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I. INTRODUCTION

The forces between extended objects is a very important
subject in heavy-ion collisions, where the double-folding po-
tential plays a fundamental role in the description of the
corresponding interaction. The folding of two spherically
symmetric distributions can easily be calculated by using the
Fourier transform representation[1]. However, when dealing
with deformed distributions the obtainment of the potential is
a hard task due to the numerical resolution of the corre-
sponding six-dimensional integral, which is very time-
consuming. This problem is quite relevant because most nu-
clei present permanent and/or vibrational deformations.
Several articles have presented approximate expressions for
the corresponding Coulomb interaction(e.g., Refs.[2,3]), but
in general those expressions were obtained assuming only
one deformed nucleus and sometimes also assuming vanish-
ing diffuseness for the distribution. The nuclear potential has
also been obtained(e.g. Ref.[4]), but again in an approxi-
mate form.

In the present paper, we provide a model to obtain ap-
proximate expressions for the Coulomb potential between
two deformed nuclei with finite diffuseness. The correspond-
ing results are compared with those obtained from the reso-
lution of the six-dimensional integral. We also indicate a way
to calculate the nuclear potential accurately, based on a zero-
range model recently proposed[5]. Furthermore, we present
an interesting systematics for the quadrupole and octupole
deformation parameters of heavy-nuclei.

II. QUADRUPOLE AND OCTUPOLE DEFORMATION
SYSTEMATICS

In an earlier paper[5], we presented an extensive system-
atics for the densities of heavy nuclei, based on studies of
experimental charge distributions and theoretical densities
calculated through the Dirac-Hartree-Bogoliubov model. In
that work, we adopted a spherically symmetric two-
parameter Fermi(2pF) distribution to describe the nuclear

densities. We found that the radii of the charge distributions
can be well described by

Rc = 1.76Z1/3 − 0.96 fm, s1d

whereZ is the number of protons of the nucleus. The charge
densities present an average diffuseness value ofa
=0.53 fm. Owing to specific nuclear structure effects(single
particle and/or collective), the parametersRc and a show
small variations around the corresponding average values
throughout the Periodic Table.

In the present paper, with the aim of obtaining the defor-
mation parameters, we have used the systematics for the
quadrupoleBsE2d and octupoleBsE3d transition probabili-
ties of even-even nuclei from Refs.[6,7]. We define the cor-
responding deformation lengths byd2=b2Rc and d3=b3Rc,
and we assume the following connection with the transition
probabilities:

BsEld = S3ZeblRc
l

4p
D2

. s2d

Figure 1 and 2 present the extracted values for the defor-
mation lengths as a function of the number of protons or
neutrons of the nuclei. Strong effects of structure are ob-
served for thed2 parameter, which presents local minimum
values at the magic numbers. With the purpose of emphasiz-
ing this behavior, we have calculated average values over
isotopes and also over isotones(Fig. 3). Similar procedure
has also been applied to thed3 parameter(Fig. 4). Most
BsE2d and BsE3d values have been obtained through meth-
ods that involve mainly the electromagnetic interaction, such
as Coulomb excitation, electron scattering, etc. Thus, one
could expect that the extracted deformation lengths should
be related mainly with the number of protons of the nuclei.
However, an inspection of Figs. 1–4 shows a very interesting
similarity between the behavior of the deformation param-
eters as a function ofZ andN. Based on these findings, we
propose that the deformation lengths can approximately be
described using the following functions:
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d2 = D2sZd + D2sNd, s3d

d3 = D3sZd + D3sNd, s4d

whereD3sXd=a /ÎX with a=3.2 fm, and the functionD2sXd
is given in Table I. Expressions(3) and(4) describe the com-
plete set of experimentally extracted deformation lengths
with a dispersion(standard deviation) of 0.2 fm (about 15%
precision). This precision is only slightly greater than the
experimental uncertainties.

A comparison between functionsD2 and D3 is shown in
Fig. 5. The effects of shell structure observed inD2 but not in
D3 are well understood microscopically. To lowest order, col-
lective quadrupole transitions are constructed of a linear
combination ofJ=2, positive parity particle-hole excitations.
Within open shells, such excitations involve states within the
same major shell. At shell closures, however, the particle
state must be one from two major shells above the closed

shell, which inhibits the excitation due to the large energy
involved.D2 is thus large where a shell is filling and tend to
zero at its closure. Collective octupole transitions, on the
other hand, are a linear combination ofJ=3, negative parity
particle-hole excitations, which involve a hole state from one
shell and a particle state from the adjacent shell. Since such
combinations always exist, independently of shell closures,
little structure is observed inD3.

In the next sections we deal with deformed densities as-
suming the 2pF shape:

rsrWd =
r0

1 + expS r − Rsu0d
a

D , s5d

Rsu0d = R0 + o dlYl0su0d, s6d

whereu0 is the angle betweenr and the symmetry axis of the
deformation. For the charge distributions we assume thatR0
can be described by Eq.(1), and we limit our study only to

FIG. 1. The values of the quadrupole deformation lengths as a
function of the number of protons(bottom) or neutrons(top) of the
nuclei. The dotted lines represent the magic numbers.

FIG. 2. The values of the octupole deformation lengths as a
function of the number of protons(bottom) or neutrons(top) of the
nuclei. The dotted lines represent the magic numbers.

FIG. 3. The average values for isotopes(or isotones) of the
quadrupole deformation lengths as a function of the number of pro-
tons (or neutrons) of the nuclei.

FIG. 4. The average values for isotopes(or isotones) of the
octupole deformation lengths as a function of the number of protons
(or neutrons) of the nuclei. The solid line represents a function
proportional toX−1/2, whereX could beZ or N.
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quadrupole and octupole deformations. We refer as the cor-
responding non deformed density to

rs0dsrd =
r0

s0d

1 + expS r − R0

a
D . s7d

Due to the normalization condition, as defined by Eq.(8),
one should observe thatr0Þr0

s0d,

E rsr ddr = Z. s8d

III. THE COULOMB POTENTIAL

The Coulomb interaction between two charge distribu-
tions is given by

VCsRd =E E e2

uR + r 2 − r 1u
r1sr 1dr2sr 2ddr 1dr 2, s9d

where R is the position vector of the center of mass of
nucleus 2 measured from that of the nucleus 1(see Fig. 6),
and describes their relative motion. We assume a system of
coordinates with thez axis in the direction ofR and thex
axis in the way that the planexz contains the symmetry axis
of the deformation of nucleus 1. Therefore the direction of
this symmetry axis is defined just by the angleu01. The di-
rection of the symmetry axis of the deformation of nucleus 2
is defined by two angles:u02 and the azimuthal anglef02 (for
convenience, we choosef02=0 in Fig. 6).

For spherically symmetric densities, the Fourier transform
representation applied to Eq.(9) results in

VC
s0dsRd =

2Z1Z2e
2

p
E

0

`

J0sqRdr̂1sqdr̂2sqddq, s10d

r̂sqd =
4p

Z
E

0

`

J0sqrdr2rs0dsrddr. s11d

Furthermore, in the case of vanishing diffusenesssa=0d one
obtains

VC
s0dsRd =

18Z1Z2e
2

p
E

0

`

J0sqRd
J1sqR01d

qR01

J1sqR02d
qR02

dq.

s12d

Figure 7 presents a comparison of the results forVC
s0d ob-

tained by(i) Eq. (10) (using the average diffuseness of Ref.
[5]: a=0.53 fm) (ii ) Eq. (12), i.e., a=0, (iii ) Eq. (13) of the
pointlike model, and(iv) Eq. (14) of the pointlike plus uni-
form charge model, which can often be found in textbooks
on heavy-ion collisions. The different models provide very
similar results in the region of the barrier radius and, there-
fore, such models give similar scattering cross sections ex-
cept, perhaps, at high bombarding energies where the inter-
nal region of the interaction may be probed,

TABLE I. Values of the functionD2sXd.

X D2 (fm) X D2 (fm) X D2 (fm) X D2 (fm)

2 2.61 42 0.75 82 0.00 122 0.54

4 2.30 44 0.67 84 0.02 124 0.51

6 0.98 46 0.43 86 0.11 126 0.08

8 0.37 48 0.30 88 0.39 128 0.23

10 1.36 50 0.00 90 0.73 130 0.59

12 1.18 52 0.28 92 1.06 132 0.68

14 0.57 54 0.62 94 1.21 134 0.87

16 0.65 56 0.77 96 1.27 136 0.99

18 0.54 58 0.83 98 1.34 138 1.05

20 0.27 60 0.95 100 1.13 140 1.17

22 0.64 62 0.93 102 1.18 142 1.31

24 0.78 64 0.99 104 1.18 144 1.06

26 0.64 66 1.10 106 1.21 146 1.07

28 0.30 68 0.99 108 1.09 148 1.10

30 0.60 70 0.91 110 1.01 150 1.10

32 0.60 72 0.80 112 0.82 152 1.05

34 0.81 74 0.63 114 0.84 154 1.06

36 0.70 76 0.43 116 0.64 156 0.98

38 0.67 78 0.26 118 0.63 158

40 0.70 80 0.00 120 0.59 160

FIG. 5. The functionsD2 andD3 that describe the behavior of
the deformation lengths. The dotted lines represent the magic
numbers.

FIG. 6. Schematic picture of the collision of two deformed nu-
clei. The dashed circle represents the nucleus 1 if it did not have
deformation.
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VC
s0dsRd =

Z1Z2e
2

R
, s13d

VC
s0dsRd = Z1Z2e

25 1/R sR. RC = R01 + R02d
1

2RC
F3 −

R2

RC
2 G sR, RCd. 6

s14d

For deformed densities, the computational resolution of
Eq. (9) is very time-consuming due to the six-dimensional
integral. This becomes a problem in studies where it should
be solved several times as, for example, in calculations of
sub-barrier fusion where the cross sections are obtained as an
average over different orientations of the deformation axes.
Therefore, faster methods to obtain good approximations for
the deformed potential are quite convenient. In Ref.[3] was
studied the interaction between a deformed projectile and a
spherically symmetric target, considering both distributions
with a=0 (the way to extend the results to finite diffuseness
was indicated in that paper). We use those results as a start-
ing point to present more general expressions.

We divide the Coulomb potential in two contributions:
VCsRd=VC

s0dsRd+VC
CorsRd, whereVC

s0dsRd is obtained through
Eq. (10) using the corresponding nondeformed densities. We
have solved Eq.(9) using a Monte Carlo method and, there-
fore, the corresponding results have statistical uncertainties.
In our studies, we have assumed the58Ni+ 58Ni system as an
example. The deformation parameters of58Ni are b2
=0.205 fm andb3=0.235 fm, but in some simulations these
values have been changed, including simulations where the
two nuclei were considered with different deformations. In
Fig. 8, we show thatVC

Cor is a relatively small correction of
VC

s0d (about 3%), and therefore the statistical uncertainty in
the calculation ofVC, through Eq.(9), must be very small to
provide useful results forVC

Cor. However, besides relatively
small, the correction is quite important because it can reach
about 4 MeV at the region of the barrier radius(see Fig. 8)
and this certainly produces great effects on, for instance, fu-
sion cross sections.

According to Ref.[3], as long as only nucleus 1 is de-
formed, the symmetry axes of the deformations are in the
same direction, and the diffuseness of the distributions isa
=0, the correction of the Coulomb potential can be approxi-
mately described by the following set of equations:

VC
CorsRd = Vs1dsRd + Vs2dsRd, s15d

Vs1dsRd = Z1Z2e
2fb21F2

s1dsR;R01;R02dY20su01d

+ b31F3
s1dsR;R01;R02dY30su01dg, s16d

Vs2dsRd =
Z1Z2e

2

Îp
fb21

2 G2sR;R01;R02;u01d

+ b31
2 G3sR;R01;R02;u01d

+ b21b31G23sR;R01;R02;u01dg, s17d

G2sR;X;Y;ud =Î 5

49
F2

s2dsR;X;YdY20sud

+
3

7
F4

s2dsR;X;YdY40sud, s18d

G3sR;X;Y;ud =Î 4

45
F2

s2dsR;X;YdY20sud

+
3

11
F4

s2dsR;X;YdY40sud

+Î 2500

14157
F6

s2dsR;X;YdY60sud, s19d

FIG. 7. The Coulomb potential calculated through different
models for the58Ni+ 58Ni system. The arrow represents the ap-
proximate position of the corresponding s-wave barrier radius.

FIG. 8. The figure presents the total Coulomb potentialsVCd, the
correction sVC

Cord and the corresponding relative values
s100 VC

Cor/VCd for the 58Ni+ 58Ni system. The arrow indicates the
approximate position of the barrier radius.
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G23sR;X;Y;ud =Î27

35
F1

s2dsR;X;YdY10sud

+Î16

45
F3

s2dsR;X;YdY30sud

+Î500

693
F5

s2dsR;X;YdY50sud, s20d

Fl
s1dsR;X;Yd =

18

p
E

0

`

JlsqRd
J1sqYd

qY
JlsqXddq, s21d

Fl
s2dsR;X;Yd =

18

p
E

0

`

JlsqRd
J1sqYd

qY
FJlsqXd

+
qX

2

dJlsqXd
dsqXd Gdq. s22d

From this set of equations and neglecting second order
terms, one can find the following asymptotic expression:

VC
CorsR→ `d = Z1Z2e

2F3b21R01
2

5R3 Y20su01d +
3b31R01

3

7R4 Y30su01dG .

s23d

This expression(or similar) has been used in many works
(e.g. Ref.[8]).

The solid lines in Fig. 9 represent the results of Eqs.
(15)–(22) and the dashed ones correspond to Eq.(23). Equa-
tion (15)–(22) provide very good results, except at very inner
distances. One should observe that the asymptotic expression
is not accurate under certain conditions. Indeed, in the case
of Fig. 9(c), for example, the second order terms are not
negligible at all.

We have generalized the model for two deformed nuclei,
and considering different orientationssuli ,flid, for each de-
formation of each nucleus. The corresponding correction
sVC

Cord can be described by the following modifications for
Vs1d andVs2d:

Vs1dsRd = Z1Z2e
2fb21F2

s1dsR;R01;R02dY20su21d

+ b31F3
s1dsR;R01;R02dY30su31d

+ b22F2
s1dsR;R02;R01dY20su22d

− b32F3
s1dsR;R02;R01dY30su32dg, s24d

Vs2dsRd = Z1Z2e
25 o

lÞ0

lalb

s2l + 1dSla lb l

0 0 0
D

3fFl
s2dsR;R01;R02dbla1blb1

3 Hllalb
sula1,fla1;ulb1,flb1d

+ s− 1dlFl
s2dsR;R02;R01dbla2blb2

3 Hllalb
sula2,fla2;ulb2,flb2d

+ il+lb−laFllalb

s3d sR;R01;R02dbla1blb2

3 Hllalb
sula1,fla1;ulb2,flb2dg6 , s25d

Fllalb

s3d sR;X;Yd =
18

p
E

0

`

JlsqRdJla
sqXdJlb

sqYddq, s26d

Hllalb
su1,f1;u2,f2d = o

mamb

Sla lb l

ma mb 0
DYlama

* su1,f1d

3 Ylbmb

* su2,f2d, s27d

where we have used the 3-j symbols[9].
Our simulations have indicated that such expressions are

quite accurate(Fig. 10). Finally, to complete the generaliza-
tion, we have observed(Fig. 11) that the model also works
for distributions withaÞ0, using the same expressions(with
a=0) for VC

Cor, but considering in the calculation ofVC
s0d,

through Eqs.(10) and (11), the corresponding nondeformed
densities withaÞ0. This point is important becauseVC

s0d is
dependent ona. In Figs. 10 and 11 one can observe, again,
that the asymptotic expression(23), generalized for two de-
formed nuclei, fails in some cases.

IV. THE NUCLEAR POTENTIAL

We have developed a model for the nuclear interaction
which is based on the effects of the Pauli nonlocality
[5,10,11]. This interaction has been successful in describing
the elastic scattering, peripheral reaction channels, and fu-
sion involving heavy-ion systems[12–20]. Within the nonlo-
cal model, the nuclear interactionVN is connected with the
folding potentialVF through[5]

FIG. 9. The figure presents the correction of the Coulomb po-
tential for the58Ni+ 58Ni system. The nucleus 2 is assumed unde-
formed and the diffuseness of both distributions isa=0. The defor-
mation parameters of nucleus 1 are indicated in the figure. The solid
lines represent the results of Eqs.(15)–(22), and the dashed lines
represent the asymptotic expression(23). The arrows indicate the
approximate position of the barrier radius.
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VNsRd = VFsRde−4v2/c2
, s28d

wherec is the speed of light andv is the local relative ve-
locity between the two nuclei. In the present paper, we only
study the folding potential[Eq. (29)] because the corre-
sponding nuclear interaction can be obtained through it by
considering the term involving the relative velocity,

VFsRd =E rN1sr 1drN2sr 2dvNNsR − r 1 + r 2ddr 1dr 2. s29d

Usually, in Eq.(29) rNi are the nucleon densities of the
nuclei, andvNN is the effective nucleon-nucleon interaction.
In many works, the Paris and Reid versions of the M3Y
interaction[1] have been assumed forvNNsrd. In Ref. [5], we
have demonstrated that the folding type interaction, Eq.(30),
produces very similar results in comparison with those from
the M3Y:

vNNsrd =E rmsr1drmsr2dV0dsr − r 1 + r 2ddr 1dr 2, s30d

whereV0=−456 MeV fm3 andrm is the matter density of the
nucleon. Based on the intrinsic charge distribution of the
proton in free space, which has been determined by electron
scattering experiments, an exponential shape has been as-
sumed for the matter density of the nucleon[5]. Due to the
delta function, the folding in Eq.(30) is named as the zero-
range approach. We have also defined[5] the matter density
of the nucleus by folding the corresponding nucleon density
with the matter density of the nucleon

rMsr d =E rNsr 8drmsr − r 8ddr 8. s31d

Thus, we distinguish the matter density of the nucleus from
the nucleon one by taking into account the finite size of the
nucleon. By inserting Eqs.(30) and (31) in Eq. (29), the
folding potential can be recast in the following form:

VFsRd =E rM1sr 1drM2sr 2dV0dsR − r 1 + r 2ddr 1dr 2

= V0E rM1sr 1drM2sr 1 − Rddr 1. s32d

In Ref. [5], we provided a systematics also for the nucleon
and matter densities. The radii of both distributions are well
described by

R0 = 1.31A1/3 − 0.84 fm. s33d

Due to the folding procedure, the average diffuseness for the
matter densities,aM =0.56 fm, is slightly greater than that for
the nucleon distributions,aN=0.50 fm.

Due to the six-dimensional integral, the numerical resolu-
tion of Eq. (29) implies a similar problem as that for the
Coulomb potential. Equation(32) is much easier to solve
because the zero-range approach reduces it to a three-
dimensional integral. We have calculated the folding poten-
tial, through Eq.(32), for the 58Ni+ 58Ni (solid lines in Fig.
12). With the purpose of comparison, the dashed lines in Fig.
12 represent the nondeformed folding potentialsVF

s0dd, which
has been calculated considering the corresponding nonde-
formed densities. At the surface, the deformed potential can
differ by a factor about 4 in comparison with the nonde-
formed one.

For large distances, the nondeformed potential has an ap-
proximate exponential shape

VF
0sRd < U0e

−sR−R01−R02d/aP, s34d

where the indexP has been used to differ the diffuseness of
the potential from that of the density. Taking into account
thatVF

s0d depends mostly on the distance between the surfaces
of the nucleiss=R−R01−R02d, approximate expressions have
been proposed to describe the deformed potential. For in-
stance, Eqs.(35) and(36) depend on the variation of the radii
of the densities along thez axis (Fig. 6 showsD only for
nucleus 1)

FIG. 10. The figure presents the correction of the Coulomb po-
tential for the58Ni+ 58Ni system, whereb2=0.205,b3=0.235, and
a=0 were assumed for both nuclei. The angles of the deformation
axes are indicated in the figure. The arrows indicate the approxi-
mate position of the barrier radius.

FIG. 11. The same as Fig. 10, but fora=0.53 fm.
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VFsRd < VF
s0dsRdeD/aP, s35d

VFsRd < VF
s0dsRd − D

dVF
s0d

dR
, s36d

where the variation of the radii is defined by

D = d21Y20su21d + d31Y30su31d + d22Y20su22d − d32Y30su32d.

s37d

Taking into account the approximate exponential shape of
the potential, the diffuseness involved in Eq.(35) can be
estimated from

aP = − VF
s0dsRdFdVF

s0d

dR
G−1

. s38d

Figure 12 shows the results for the deformed and nonde-
formed folding potentials and also those from Eqs.(35) and
(36). In Fig. 13, we show the corresponding corrections
VF

Cor=VF−VF
s0d. Equation(35) provides better approximations

than Eq.(36). Even so, in the surface region the correction
from Eq. (35) may differ by about 40% from the more accu-
rate results obtained with Eq.(32).

V. CONCLUSION

Our systematics for the deformation lengths shows very
interesting features:(i) the symmetry between the contribu-

tions of neutrons and protons, and(ii ) the contrast between
the strong structure effects ond2 compared with the smooth-
ness ofd3. The systematics has been performed with basis on
experimental results for stable even-even nuclei, and our
analysis indicates that it can be used to estimate deformation
parameters within about 15% precision. A test of the predic-
tions for other sort of nuclei, such as the exotic ones, would
be very interesting.

We have provided a model to calculate the Coulomb po-
tential between two deformed nuclei with finite diffuseness.
Our model produces precise estimations in the surface re-
gion, where the usual asymptotic expressions fail in certain
cases. A reasonable estimation of the deformed Coulomb in-
teraction is also obtained in the inner region. The way pro-
posed to calculate the nuclear potential, which is based on
the zero-range approach, makes the numerical calculation
much faster than that using the finite-range effective
nucleon-nucleon interaction. We have demonstrated that the
usual approximations may significantly differ from the more
accurate results.

The findings of the present work should be useful in stud-
ies of heavy-ion reactions, particularly for the sub-barrier
fusion process where the deformations of the nuclei play an
important role.
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