3 we plot the double differential cross sections of
the neutron as a function ofEn at 0° (left panels) and 10°
(right panels) for the reactions under study. The solid circles
with error bars represent the experimental data. The histo-
grams denote the results of the UrQMD/C. In the same fig-
ure, we plot the results of UrQMD/C with different choices
of kmDl. The dotted histograms are the results obtained with
kmDl=mN+mp, while the bold solid histograms are those
with the simulated mass distribution of Eq.(9). The former
case corresponds to neutrons following the quasi-free pion
production from reactions likepn→pnp°, pn→nnp+, and
pp→npp+, and the latter to theD-resonance excitation;
NN→ND. As one can see the quasi-inelastic peaks at 0° and
10° are predominately determined by the mass distribution of
the D-resonance.

FIG. 2. (Color online) The angular distribution of the neutron calculated using Eq.(B9) for the reactionp+p→n+D++→n+p+p+ at
0.97 GeV.(a) Shows the calculations with different delta mass distributions.(b) The contributions of the direct and exchange terms. The
solid histograms show the data from Ref.[19].
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FIG. 3. (Color online) Neutron energy spectra at 0°(left panels) and 10°(right panels) from 1.2 GeV proton interactions with targets of
(from the bottom): 232Th, 208Pb,184W, 91Zr, 56Fe, and27Al. The bold solid histograms denote the UrQMD/C calculations with the simulated
mass distribution of Eq.(9), while the dotted histograms are those withkmDl=mN+mp. The thin solid histograms represent the UrQMD/C
calculations with free parametrizations. The experimental data(solid circles with error bars) are taken from Ref.[1].
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The quasielastic peaks at 0° are underestimated by the
UrQMD/C calculations[using the centroid mass of Eq.(9)]
for the reactions under study, although they are better repro-
duced forp+ 27Al and 91Zr. In contrast, the intensity of the
quasielastic peaks are reproduced at 10°, but some discrep-
ancy still remains as the mass number of the target increases.

Let us next investigate the influence of in-medium correc-
tion on the quasielastic and inelastic peaks for the reactions
under study. The in-medium correction is defined by the dif-
ference between the observables for medium modified differ-
ential cross sections, Eqs.(B4) and (B9), and for free ones,
Eqs. (B1)–(B3), in the nuclear medium. For the latter case
we use the same parametrizations presented in Ref.[20],
with which a successful reproduction of the empirical free
NN-differential cross sections are obtained. The predicted
differential cross sections at several energies forpn→pn and
NN→NNp are displayed in Figs. 4. We see that, although
the angular distributions for free parametrizations are more
forward peaked(cf. Figs. 4), the UrQMD/C calculations in
conjunction with the medium modified parametrizations lead
to an enhancement of the quasi-inelastic(at 0°) and elastic
(at 10°) peaks(see Fig. 3). On the other hand, the quasi-
inelastic peaks at 10° are rather insensitive to different pa-
rametrizations.

In order to study the influence of the mean field on the
quasielastic and inelastic peaks, we compare in Fig. 5 both
the UrQMD/CM and UrQMD/MM results with the experi-
mental data for the reactions under study. We found that the
mean field effect is most dramatic in the quasielastic region
whereas it is less dramatic in the quasi-inelastic region. Both
the intensity and the location of the quasielastic peaks at 0°
are now better reproduced by the UrQMD/MM calculations.
For the location, we neglected the 30 MeV downward shift
of the peak location, which arises from the thickness of the
target: Taking into account this shift would yield an even
better agreement with the data. In contrast, at 10° the quasi-
elastic peaks are getting broader in comparison to the data
with increasing the mass number of the target nucleus. On
the other hand, the broadening of the quasi-inelastic peaks is
satisfactorily reproduced by the UrQMD/MM calculations at
0° and 10°, except forp+ 27Al and 56Fe reactions.

From Fig. 5 one notices that the neutron spectra below the
quasi-inelastic peak are overestimated by the UrQMD/MM
calculations for 27øAø184 at 0°, and to a lesser extent at
10°. Part of the overestimation may be due to the neglect of
the finite thickness of the target by the UrQMD/MM calcu-
lations. For the Pb target, where the thickness of the target is
reported to be very small[1], the agreement is shown to be
quite satisfactory.

FIG. 4. (Color online) The predicted angular distributions of neutrons evaluated at different laboratory energies forp+n→p+n (left
panels) andN+N→N+N+p (right panels). (a) and(b) are the results calculated by the free Cugnon parametrizations, Eqs.(B1)–(B3), while
(c) and (d) are those calculated by Eqs.(B4) and (B9), respectively.
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In Ref. [3] using the INC model, several effects are used
to investigate the quasielastic and inelastic peaks forp
+ 208Pb at 800 MeV. These effects include in-medium cross

sections, refraction at the nuclear surface, stopping time,
Pauli blocking and a diffuse nuclear surface. In all the effects
studied, the only one which increase the intensity of the

FIG. 5. (Color online) Same as Fig. 3, but here the bold solid and small dashed histograms denote the UrQMD/MM and UrQMD/CM
calculations, respectively. The thin solid histograms denote the UrQMD/MM calculations that includes theN+D→N+N process.
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quasielastic and inelastic peaks is the introduction of a dif-
fuse nuclear surface. Recently[2], a new version of the INC
model (INCL4) is proposed, which accommodate a diffuse
nuclear surface, for the description of the reactions under
study. It is shown that the width of the quasielastic and in-
elastic peaks are underestimated by a factor of 2 or so. This
may suggest that it is very important to take into account the
mean field as well as the medium modifiedNN→NN and
NN→ND differential cross sections for the description of the
quasielastic and inelastic peaks in proton induced reactions.

In Fig. 5, we additionally investigate the influence of the
reverse processND→NN on the quasi-inelastic and elastic
peaks for the reactions under study. It is assumed, as in Ref.
[9], that the angular distributions ofND→NN and NN
→ND are similar. We show that the implementation of this
channel in the UrQMD/MM calculation improves the inten-
sity of both the quasi-inelastic(at 0° and 10°) and elastic(at
0°) peaks(see thin histograms in Fig. 5) but leads to a broad-
ening of the quasielastic peaks, especially at 10°. This also
indicates that the delta degrees of freedom survive in the
nuclear medium.

Finally, in order to ascertain any systematic trends as a
function of the target mass that may be present in the data
and the calculation, the cross section for the quasielastic and
inelastic peaks were integrated over energy. The energy val-
ues used to divide the two regions for 0° and 10° were arbi-
trarily taken to be 1068 and 1011 MeV, respectively. The
integrals over the two regions for the six targets as a function
of the mass number are shown in Fig. 6. The rather smooth
dependence on the mass number of the two cross sections for
both angles led us to attempt a fit of the formds /dV
=aAb. The values of the parameters extracted from the data
are given in Table I and the fits are plotted in Fig. 6. At 0°,
the cross section for the quasielastic region is seen to vary as

A2/3, whereas the quasi-inelastic region vary asA1/2. The
corresponding values at 10° areA1/2 andA1/3, respectively.

Previous measurements[21] at 800 MeV protons on tar-
gets with 27øAø238 have indicated that integral neutron
yields in the quasielastic region at 0° vary asA2/3, in quali-
tative agreement with the present results.

The integrated cross section for each nucleus has been
calculated by the UrQMD/MM, that includes only theNN
→NN and NN→ND processes. The results of this calcula-
tion are plotted as open circles in Fig. 6. As one can see, the
overlap with the data is quite good and in qualitative agree-
ment with the trend of the measured cross sections, except at
10° in the quasielastic region.

It should be mentioned that the integrated cross sections
of the quasielastic peaks at 0° for 800 MeV protons on tar-
gets with 27øAø238 are poorly determined by a single
scattering model based on Glauber approach[21].

IV. SUMMARY AND CONCLUSIONS

Two distinct contributions of the nuclear medium are in-
vestigated in the UrQMD framework, referred to as “in-

FIG. 6. (Color online) Plot of the cross sections integralsfesd2s /dVdEddEg at 0° (left panels) and 10°(right panels) of the quasielastic
and inelastic associated regions of the neutron spectra versus the mass number of the target. Solid circles with error bars represent results
extracted from experimental data shown in Figs. 3 and 5. The solid lines give the results of the power law fits to the present data(solid circles
with error bars) for the two regions at both angles. Results of the UrQMD/MM calculation of the quasielastic and inelastic cross sections for
each nucleus are plotted as open circles.

TABLE I. Values of parameters extracted from power law fit:
aAb.

Region a b

At 0°

quasielastic 4.49 0.671

Quasi-inelastic 44.0 0.463

At 10°

quasielastic 7.00 0.450

Quasi-inelastic 36.0 0.333
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medium” and “mean field” effects. The former includes
modification to theNN-elastic andNN→ND angular distri-
butions as well as changes to theD-mass distribution. The
latter incorporates interaction potential between nucleons.
The in-medium effect is defined as the difference between
the observables for the medium modified angular distribu-
tions and for free ones. The mean field effect is given as the
difference between the UrQMD/MM and UrQMD/CM on
the observables, that is when the two running UrQMD
modes are supplemented with the medium modified angular
distributions as well as changes to theD-mass distribution.

The influence of these two effects on the quasielastic and
inelastic peaks of neutrons at 0°and 10° are studied forp
+ 27Al, 56Fe, 91Zr, 184W, 208Pb, and232Th at 1.2 GeV. From
the calculation results we can get the following conclusions:

(1) The quasi-inelastic peak is predominately determined
by the mass distribution of the intermediate excited delta
resonance: The delta degrees of freedom survive in the
nuclear medium.

(2) The in-medium effect plays an important role for en-
hancing the quasi-inelastic peak.

(3) The mean field effect enhances both peaks and be-
comes important in the quasielastic region.

(4) A better reproduction of the two peaks is obtained
with UrQMD/MM than with UrQMD/C using free angular
distributions.

(5) Including theND→NN process in the UrQMD/MM
calculations improves the description of the quasi-inelastic
peak.

(6) The neutron spectra below the quasi-inelastic peak
are satisfactorily reproduced by the UrQMD/MM when the
effect of target thickness plays a minor role.

(7) The integrated cross sections for the quasielastic and
inelastic peaks at both angles show a smooth dependence on
the mass number of the six targets, and are well reproduced
by the UrQMD/MM calculations.

Thus, the quality of the results presented here and else-
where[14] (see Refs.[2,3] for a comparison) induces us to
believe that the UrQMD approach is much more appropriate
for taking proper account of the collision process. However,
further possible improvements of the UrQMD model at in-
termediate energies are still needed. These include the fol-
lowing:

(i) As we do for the angular distributions, one should use
medium modified cross sections forNN→NN and NN
→ND processes.

(ii ) Besides the inclusion of the delta in the collision part
and in the delta mass distribution it also has to be included in
the mean field part of the theory.

(iii ) More realistic spatial and momentum densities
should be used instead of the crude box approximation.

(iv) A self-consistent minimization of the energy of the
initial nuclei should be implemented instead of the normal
packing procedure.
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APPENDIX A

For the convenience of the reader, we give in this Appen-
dix the most importanthh-cross sections implemented in the
UrQMD model.

At 1.2 GeV incident energysÎs=2.41 GeVd the most im-
portanthh reaction channels, included in the collision term
of Eq. (1), are

s1d Bi + Bj → Bi + Bj;

s2d N + N → N + D1232;

s3d N + D1232→ N + N;

s4d N + N → N + D* ;

s5d N + N → D1232+ N* ;

s6d N + N → N + N* ;

s7d N + N* → N + N;

s8d N + p → D1232;

s9d N + p → N* ;

s10d D1232+ p → N* ; sA1d

where B denotes a baryon, andN, more specifically, a
nucleon. TheD1232 is explicitly listed, whereas higher exci-
tations of theD-resonance have been denoted asD* .

For the production of baryonic resonances[channels 2, 4,
5, and 6 in Eq.(A1)] the cross sections are parameterized
according to the general form,

s1,2→3,4sÎsd ~ s2S3 + 1ds2S4 + 1d
p3,4

p1,2

1

s
uMsm3,m4du2,

sA2d

whereSi , i =3,4 express the spin of the particles in the final
state andpi,j corresponds to the c.m. momentum of the par-
ticles sid ands jd. Specific assumptions are made with regard
to the form of the matrix elementuMsm3,m4du2 for each reso-
nance production channel. For channel 2 in Eq.(A1),

uMsm3,m4du2 = A
mD

2GD
2

ssÎsd2 − mD
2d2 + mD

2GD
2

, sA3d

is used withmD=1232 MeV,GD=115 MeV, andA=40000.
As for the channels 4, 5, and 6 in Eq.(A1),

uMsm3,m4du2 = A
1

sm4 − m3d2sm4 − m3d2 , sA4d

is taken withA=6.3 for channel 6,A=12 for the channel 4,
andA=3.5 for channel 5. The free parameters in Eqs.(A3)
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and (A4) are tuned to experimental measurements.
The cross sections for channels 3 and 7 in Eq.(A1) are

determined by the law of detailed balance from the cross
sections of channels 2 and 6, respectively,

s3,4→1,2 ~
kp1,2

2 l
kp3,4

2 l
s2S1 + 1ds2S2 + 1d
s2S3 + 1ds2S4 + 1d

s1,2→3,4. sA5d

The integration over the mass distributions of the resonances
in Eq. (A5) has been denoted by the bracketskl, e.g.,

kp3,4
2 l =E E p3,4

2 sÎs,m3,m4dA3sm3dA4sm4ddm3dm4.

sA6d

The mass distributionArsmd in Eq. (A6) is given by the
Breit-Wigner distribution with a mass dependent width,

Arsmd =
1

N

Gsmd
smr − md2 + Gsmd2/4

, sA7d

whereN denotes the normalization constant.
In the case ofp-absorption on baryons(channels 8, 9, and

10), the total meson-baryon cross section is given by

ssMB → Rd = o
R=D,N*

uCsMB,Ru2
s2SR + 1d

s2SM + 1ds2SB + 1d
p

pC.M.
2

3
GR→MBGtot

sÎs− mRd2 + Gtot
2 /4

, sA8d

whereCsMB,Rd are the Clebsch-Gordon coefficients.SR, SB,
andSM denote the spin of the resonance, the decaying baryon
and meson, respectively. The full widthGtot is a sum of all
partial decay widthGR→MB for resonanceR into mesonsM
and baryonsB, which depends on the momentum of the de-
caying particle,

GR→MB = GR→MB
0 mR

m
S pC.M.smd

pC.M.smRd
D2l+1 1.2

1 + 0.2S pC.M.smd
pC.M.smRd

D2l+1 ,

sA9d

GR→MB
0 is the partial decay width of the resonance into the

channelM and B. l and pC.M.smd are the relative angular
momentum and the relative momentum in their rest frame,
respectively.

The decay of the resonances proceeds according to the
branching ratios compiled by the particle data group[22].
The resonance decay products have isotropical distributions
in the rest frame of the resonance.

APPENDIX B

In this appendix we give the expressions of the free space
and medium modifiedNN-elastic andNN→ND differential
cross sections used in this paper.

1. Free space differential cross sections

(1) pp-elastic scattering[23]:

dspp

dt
< e−Assdt, sB1d

where

Assd = 6
s3.65sÎs− 1.8766dd6

1 + s3.65sÎs− 1.8766dd6
.

(2) pn-elastic scattering[20]:

dspn

dt
< seBpnt + a eBpnud, sB2d

wheret andu are the Mandelstam variables. The coefficients
Bpn anda are given by

Bpn = 3.68 + 0.76plab,

a = s0.8/plabd,

whereplab is the incident laboratory momentum in GeV.
(3) NN→ND [20]:

dsNN→ND

dt
< seBint + e−Bintd, sB3d

with

Bin = 5.287F1 + expSplab − 1.3

0.05
DG−1

.

2. Medium modified differential cross sections

(1) NN-elastic scattering[10]:

dsNN→NNss,td
dt

=
1

s2pd2s
F sgNN

s d4

2st − ms
2d2st − 4m*2d2

+
sgNN

w d4

st − mw
2d2s2s2 + 2st+ t2 − 8m*2s+ 8m*4d

+
24sgNN

p d4

st − mp
2d2m*4t2 −

4sgNN
s gNN

w d2

st − ms
2dst − mw

2d
s2s+ t

− 4m*2dm*2G . sB4d

The spseudod-scalar and vector coupling constants aregNN
p

=7.27, gNN
s =9.4, andgNN

w =10.95, whereasm* is the in-
medium mass. The Mandelstam variables are given by

s= sp + p2d2 = fE*spd + E*sp2dg2 − sp + p2d2, sB5d

t = sp − p3d3 = 1
2ss− 4m*2dscossud − 1d, sB6d

with u denoting the scattering angle in the c.m. system. The
in-medium single particle energy is given by

E*spd = Îp*2 + m*2 . sB7d

The formula for the differential cross section of in-medium
NN-elastic scattering is extended to all elementaryhh colli-
sions by the replacement,
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s→ s− sm1
* − m2

*d2 + 4m*2 , sB8d

wherem1
* andm2

* denote the effective masses of the incom-
ing hadrons.

s2d NN→ND f9g:

dsNN→NDss,td
dt

=
8

s2pd2s
sgNN

p d2sgDN
p d2S ss− m*2 − mD

*2d2 − 4m*2mD
*2

sss− 4m*2d
D1/2

3fDss,td + Ess,tdg, sB9d

with the direct term,

Dss,td = −
m*2tfsmD

* + m*d2 − tg2fsmD
* − m*d2 − tg

6mD
*2st − mp

2d2 ,

sB10d

and the exchange term,

Ess,td = −
m*2

12mD
*2st − mp

2dsu − mp
2doi=1

6

Ei , sB11d

where

E1 = mD
*2fs8s− 3tdm*2t − 2ss+ 3tdm*4 + 3m*6 − 2s2t + 2t3g,

E2 = mD
*3m*fs2s+ tdt − 2ss+ tdm*2 + 6m*4g,

E3 = mD
* m*fs2s− tdm*2t + ss+ 3tdm*4 + ss+ tdst− 3m*6g,

E4 = mD
*5m* bs− t − 3m*2c + mD

*4fss− 3tdm*2 + 2st− t2g,

E5 = ss+ 9tdm*6 + ss+ 6tdss+ tdm*2t − 6ss+ 2tdm*4t,

E6 = − mD
*6m*2 − 2m*8 − t2ss+ td2,

with gDN
p =15.63. Thedefinition of s is the same as in Eqs.

sB5d and sB8d, and

t = sp − p3d2 = 1
2s3m*2 + mD

*2 − sd + 2upuup3ucossud,

u = sp − p4d2 = 3m*2 + mD
*2 − s− t,

upu = 1
2
Îss− 4m*2d,

up3u =
1

2

Îss− m*2 − mD
*2d2 − 4m*2mD

*2

Îs
.

The effects stemming from the finite size of hadrons and a
part of the short range correlation is taken into account in
Eqs.sB4d andsB9d by introducing a phenomenological form
factor at each vertex. For the baryon-baryon-meson vertex
the common form,

FBBM =
LM

2

LM
2 − t

, sB12d

is used, whereLA is the cut-off mass of the mesonA. These
cut-off masses areLp=510 MeV, Ls=1200 MeV, andLw
=808 MeV.

Since UrQMD only uses free cross sections and free on-
shell particles the effective in-medium quantitiesE* , m* , and
mD

* are replaced by the free quantitiesE, m, and kmDl in
actual calculations.
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