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Coulomb and nuclear potentials between deformed nuclei
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I. INTRODUCTION densities. We found that the radii of the charge distributions

The forces between extended objects is a very importan(fan be well described by

subject in heavy-ion collisions, where the double-folding po- R.=1.762Y3-0.96 fm, (1)

tential plays a fundamental role in the description of the

corresponding interaction. The folding of two spherically whereZ is the number of protons of the nucleus. The charge

symmetric distributions can easily be calculated by using thélensities present an average diffuseness value aof

Fourier transform representati¢h]. However, when dealing =0.53 fm. Owing to specific nuclear structure effe@mgle

with deformed distributions the obtainment of the potential isparticle and/or collective the parameter®. and a show

a hard task due to the numerical resolution of the corresmall variations around the corresponding average values

sponding six-dimensional integral, which is very time- throughout the Periodic Table.

consuming. This problem is quite relevant because most nu- In the present paper, with the aim of obtaining the defor-

clei present permanent and/or vibrational deformationsmation parameters, we have used the systematics for the

Several articles have presented approximate expressions f@uadrupoleB(E2) and octupoleB(E3) transition probabili-

the corresponding Coulomb interacti@ng., Refs[2,3]), but  ties of even-even nuclei from Ref,7]. We define the cor-

in general those expressions were obtained assuming onigsponding deformation lengths y=3,R, and 5;=B3R.,

one deformed nucleus and sometimes also assuming vanistind we assume the following connection with the transition

ing diffuseness for the distribution. The nuclear potential haprobabilities:

also been obtaine(e.g. Ref.[4]), but again in an approxi- A\ 2

mate form. B(EN) = (3Zeﬁch>
In the present paper, we provide a model to obtain ap- A7 '

proximate expressions for the Coulomb potential between _.

two deformed nuclei with finite diffuseness. The correspond- Figure 1 and 2 present t_he extracted values for the defor-

ing results are compared with those obtained from the resghation lengths as a f_unct|on of the number of protons or

lution of the six-dimensional integral. We also indicate a way"€utrons of the nuclei. Strong effects of structure are ob-

to calculate the nuclear potential accurately, based on a Zergglrved f?rththeéz pgrametsr, Wr\‘/'\(;?h p;;lesents local fmlnlrrr\]um_
range model recently propos¢sl]. Furthermore, we present values at the magic numbers. Wi € purpose of emphasiz-
g this behavior, we have calculated average values over

an interesting systematics for the quadrupole and octupol&' i : e
deformation gaereters of heavy-nﬂclei P P iIsotopes and also over isoton@sg. 3). Similar procedure
' has also been applied to th® parameter(Fig. 4). Most

B(E2) and B(E3) values have been obtained through meth-
Il. QUADRUPOLE AND OCTUPOLE DEFORMATION ods that involve n_’namly the electromagne_nc interaction, such
SYSTEMATICS as Coulomb excitation, electron scattering, etc. Thus, one
could expect that the extracted deformation lengths should
In an earlier papef5], we presented an extensive system-be related mainly with the number of protons of the nuclei.
atics for the densities of heavy nuclei, based on studies aflowever, an inspection of Figs. 1—-4 shows a very interesting
experimental charge distributions and theoretical densitiesimilarity between the behavior of the deformation param-
calculated through the Dirac-Hartree-Bogoliubov model. Ineters as a function df andN. Based on these findings, we
that work, we adopted a spherically symmetric two-propose that the deformation lengths can approximately be
parameter Ferm{2pF) distribution to describe the nuclear described using the following functions:

(2
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z FIG. 3. The average values for isotop@s isotone$ of the
guadrupole deformation lengths as a function of the number of pro-
FIG. 1. The values of the quadrupole deformation lengths as @ons (or neutron$ of the nuclei.
function of the number of proton®ottom) or neutrongtop) of the

nuclei. The dotted lines represent the magic numbers. shell, which inhibits the excitation due to the large energy
involved. D, is thus large where a shell is filling and tend to
8, =Dy(Z) + Dy(N), (3) zero at its closure. Collective octupole transitions, on the
other hand, are a linear combinationJf3, negative parity
85=D4(2) + D4(N), (4) particle-hole excitations, which involve a hole state from one

shell and a particle state from the adjacent shell. Since such
whereD3(X):a/\s‘“>_( with @=3.2 fm, and the functio,(X) combinations always exist, independently of shell closures,
is given in Table I. Expression8) and(4) describe the com- little structure is observed iDs.
plete set of experimentally extracted deformation lengths In the next sections we deal with deformed densities as-
with a dispersior(standard deviationof 0.2 fm (about 15%  suming the 2pF shape:
precision. This precision is only slightly greater than the

experimental uncertainties. p(F) = Po (5)
A comparison between functiori3, and D5 is shown in 1+ex r —R(6p)
Fig. 5. The effects of shell structure observedinbut not in € a

D3 are well understood microscopically. To lowest order, col-
lective quadrupole transitions are constructed of a linear
combination ofJ=2, positive parity particle-hole excitations. R(6o) =Ry + > 8, Yol b)., (6)
Within open shells, such excitations involve states within the

same major shell. At shell closures, however, the particld?N€réd is the angle betweenand the symmetry axis of the
state must be one from two major shells above the closefl€formation. For the charge distributions we assumeRpat
can be described by E@l), and we limit our study only to

N
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FIG. 4. The average values for isotop@s isotone$ of the
FIG. 2. The values of the octupole deformation lengths as actupole deformation lengths as a function of the number of protons
function of the number of proton®ottom) or neutrongtop) of the (or neutrong of the nuclei. The solid line represents a function
nuclei. The dotted lines represent the magic numbers. proportional toX~12, whereX could beZ or N.
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TABLE |. Values of the functiorD,(X).

X Dy(fm) X D,(fm) X Dy(fm) X D, (fm)
2 261 42 075 82 000 122 054
4 230 44 067 84 002 124 051
6 098 46 043 8 011 126 0.8
8 037 48 030 8 039 128 0.23
10 136 50 000 90 073 130 059
12 118 52 028 92 1.06 132 068
14 057 54 062 94 121 134  0.87
16 065 56 077 9 127 136  0.99
18 054 58 083 98 134 138 105
20 027 60 095 100 1.3 140 117
22 064 62 093 102 118 142 131
24 078 64 099 104 118 144  1.06
26 064 66 110 106 121 146  1.07
28 030 68 099 108 1.09 148  1.10
30 060 70 091 110 1.00 150  1.10
32 060 72 080 112 082 152 1.05
34 081 74 063 114 084 154 1.06
3 070 76 043 116 064 156  0.98
38 067 78 026 118 063 158

40 070 80 000 120 059 160
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FIG. 6. Schematic picture of the collision of two deformed nu-
clei. The dashed circle represents the nucleus 1 if it did not have
deformation.

Ill. THE COULOMB POTENTIAL

The Coulomb interaction between two charge distribu-
tions is given by

e
VC(R)ZJJmpl(rl)Pz(rz)drlerv 9

where R is the position vector of the center of mass of
nucleus 2 measured from that of the nucleusde Fig. 6,

and describes their relative motion. We assume a system of
coordinates with the axis in the direction oR and thex

axis in the way that the plane contains the symmetry axis

of the deformation of nucleus 1. Therefore the direction of

quadrupole and octupole deformations. We refer as the COfhis symmetry axis is defined just by the andlg. The di-

responding non deformed density to

1+exp<r_Ro>.
a

p(r) =

0
9

)

Due to the normalization condition, as defined by &),
one should observe thag # p.”,

fp(r)dr =Z.

3 (fm)

80 100
X

120

140

160

8

rection of the symmetry axis of the deformation of nucleus 2
is defined by two angle%),, and the azimuthal anglg,, (for
convenience, we choosgy,=0 in Fig. 6.

For spherically symmetric densities, the Fourier transform
representation applied to E(R) results in

27.2,6% [~
VE?)(R):% f Jo(aqR)p1(a)po(apda,  (10)
0

4 ©
p(g) = ?77 f Jo(anr?p©(r)dr. (12)
0

Furthermore, in the case of vanishing diffusen@ss0) one
obtains

182,Z,€* [~ J1(aRoy) J1(ARp?)
V(O)R=1—2f\] R L OV 102 4
c(® ™ 0 oaR) qRo:  dRo2 a
(12)

Figure 7 presents a comparison of the results\fg’? ob-
tained by(i) Eq. (10) (using the average diffuseness of Ref.
[5]: @=0.53 fm) (ii) Eq. (12), i.e.,a=0, (iii) Eq. (13) of the
pointlike model, andiv) Eq. (14) of the pointlike plus uni-
form charge model, which can often be found in textbooks
on heavy-ion collisions. The different models provide very
similar results in the region of the barrier radius and, there-

FIG. 5. The functionsD, and D that describe the behavior of fore, such models give similar scattering cross sections ex-
the deformation lengths. The dotted lines represent the magi€ept, perhaps, at high bombarding energies where the inter-

numbers.

nal region of the interaction may be probed,
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FIG. 7. The Coulomb potential calculated through different
models for the®®Ni+%8Ni system. The arrow represents the ap-
proximate position of the corresponding s-wave barrier radius.

Z,Z,€*

VO(R) =
c(R==—"7

(13)

1R (R>Rc=Ro+Rp)
0) _ 2
VOR)=72,2,64 1 [ R } (R<RY.

2Re

R

(14)
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FIG. 8. The figure presents the total Coulomb poteriiia), the
correction (vg°f) and the corresponding relative values
(100 VE"/V¢) for the 58Ni+%8Ni system. The arrow indicates the
approximate position of the barrier radius.

According to Ref.[3], as long as only nucleus 1 is de-
formed, the symmetry axes of the deformations are in the
same direction, and the diffuseness of the distributiore is
=0, the correction of the Coulomb potential can be approxi-

For deformed densities, the computational resolution O%ately described by the following set of equations:

Eqg. (9) is very time-consuming due to the six-dimensional
integral. This becomes a problem in studies where it should
be solved several times as, for example, in calculations of
sub-barrier fusion where the cross sections are obtained as an
average over different orientations of the deformation axes.
Therefore, faster methods to obtain good approximations for
the deformed potential are quite convenient. In R&f.was
studied the interaction between a deformed projectile and a
spherically symmetric target, considering both distributions
with a=0 (the way to extend the results to finite diffuseness
was indicated in that papeWe use those results as a start-
ing point to present more general expressions.

We divide the Coulomb potential in two contributions:
V(R =VO(R)+VE(R), whereV.)(R) is obtained through
Eqg. (10) using the corresponding nondeformed densities. We
have solved Eq9) using a Monte Carlo method and, there-
fore, the corresponding results have statistical uncertainties.
In our studies, we have assumed i+ >8Ni system as an
example. The deformation parameters ®Ni are S,
=0.205 fm andB;=0.235 fm, but in some simulations these
values have been changed, including simulations where the
two nuclei were considered with different deformations. In
Fig. 8, we show thavS™ is a relatively small correction of
V(CO) (about 3%, and therefore the statistical uncertainty in
the calculation o/, through Eq(9), must be very small to
provide useful results fowS®. However, besides relatively
small, the correction is quite important because it can reach
about 4 MeV at the region of the barrier radiisee Fig. 8
and this certainly produces great effects on, for instance, fu-
sion cross sections.
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VE'(R) = VI(R) +VA(R),

VI(R) = Z,Z,6% B1F 5" (R; Rog; Roo) Yool for)

+ Ba1F S (R Rog; Roa) Yaol o1 1,

Zy

N

VA(R) =

72,67
5,7—27 [85:G2(R; Rog; Roz; oy)

+ 83:G3(R; Ro1; Roz; for)
+ 21831G23(R; Ro1; Rop; 6011

5
G,(R:X:Y:6) = \/4—9F(22)(R;X;Y)Y20(9)

3
+ §F§12>(R;X;Y)Y4O(0),

4
Gs(RiX;Y:0) = 4/ 4—5F(22)(R;X;Y)Yzo(0)
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We have generalized the model for two deformed nuclei,
and considering different orientatio8,;, ¢,;), for each de-
formation of each nucleus. The corresponding correction
(VS can be described by the following modifications for
v andVv2:

= ™
©

Cor
V%" (MeV)

oo o

-4
VO(R) = Z, 2,6 B1F 5" (R: Ros; Rog) Yool 621)
(b)
< ) + B31FS (R Roa; Rop) Yao( 631)
é 2 Emjg.zos + BooF 5P (R; Ryg; Rop) Yaol 620)
S o4l 6, - 45° ~ BadF S (R; Rogi Ron) Yaol 639)], (24)
0 5 10 15 20 25 5 10 15 20 25 30 Ao N
R (fm) R (fm) VP(R) =Z2,2,6%) > (2n+ 1)( 0 0 0)
A#£0
FIG. 9. The figure presents the correction of the Coulomb po- Aalp
tential for the®&Ni+ 58Ni system. The nucleus 2 is assumed unde- )
< ‘B -
formed and the diffuseness of both distributiongais0. The defor- [F(R: Ro1; Ro2) 3y 1ﬂ"b1
mation parameters of nucleus 1 are indicated in the figure. The solid X Hm\a)\b(ﬁ)\al, ¢>\31§ 9>\b1, d’)\bl)
lines represent the results of Eq45)—<22), and the dashed lines
represent the asymptotic expressi@3). The arrows indicate the + (= 1)"F§2)(R; Ro2;Ro1) By 2812

approximate position of the barrier radius.
X Han(6h 20 D 25 Oh 2080, 2)

127 +iMMAap®) R:Ry;:
ng(R,x,Y, 0) - 3_5F52)(R,X,Y)Y10(6) )\)\a)\b( ROl ROZ)B)\alB)\bZ

16 X Hup, (O, 8 1500 2.0, D 1L (25
o R-x-
+ FERIX;Y)Yao(6)
45
500
+\ gaats RXVYs6), (20 18 (*
693 ? P RXGY) = — fo 3,(aRJ, (X3, (qV)dg, (26)
18 [~ J,(qY)
F<l)(R;X;Y):—f J(RZE0,(gXdg,  (21) Na Ao A\,
g L qy ™ Han, (01 815 02, 2) = > Ma MZ 0 Yo, (01 61)
Happ M2
18 ( Y) X Yy (02082, (27)
FORX;Y) = J (QR=~ [J (9X)
™ g ! where we have used thej3symbols[9].

qXdd, (qX) Our simulations have indicated that such expressions are
i }d ) (22) quite accuratéFig. 10. Finally, to complete the generaliza-
2 d(gX) tion, we have observe(rig. 11) that the model also works
for distributions witha# 0, using the same expressigmgth
—0) for VS, but considering in the calculation o1,
through Egs(10) and(11), the corresponding nondeformed
densities witha# 0. This point is important becauséo) is

From this set of equations and neglecting second order
terms, one can find the following asymptotic expression:

3B 3B
VE(R — ) =2122e2{ ;é?Oleo(ﬁoﬁ 31R31Ygo(001)} dependent ora. In Figs. 10 and 11 one can observe, again,
that the asymptotic expressi@®3), generalized for two de-
(23)  formed nuclei, fails in some cases.
This expressior(or similar) has been used in many works IV. THE NUCLEAR POTENTIAL

(e.g. Ref.[8)).

The solid lines in Fig. 9 represent the results of Egs. We have developed a model for the nuclear interaction
(15—(22) and the dashed ones correspond to®@8). Equa-  which is based on the effects of the Pauli nonlocality
tion (15—22) provide very good results, except at very inner[5,10,11. This interaction has been successful in describing
distances. One should observe that the asymptotic expressitiie elastic scattering, peripheral reaction channels, and fu-
is not accurate under certain conditions. Indeed, in the cassion involving heavy-ion systenj&2—-2@. Within the nonlo-
of Fig. 9c), for example, the second order terms are notcal model, the nuclear interactiofy, is connected with the
negligible at all. folding potentialVg through[5]
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621=931=30° ¢21=¢31=0 ©
8,,=6,,=75° ONNGD = | Pl ) pm(r2)Vod(r =1y +ro)drydry,  (30)
\ ® ,,=0,=0
N O =0,=90 whereV,=-456 MeV fn? andp,, is the matter density of the
NS nucleon. Based on the intrinsic charge distribution of the
i R proton in free space, which has been determined by electron
27925‘931:600 622=932=45‘o ©) e 0,0 (d) scattering experiments, an exponential shape has been as-
0 o ¢ ,=90° sumed for the matter density of the nuclg@i. Due to the
% 0. —45° delta function, the folding in Eq.30) is named as the zero-
= 2 ! e 90° 6,20 range approach. We have also defiigfthe matter density
5 4 R e:=eo° ¢:=0 of the nucleus by folding the corresponding nucleon density
=° 6} ! *0 0. 290° 4. 0 with the matter density of the nucleon
N N i
0 5 10 15 20 25 5 10 15 20 25 30
R (fm) R (fm) pm(r) = f PN ) p(r —r")dr . (31

FIG. 10. The figure presents the correction of the Coulomb po- I . .
. . . Thus, we distinguish the matter density of the nucleus from
58 58 — — ’
;e:gavlvzretggsumgd g‘rzy;f%g;/ ;e?gz_;ﬁz?;%f_tﬁ:g; o?nmdatio rghe nucleon one by taking into account the finite size of the
' nucleon. By inserting Eqs(30) and (31) in Eq. (29), the

axes are indicated in the figure. The arrows indicate the approxi]c \di ial b in the following f .
mate position of the barrier radius. olding potential can be recast in the following form:

Vy(R) = Ve(R)e%™, (29) Ve(R) = J pma(r D)pma(r 2)VoS(R =11 +15)drydry

=V, r r{—R)dry. 32
wherec is the speed of light and is the local relative ve- Of pralr ey~ R)dry (32
locity between the two nuclei. In the present paper, we only In Ref.[5], we provided a systematics also for the nucleon

study the folding potentialEq. (29)] because the corre- b = ST
sponding nuclear interaction can be obtained through it b@ggcr:?sgtderbgensmes. The radii of both distributions are well

considering the term involving the relative velocity,
Ro=1.31AY3-0.84 fm. (33

Due to the folding procedure, the average diffuseness for the
Ve(R) = f pni(r)pona(T)unn(R = +1)drdr,. (29)  matter densitiesay, =0.56 fm, is slightly greater than that for
the nucleon distributiongy=0.50 fm.
Usually, in Eq.(29) py; are the nucleon densities of the  Due to the six-dimensional integral, the numerical resolu-
nuclei, andvyy is the effective nucleon-nucleon interaction. tion of Eq. (29) implies a similar problem as that for the
In many works, the Paris and Reid versions of the M3YCoulomb potential. Equatioi32) is much easier to solve
interaction[1] have been assumed fog(r). In Ref.[5], we  because the zero-range approach reduces it to a three-
have demonstrated that the folding type interaction,(80), dimensional integral. We have calculated the folding poten-

produces very similar results in comparison with those frontial, through Eq(32), for the *®Ni+*®Ni (solid lines in Fig.
the M3Y: 12). With the purpose of comparison, the dashed lines in Fig.

12 represent the nondeformed folding poter‘(ﬂéj))), which
has been calculated considering the corresponding nonde-

Z”ZZ“Z:ZO tar=to=0 () formed densities. At the surface, the deformed potential can
T ® 0,00 differ by a factor about 4 in comparison with the nonde-
N O 0,,=0,=90° formed one. .
g For large distances, the nondeformed potential has an ap-
¢ ‘HB proximate exponential shape
2 6 (@ VE(R) = Uge R RorRolae, (34)
O 4=
2 0 ) 6. =0, =0 0, =45° where the _inde>P has been used to _differ th_e di_ffuseness of
= 2 5,9 oo P 8,=90° ¢, =0 the potential from that of the density. Taking into account
5,74 R IDNE PRI Qg thatV\” depends mostly on the distance between the surfaces
> 6l O 0=t = 1807 8,,=90° ¢,,=0 of the nuclei(s=R-Ry;—Ryy), approximate expressions have
0 5 10 15 20 25 5 10 15 20 25 30 been proposed to describe the deformed potential. For in-
R (fm) R (fm) stance, Eq9.35) and(36) depend on the variation of the radii
of the densities along the axis (Fig. 6 showsA only for
FIG. 11. The same as Fig. 10, but fa=0.53 fm. nucleus 1
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FIG. 12. The deformed nuclear potentiablid lines compared FIG. 13. The absolute value for the correctigf®=Ve-V;”,
with the nondeformed on@ashed linesfor the 58Ni+ 58Ni system. where the folding potential was obtained from E@®), (35), and
The figure also presents the results obtained with the usual approxi36). The deformation parameters are the same as those in Fig. 12.
mations, Egs.(35 and (36). =0.205, B3;=0.235, anda . ..
=0.56 fm wgre(a?sumed (for)bo[t;ﬁ nuclei. 'II'BhBe angles of the'vldeforyons of neutrons and protons, atid) the co_ntrast between
mation axes are indicated in the figure. the strong structure effe_cts @h compared with the _smooth-
ness ofd;. The systematics has been performed with basis on
© a experimental results for stable even-even nuclei, and our
VE(R) = VP (R)e?e, (35 analysis indicates that it can be used to estimate deformation
parameters within about 15% precision. A test of the predic-

0 dv? tions for other sort of nuclei, such as the exotic ones, would
VE(R) = VE'(R) - A dr’ (36) be very interesting.
o o _ We have provided a model to calculate the Coulomb po-
where the variation of the radii is defined by tential between two deformed nuclei with finite diffuseness.
Our model produces precise estimations in the surface re-
A = 821Y0(021) + 831Y30(031) + 822Y 20 020) — I35 30(b32) - P P

gion, where the usual asymptotic expressions fail in certain
(37) cases. A reasonable estimation of the deformed Coulomb in-

Taking into account the approximate exponential shape ofraction is also obtained in the inner region. The way pro-
the potential, the diffuseness involved in E@5) can be posed to calculate the nuclear potential, which is based on

estimated from the zero-range approach, makes the numerical calculation
much faster than that using the finite-range effective

0 dvi9 | nucleon-nucleon interaction. We have demonstrated that the
ap=-VE'(R drR (39 usual approximations may significantly differ from the more

accurate results.
Figure 12 shows the results for the deformed and nonde- The findings of the present work should be useful in stud-
formed folding potentials and also those from E@5) and  ies of heavy-ion reactions, particularly for the sub-barrier
(36). In Fig. 13, we show the corresponding correctionsfusion process where the deformations of the nuclei play an
v§°’=VF—V<F°). Equation(35) provides better approximations important role.
than Eq.(36). Even so, in the surface region the correction

from Eg.(35) may differ by about 40% from the more accu- ACKNOWLEDGMENTS
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