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We present a global spherical optical model potential for neutrons with incident energies from 1 keV up to
200 MeV containing dispersive terms and a local energy approximation. A comprehensive database for spheri-
cal or quasispherical nuclei covering the mass range 24øAø209 is used to automatically search on all
parameters. A good representation of the entire data set is obtained when both volume and surface potentials
share the same energy-independent geometry.
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I. INTRODUCTION

Over the last 50 years, the nuclear optical model has been
extensively applied to analyze the scattering of protons and
neutrons by nuclei. Nowadays, several global optical models
are available to predict the total nucleon cross sections and
angular distributions for many nuclei over a wide range of
energies such as the well-known global optical models of
Rapaportet al. [1], Walter-Guss[2], Varneret al. [3], Mad-
land[4], and Koning-Delaroche[5]. Nevertheless, there is no
global potential including dispersion relations[6] that links
the real and imaginary parts of the nuclear potential. The
dispersive optical model(DOM) provides an additional con-
straint to reduce the ambiguities when determining the pa-
rameters of the optical model.

The purpose of this contribution is to build a global dis-
persive spherical optical model for neutrons with incident
energies from 1 keV up to 200 MeV. At Bruyères-le-Châtel,
we have already applied the DOM to many neutron-nucleus
scattering systems, however, until now we have never tried
to build a global one. Because in all our past studies, the
local energy approximation of Perey-Buck[7] was used with
great success we have decided to include it in our global
DOM.

The paper is structured as follows. In Sec. II, we provide
a description of the DOM with the functional forms of the
energy dependencies of the real, imaginary, and spin-orbit
potentials. Section III describes our procedure for searching
the parameters of the optical model and the resulting DOM
potential is discussed in Sec. IV. Finally, our conclusions are
given in Sec. V.

II. OPTICAL MODEL

The optical model potential we use can be written as

Usr,Ed = fVVsEd + iWVsEdgfsr,RV,aVd + fVSsEd

+ iWSsEdggsr,RS,aSd + fVSOsEd + iWSOsEdg

3 S h

mpc
D21

r
gsr,RSO,aSOdl · s, s1d

whereVV,S,SO andWV,S,SO are the real and imaginary terms of
the volume-centralsVd, surface-centralsSd, and spin-orbit

sSOd potentials. The volume shapef is a Woods-Saxon form
factor while the surface shapeg is proportional to its first
derivative:

fsr,R,ad =
1

1 + expfsr − Rd/ag
,

gsr,R,ad = − 4a
d

dr
fsr,R,ad.

Initially the volume, surface, and spin-orbit shapes do not
share the same geometrical parameters(radiusR and diffuse-
nessa). Note also that these parameters(RV,S,SO, aV,S,SO) are
independent of energy.

In the dispersion relations treatment[6], the realV and
imaginaryW volume potentials are connected by a disper-
sion relation

VsEd = VHFsEd + DVsEd,

DVsEd =
P

p
E

−`

+` WsE8d
E8 − E

dE8. s2d

As usual,P denotes the principal value of the integral and
VHFsEd the Hartree-Fock contribution to the mean field.

A. Imaginary potentials

The energy dependence of the volume imaginary term is
taken to be the form first suggested by Brown and Rho[8]:

WVsEd =
AVsE − EFd2

sE − EFd2 + BV
2 . s3d

For the surface imaginary term, we use an energy depen-
dence suggested by Delarocheet al. [9] which modifies the
Brown-Rho shape by an exponential falloff

WSsEd =
ASsE − EFd2

sE − EFd2 + BS
2expf− CSsE − EFdg. s4d

The values ofAV, BV, AS, BS, CS are to be determined by
fitting experimental data.
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Throughout the present paper, we use a imaginary spin
orbit energy dependence very close to those of Koninget al.
[5]:

WSOsEd =
− 3sE − EFd2

sE − EFd2 + 1602 . s5d

All the energy dependencies of the imaginary potential are
symmetric about the Fermi energyEF=−fSnsZ,Nd+SnsZ,N
+1dg /2.

B. Real potentials

A realistic parametrization of the Hartree-Fock potential
was postulated by Perey and Buck[7]. In their work, the
nonlocality ofVHFsr ,r 8d has a Gaussian form

VHFsr ,r 8d = Vsr dexps− ur − r 8u2/b2d,

whereb is the nonlocality range. The local energy approxi-
mation then yields[7]

VHFsEd = VHFexps− mb2fE − VHFsEdg/2"2d, s6d

wherem is the reduced mass of the system. Johnsonet al.
[10] used this form in their dispersive optical-model analysis
about40Ca. We have also tried such a parametrization in our
work, however, better results were obtained, especially be-
yond 100 MeV, by using the form of Romainet al. [11]:

VHFsEd = VHFexps− mb2fE − VHFsEdg/2"2d

3 exps+ 4m2g2fE − VHFsEdg2/"4d. s7d

The total real volume potentialVVsEd=VHFsEd+DVVsEd is
obtained from Eqs.(2) and (7) using the imaginary volume
form (3) in the dispersion relation. The nonlocality rangesb
and g will be specified in the analysis of available experi-
mental data. The total real surface potentialVSsEd is equal to
the surface dispersive contributionDVSsEd calculated from
imaginary surface potential defined by Eq.(4).

As we have done for the imaginary spin orbit component,
the real spin orbit is close to that of Koninget al. [5]:

VSOsEd = 6 expf− 0.004sE − EFdg + DVSOsEd.

Even if it is difficult to prove the existence of the imaginary
spin orbit potential we connected it to the real spin orbit
potential by a dispersion relation. Analytical and numerical
solutions of dispersion relations may be found in Quesadaet
al. [12] and Capoteet al. [13], assuming thatWsEd is sym-
metric about the Fermi energy.

III. OPTIMIZATION OF OPTICAL MODEL PARAMETERS

Our nonlocal dispersive and spherical optical model is
now specified. For each nucleus, a set of fourteen parameters
must be determined: three radiiRV,S,SO, three diffuseness pa-
rametersaV,S,SO, nonlocality rangesb and g as well as the
depthVHF, and the imaginary potentials parametersAV, BV,
AS, BS, CS. To that aim, an automaticx2 search on all of these
parameters is now included in theNUCLEON code [14]
(NUCLEON was first written to investigate the nucleon-

nucleon interactions). This code provides a numerical inte-
gration of the radial Schrödinger equation using the Numer-
ov’s method[15], which is also used by theECIS code[16].
Relativistic kinematics without Dirac formalism is also in-
cluded as it is mentioned in the miscellaneous topics of the
ECIS report [16].

To optimize the optical model parameters for a nucleus,
two quantities can be calculated

xXS
2 = o

i=1

NXSFsT i
exp− sT i

cal

DsT i
exp G2

and

xAD
2 = o

i=1

NAD

o
j=1

NADi Fsi
expsu jd − si

calsu jd
Dsi

expsu jd
G2

,

the first onesxXS
2 d for the total cross sections and the second

onesxAD
2 d for the elastic angular distributions. Here,sT is the

total cross section,ssud the differential elastic cross section
(“exp” stands for experimental and “cal” for calculated val-
ues) and Ds is the experimental uncertainty. For each
nucleusNXS is the number of experimental total cross section
data points,NAD is the number of experimental angular dis-
tributions, andNAD i is the number of data points for a given
experimental angular distributioni.

The determination of the parameters of the global optical
model potential is possible if and only if the experimental
data set is wide enough. Thus our search procedure makes
extensive use of the comprehensive Koning and Delaroche
database[5]. In the range from 1 keV to 200 MeV, the ex-
perimental data of the following twenty nuclei are used to
determine our parameters:natMg, 27Al, natSi, natS, natCa,natTi,
natCr, natFe, natNi, natCu, 89Y, 90Zr, 93Nb, natMo, natSn, natCe,
197Au, natHg, 208Pb, 209Bi.

Using a grid method in the multidimensional “chi-squared
space,” theNUCLEON code searches optimal parameters ei-
ther for all nuclei in the same run owing to parallel comput-
ers or for a subset of nuclei. The starting set of parameters
aV, RV, AV, BV, aS, RS, AS, BS, CS, aSO, RSO are those of the
global neutron optical model of Koning and Delaroche[5]
and the Romain’s unpublished previous investigations for the
parametersb, g, andVHF.

In the Koning and Delaroche global optical model, the
geometrical parametersa andR=r0A

1/3 are different for the
volume, surface, and spin-orbit potentials. On one hand, the
reduced radiusrV of the volume potential increases with
nuclear mass when the reduced radiusrS for the surface po-
tential decreases to a value close torV for heavy nuclei(Fig.
1). On the other hand, diffuseness parameters for both vol-
ume and surface potentials decrease linearly with mass giv-
ing two different slopes for the Koning and Delaroche poten-
tial (Fig. 2). The reduced radiusrSO for the real spin-orbit
potential increases with mass whereas the diffusenessaSO
has a constant value. In that way we use these variations for
the geometrical parameters as a starting point for thex2

search. Thus our starting optical model mentioned in Eq.(1)
has different radii and diffuseness for the volume, surface,
and spin-orbit potentials.
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The first step to construct our optical model is to specify
the real part of the potential. That is to say the nonlocality
rangesb andg, the depthVHF, the radii, and the diffuseness
of the volume and surface potential are the free parameters.
In the beginning, only the total cross sections are inserted in
the x2 search since these data are more sensitive to the real
potential. After an automaticx2 search on 20 processors at
once, we obtain the values of the seven parameters for every
nuclei of our experimental data set. Looking into the varia-
tions of these results with the energy, the atomic mass, or the
asymmetry parametersN−Zd /A (all parameters change from
nucleus to nucleus), we find simple energy or mass func-

tional forms to describe the seven parameters. The main sur-
prise of this first search is the mass variations of the radii.
The best fit to the total cross sections is reached when both
volume and surface shapes share similar potential radii. In
view of that result, we try to search a shape shared by the
volume and surface potentials, that is to say, the functional
forms of the radii and of the diffuseness parameters are the
same for the volume, surface and spin-orbit potentials. Start-
ing from the new functional forms, the work is performed by
iterative computations to obtain the parameters of the real
part of the potential.

The second step is to fix the imaginary part. For each
nucleus, five parameters are needed(AV, BV, AS, BS, CS). The
elastic differential cross sections are then inserted in thex2

search and the functional forms are obtained for the five
parameters. At low energies, a compound nucleus contribu-
tion to the elastic channel must be calculated from statistical
model and added to the shape elastic cross section. The
TALYS code (a new reaction code under development[17])
provides such calculations for our new neutron optical model
with width fluctuation corrections as modified by Moldauer
[18]. Transmission coefficients for proton, deuteron, triton,
and a particles in the exit channels are derived from the
nucleon potentials of Koning and Delaroche[5] using Wa-
tanabe’s folding approach[19].

Finally, a globalx2 optimization using the total and dif-
ferential cross sections was carried out to fine-tune the opti-
cal model parameters.sN−Zd /A dependence of any param-
eters was not needed in this study. In fact this is a moderately
surprising result when building a global optical potential for
just one kind of incident particle, a neutron in our case.

A. Geometrical parameters radius and diffuseness

For nuclei heavier than iron the reduced radius is well
approximated by the following parametrization:

r0 = 1.295 − 2.73 10−4 Asfmd. s8d

The reduced radiusr0 decreases when the nuclear massA
increases as a result similar to the one found by Chibaet al.
[20]. For lighter nuclei, a better agreement between the cal-
culated and experimental total cross sections is obtained by
using the individual radii given in Table I(the improvement
is particularly huge for aluminium and iron). These values
are plotted in Fig. 1. The square symbols represent the opti-
mal reduced radii, and the solid curve represents the previous
parametrization. Our reduced radius parametrization is close
to the surface radius of Koning and Delaroche also plotted in
Fig. 1.

FIG. 1. Reduced radii of our global optical model. The square
symbols represent the optimal reduced radii and the solid curve the
global parametrizationsr0=1.295−2.7310−4Ad. The long-dashed
curve and short-dashed curves correspond to the volume and sur-
face reduced radii of Koning and Delaroche.

FIG. 2. Diffuseness parameter of our global optical model. The
solid curve represents the global parametrizationsa=0.566+5
310−9A3d. The long-dashed and short-dashed curves correspond to
the volume and surface diffuseness parameters of Koning and
Delaroche.

TABLE I. Reduced radii for nuclei lighter than nickel.R
=r0A

1/3.

Nucleus r0sfmd Nucleus r0sfmd

24Mg 1.299 40Ca 1.301
27Al 1.267 46Ti 1.292
28Si 1.280 56Fe 1.268
32S 1.298
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The diffuseness parameter which is also the same for the
volume and surface potential increases with mass as

a = 0.566 + 53 10−9A3sfmd.

The diffuseness parameters of the volume(long-dashed
curve) and surface(short-dashed curve) potentials from Kon-
ing and Delaroche surround our parametrization(solid line)
as can be seen in Fig. 2.

B. Real potentials

The nonlocality rangeb and the depthVHF show very
little variation with mass. The fitting procedure leads to the
following values:

VHF = − 82.8 MeV, b = 1.114 fm.

We note that our nonlocality rangeb is similar to the value
1.19 adopted by Johnson and Mahaux[10]. The nonlocality
rangeg decreases slowly with mass as

g = 0.233 − 23 10−4Asfmd.

Energy dependencies of the depths of the real-volume poten-
tial ( Hartree-Fock plus volume dispersive contributionDVV)
as well as the surface dispersive contributionDVS are shown
in Fig. 3 for three nuclei(32S, 93Nb, and209Bi). The depth of
the real volume and surface potentials for niobium always
stands between the lighter and the heavier nuclei.

C. Imaginary potentials

As the CS and BS parameters of the surface imaginary
potential [see Eq.(4)] show little variation with mass, we
adopt the average results of our fitting procedure

BS= 11.5 MeV, CS= 0.023 MeV−1.

On the other hand, the depthAS of the surface imaginary
potential increases with mass as

AS= − 15 + 0.018 AsMeVd.

For the volume imaginary potential the mass dependence of
the parametersAV andBV are the following:

AV = − 11.21 − 0.017 AsMeVd,

BV = 62 + 0.12 AsMeVd.

Energy dependencies of the depths of the imaginary vol-
ume and surface potentials are shown in Fig. 4 for the same
three nuclei(32S, 93Nb, and209Bi). The depth of the imagi-
nary surface potential for niobium is always located between
the lighter and heavier nuclei even when the imaginary vol-
ume potential presents astonishing variations: the greatest
volume contribution is for the lightest nucleus below
100 MeV and for the heaviest nucleus above 100 MeV.

IV. RESULTS AND COMPARISONS

It is not easy to present all the comparisons of our results
with experimental data. In addition, it is important to com-
pare our results with other global optical models. Koning and
Delaroche did it for the global neutron optical model[5].
They have compared their results with the well-known glo-
bal optical models of Wilmore-Hodgson, Rapaportet al.,
Varneret al., Walter-Guss, and Madland. Owing tox2 com-
parisons they found that their new global neutron optical
model performed better than each of the previous models. In
that way and to show concise comparisons, we only present
x2 results for our global optical model and for the global
optical model of Koning and Delaroche.

The xXS
2KD andxAD

2KD values calculated with the global op-
tical model of Koning and Delaroche relative to our results
notedxXS

2 MR andxAD
2 MR are listed in Table II for every nucleus

of the database. The first column shows the symbol of the
nucleus for the experimental data whereas the second one
shows the calculated nucleus. In the third and fifth column
the relativex2 for the angular distributions and the total cross

FIG. 3. Depths of volumefVVsEd=VHFsEd+DVVsEdg and sur-
face fVSsEd=DVSsEdg real potentials for32S, 93Nb, and209Bi. The
scale for the surface potential is on the left and on the right for the
volume potential.

FIG. 4. Depths of volumefWVsEdg and surfacefWSsEdg imagi-
nary potentials for32S, 93Nb, and209Bi
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sections are listed for every nucleus. The fourth and the sixth
column (noted total) show the total cumulative relativex2

weighted by the number of measurements.
The main improvement is for the total cross sections. The

x square improves by 76%. Our global DOM provides a very
good description of the total cross sections from 1 keV to
200 MeV as illustrated in Fig. 5 for S,93Nb, and209Bi. To
calculate the cross sections for natural elements lighter than
nickel (for instance, sulfur) one has to determine the reduced
radius of each isotope. That can be done from the reduced
radii of Table I owing to a straight line segment with the
same slope as in the global parametrization[Eq. (8)]. The
overall agreement with experimental data for natural ele-
ments is also very good.

As recorded in Table II, there is no improvement to the
potential of Koning and Delaroche to the globalx2 for the
elastic angular distributions. Although the angular distribu-
tions are in phase over the whole energy and mass ranges,
some deviations occur for backward minima in the Y-Nb
region. That is the small price paid for using the same geo-
metrical parameters for the real and imaginary potentials.

V. CONCLUSIONS

We have built a new global optical model potential for
incident neutrons from 1 keV up to 200 MeV for spherical

nuclei. The use of dispersion relations and the local energy
approximation of Perey and Buck not only improves the
quality of fit to the data but also leads to fewer parameters in
the potential: the radii and the diffuseness parameters for the
radial shape of the volume, surface, and spin-orbit potentials
are the same. Functional forms describing our parameters are
very simple. In that way the real potential, as well as the
surface imaginary potential, are defined with only two linear
functions of massA (the nonlocality rangeg and the param-
eterAS). Our new global OMP provides a very good descrip-
tion of the total and differential elastic cross sections over a
very broad energy domain for spherical nuclei. In that way
the reaction cross section is also well defined and this new
potential will provide better evaluations of partial cross sec-
tions for spherical nuclei. In view of the excellent agreement
between predictions and experimental data for incident neu-
trons, we plan to build a global optical model for incident
protons.
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TABLE II. Comparison of our global optical model for the neu-
tron with the global potential of Koning and Delaroche.

Exp. Cal. xAD
2KD/xAD

2MR xXS
2KD/xXS

2MR

Total Total

Mg 24Mg 1.33 1.33 0.92 0.92
27Al 27Al 1.04 1.15 2.06 1.42

Si 28Si 0.90 1.07 1.03 1.28

S 32Si 0.93 1.02 1.22 1.26
40Ca 40Ca 0.77 0.98 0.98 1.21

Ti 46Ti 0.82 0.97 2.83 1.46

Cr 52Cr 0.89 0.96 3.82 1.77

Fe 56Fe 1.03 0.96 1.02 1.68

Ni 58Ni 1.14 0.98 1.20 1.63

Cu 63Cu 1.13 0.99 1.07 1.58
89Y 89Y 1.00 0.99 1.69 1.59
90Zr 90Zr 1.04 1.00 2.04 1.63
93Nb 93Nb 0.83 0.98 1.68 1.63

Mo 98Mo 1.01 0.98 1.14 1.60

Sn 120Sn 0.79 0.97 2.78 1.68

Ce 140Ce 1.02 0.97 3.60 1.77
197Au 197Au 1.11 0.98 0.83 1.71

Hg 200Hg 1.26 0.98 4.29 1.85
208Pb 208Pb 1.09 0.99 1.04 1.80
209Bi 209Bi 1.05 1.00 1.06 1.76

FIG. 5. Comparisons of measured(symbols) and calculated neu-
tron total cross sections of S,93Nb, and 209Bi. The short-dashed
curve correspond to the global optical model of Koning and
Delaroche and the solide curve to our global dispersive potential.
The symbols are averaged on the various experimental values taken
from the literature as described in Ref.[5].
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