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Translationally invariant nuclear density is derived from the shell model one-body densities by removing
their spurious B() center-of-masgc.m,) motion component. This paves the way to utilizing i initio
no-core shell-modeINCSM) nuclear structure in folding approaches to optical potentials. As an illustration,
the ®He diagonal and transitional densities are calculated from the NCSM wave functions obtained using the
CD-Bonn nucleon-nucleon potential in the7X® basis space. A particularly significant impact of the exact
removal of the spurious c.m. motion is found for the spin-orbit part of the optical potential proportional to the
derivative of the nuclear density.
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[. INTRODUCTION studies that used a multimajor shell basis, the c.m. motion is
completely separated from the internal motion due to the

There has been significant progress in Hieinitio ap- translational invariance of the interactions and the choice of
proaches to the structure of light nuclei. Starting from the

realistic two- and three-nucleon interactions, methods likdhe complgteNmaXﬁQ HO bas_is_, as already discussgd. n
the Green's function Monte Carl(GFMC) [1] or the ab general, it is necessary to revisit and adapt the techniques of

initio no-core shell modeINCSM) [2] can predict the low- the spurious c.m.. motion removal to make them applicable
lying levels inp-shell nuclei. for the NCSM. This paper, in particular, focuses on the con-

The principal foundation of thab initio NCSM approach struction of the translationally invariant density starting from
is the use of effective interactions appropriate for the largdhe Cartesian-coordinate SD wave functions. This case is
but finite basis spaces employed in the calculations. Thes@uch less trivial than, e.g., the removal of spurious compo-
effective interactions are derived from the underlying realis-nents from spectroscopic amplitudes.
tic internucleon potentials through a unitary transformation The motivation for this work is the desire to apply thie
in a way that guarantees convergence to the exact solution &tio NCSM nuclear structure to describe nuclear reactions
the basis size increases. For the basis, one uses antisymneg light nuclei. In general, it is a challenging task to extend
trized A-nucleon harmonic-oscillatofHO) states that span theab initio methods to describe nuclear reactions. Concern-
the completeN,,,, A space. A disadvantage of the HO basising direct reactions, particularly the nucleon-nucleus elastic
is its unphysical asymptotic behavior. On the other hand, th@nd inelastic scattering, a first and straightforward answer for
nuclear system is translationally invariant and, particularly inthe NCSM is the application of semimicroscopic approaches,
the case of light nuclei, it is important to preserve this sym-e.g., the Jeukenne-Lejeune-MahgukM) [11], to construct
metry. The HO basis is the only basis that allows a switchoptical potentials from the nuclear densities obtained in the
from Jacobi coordinates to single-particle Cartesian coordiNCSM. Eventually, these optical potentials are used in
nates without violating the translational invariance. Consecoupled-channel calculations by employing the standard
guently, one may choose the coordinates according to whacodes, e.g., Fresdd2]. To fully utilize the NCSM nuclear
ever is more efficient for the problem at hand. In practice, itstructure for this purpose, the spurious c.m. contribution
turns out that theA=3 system is the easiest solved in the must be removed from the density. In Sec. Il, the transla-
Jacobi basis, th&=4 system can be solved either way with tional invariant density is derived from both the Jacobi-
the same efficiency when only the two-body interaction iscoordinate HO wave functions, as well as from the
utilized, but the Jacobi basis is more efficient when the threeCartesian-coordinate wave functions. In Sec. Ill, numerical
body interaction is included. For systems wib» 4, it is by ~ tests forA=3,4, and 5systems are described and an appli-
far more advantageous to use the Cartesian coordinates apation to®He is presented. A spin-orbit part of tiper®He
the Slater determinarfSD) basis, and employ the powerful optical potential is constructed to demonstrate the impor-
shell model codes like Antoing3] that rely on the second tance of the spurious c.m. removal. Conclusions are given in

guantization techniques. Sec. IV.

While the NCSM eigenenergies are independent on the
choice of coordinates, the eigenfunctions obtained in the Il. DERIVATION OF THE TRANSLATIONALLY
Cartesian-coordinate SD basis include &0 spurious INVARIANT DENSITY

center-of-masgc.m.) component. The ways to remove these
components and obtain physical matrix elements of different
operators were investigated in the pp&t1(Q. Typically, in We follow the notation of Ref{13]. We consider nucleons
earlier investigations the basis space was limited to a singleith the massn neglecting the difference between the proton
major HO shell. In the NCSM, the basis space spans severahd the neutron mass. For the purpose of the present paper
major shells. Unlike in some phenomenological shell-modelve use the following set of Jacobi coordinates:

A. Coordinate and HO wave-function transformations
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Here 50 is proportional to the c.m. of th&-nucleon system:

\1/A§0 On the other handjp is proportional to the rela-
tive position of thep+1st nucleon and the c.m. of the

nucleons. Let us rewrite the last and the first equation fro

(1) as

=y 22
e

where RAI=\1/A-1[F,+F,+

(2a)

(2b)

..+fp_4]. Following, e.g.,

Ref. [14], the HO wave functions depending on the coordi-

nates(2) transform as

> (LiMyl;my|Qq) ENy LM l(F_éﬁ;nl) @nylym, (Ta)

Mimy

> (NINLQIN;L3n13Q)yja-1(IMLM|QQ)

nimNLM

X @i EnD) enim(&o) &)

where (NINLQ|N;L;n;11Q)1ya-1) is the general HO bracket

for two particles with the mass ratio (X-1).

B. Nuclear density

The nuclear density operator is defined[&5]

O
r _r)E Yim)Yim().  (4)

I

pop(F) Eéf r)= 2

PHYSICAL REVIEW C70, 014317(2004)

sol AN I M| pop(N AN I M) s

1 P
== 2 GMKKIM )Y PRy 1 (NRy (1)

Js

<|1211||YK|||2212>

x>|H

X spANJe (@] ) AN sp- (5)

nl 1J 1an2 212

Here,|ANJM)gp is anA-nucleon elgenstate with the angular

momentumJ and its third componeni, K=\2K+1, and
Qym=(- 1)i- Ma; _m. The\ stands for remaining quantum num-
bers. The subscript SD refers to the fact that this state was
obtained in the Slater determinant basis, i.e., by using a
shell-model code, and, consequently, contains the spurious
c.m. component. ThB,(r) in Eq. (5) is the radial HO wave
functlon with the oscillator length parameteb=Db,
=\#/mQ, wherem is the nucleon mass. Due to our use of
the coordinate transformatior{4) the oscillator length pa-
rameter is the same for aII coordinates, ilm, The term

(-1/K)sp(AN I 11inls0,) )W||ANI)sp  represents  the
standard one-body density matrix elemef@BDME) com-

rTputed in shell-model codes. The coordinata (5) is mea-

sured from the center of the HO potential well. Clearly, the
density given in5) contains a contribution from the spurious
€.m. motion.

The physical density should depend on the coordinate

measured from the c.m. of the nucletfs—,FE. The corre-
sponding matrix element is obtained by employing the eigen-
states depending on the Jacobi coordinates. By modifying the
last relation in(4) we get

(ANIEM | poeF = RIJAN I M)

A 3/2 S S
”*(ﬁ) (ANIM|8(€ = E0) ANT M), (6)

Where{?:—VA/(A— 1)(F-R), and §A_l given by Eq.(1e) is
reexpressed ag,_;=—\A/(A-1)(Ffo—R). We used the anti-
symmetry of the eigenstates and the properties of the Dirac
delta function. The relationship between the Jacobi coordi-
nate and SD eigenstates is

. TA|A)\\] M>SD

A ANIM) 0o0d &),

<F1...FAO'1...

=(&..

En-101 -

OpTY -

)

OpATY - -

with ¢ and 7 the spin and isospin coordinates, respectively.
Similarly as in(5), the physical density6) can be related

Its matrix element between an initial and a final state thato “one-body” density matrix elements derived from the

were obtained in the Cartesian-coordinate single-particle SDacobi-coordinate eigenstatelscussed, e.g.,

basis can be written in the form

in Appendix B
of Ref.[13]). In particular, we obtain
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<A)\f]fo|pop(F_E)|A)\r]1Ml> <A)\fJfo|pop(F_ §)|A}\|J|M|>
A( A )3/2f S UMK MY (*/}) A\
= e . M. V-
A-1 ! U A =A(_> 2 Ru(ORy1(§)—=
A-1 Jan
/A L - /A L -
XR,,]( |T—R|>Rnr]r< |T—R|> . A ;o > - - 2,
A-1 A-1 XYKk(g)(lml m ‘Kk) d§l . .d§A_2d§A_1d§A_1
i
11l J +Jf+j A-1 J i R N R -
X Aazilll' s ) 17 { K ,} XPNIM &y . En ) @nim(Enr) e (Ency)
X AANT AN acrin-ad acsndf) ) X(&; ... Enrbn | ANIMY), (10)
X{NacriaSacisn' VAN, (8)  where for simplicity we suppress from now on spin and

Here the eigenstates are expanded in a basis with a IowéSfOSpm coordinates. In deriving Eq10) we used the
degree of antisymmetry using the coefficients of fractionalPirac delta function properties and the relatioe- £_,)

parentagd13], =3 m@rim(Ea-) G ©)-
. . ] o We now investigate an analogous integral to that appear-
((Na-1ia-13a-1:01)IANT) = D (Na_gia-1a-1;0lj[INiJ) ing on the right-hand side of Eq10) for the Cartesian-
X(NiJJAND), (9) coordinate wave functions and, as the first result, we relate it

to the OBDME,
with N=Nj_1+2n+I the total number of HO excitations for
the A nucleons and,i,_; the additional quantum numbers L Lol KK de dF e dF.dF.
that characterize tha- and (A-1)-nucleon antisymmetrized 2 (lmylmyKK) ! ATITIATIA
basis states, respectively.

ojTiMmmy

X sl ANIIM[FL . FA) @ny 1 my (FA) @l my(T)

C. Physical density in terms of the SD OBDME X (7 . -FA—1F,A|A)\'J'M'>SD
It turns out that obtaining the eigenstat€® becomes 1
increasingly difficult with the number of nucleons, =2 o ANIM(@! | EL DR ANIM DS
. - L T A<z 11i1%n2lal2
mostly due to the complicated antisymmetrization. As
stated in Sec. | forA>4 it is by far more efficient iv i K
to use the SD basis. Consequently, it is desirable to (= 1)|l+|2+,<+j2_1,2jeljez 1;. (11)

relate the matrix element(6) to the SD OBDME

= 1/K)SD<A)\f‘]f||(anllljl Bl AN )5
Let us note that an intermediate result that eventuallyNext, we rewrite the left-hand side of EG.1) and perform a
leads to the right-hand side of E@) reads change of variables to the Jacobi coordinates,

o 1

E (|1m1| 2m2|Kk) J dFl - dFA—ld FAd Fi - dFA_ rASD<A)\f\]f f|l’1 FA>anl|lml(FA) ()Dn2|2m2(FIA)

(Ti 7‘| mlmz

=) oo (s = Fa (] ... FA_aTAl AN M) sp

= S (mlomykK f 0F, ... 0B AREITAE, . OELARTAFAAN IMYZ, . ExghodEo)

ojTimmy

X @t my (F) @ (TR OUEL = ED) .. 8(Enz = En_) ARG = RIS D pood (] - Encal AN IMY)

= > (I;mylmylKK) f dE; ... déndREEAFARY S LFACAN (M| & . .. En-1)Poodl €0)

ojTimmy

X(Pnlllml(rA)(PN LM (%m)( 1)m2<Pn22 mz( )<PN LM (Rcénl)%oo(go <§1 §A—2§;-\—1|A)\i\]iMi>

! ll Ll M " ’ ’ 1
= > (=™ +K+L1{|, K | }“ (IOOINLL1n11 1D 1/a- (N1 00 [N1L3n,lol ") 1 ja-gy (I M [KK)
2

oyrnimn’1’m’NyLq
Xf dé; ... dgA—ngA—ldé,A—l<A)\f‘]fMf|§l e EA—1>(PnIm(§A—1)‘Pn’I’m’(é;-\—lxgl e EA—2§A-1|A)\iJiMi>- (12)
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In the above derivation, we used the relatiohs«(3) and(7)

together with

SA-1 A=y SA-1) % S A-
5(R§.m._ R::.m. )= ENlLlMl ‘PNlLlMl(@m)(PNlLlMl(Ré.m.

The last term in Eq(12) contains the integral appearing on
the right-hand side of Eq10). We can now relate this inte-

1).

gral to the OBDME, i.e., the right-hand side of EG4l). In

order to do that, we define a matrix

(MK)nlllnzlznln’I’
- 2 (_ 1)I+I’+K+L1
N L
L Ly ||
X , ||'<n|0(]|N1L1n1|1|>1/(A_1)
I K I,
><<n'|'0(]’|N1Lln2|2|’}1/(A_1).

(13)

As we are interested only in the case when)*'*K
—(=1)l1tltK = i . . R
=(-1)"1"2""=1, the above definition assumes this restriction. de<A)\JM|p§ByS(>?)|A)\JM>

Then, by inverting the matrid* we obtain

> (Iml’m'|Kk)fdgl---dEA—zdgA-ldé?/&—l
ayrmm
X<A)\f‘]j Mf|§1 e gA—l>‘Pnlm(§A—1)§Dn’I’m’(éz\—l)
X(& ... gA—ZE;-\—1|A)\i'JiMi>
_1 k-1
=12 (MK)

nin’1’,nq14nol5
X 5o AN I M| (a]

WETELPPIP
B )W ANIMY)
1|1J1an lojo/k iviVli/sb
j1 J2 K
1

X(= D
2 1 2

Eventually, with the help of

. . 1 . ann Pt
(13iYkllo3]2) = ==l 1jol1lo(- 1)12"/41,01,0|K0)
Va1

{jl i K}
X 1
l, 1y 3

for the spherical harmonics matrix element, we arrive at th

main result of this paper,
(AN M |, (F = R)ANT M)

A V"1 e 23
= <ﬂ> ~ E (JiMiKk|Jfo)YKk(r_R)
_ J,

(14)

(15

I I
an1< |r—R|>Rnr]r< |r—R|>
A-1 A-1

e AO0KO)

X(— An nln'l',nln
10,a,000K0) i

-1
x<lléjl||YK||12%j2>§

X SD<A)\f]f“(aZllljlﬁnzlzjz)(K)||A)\f-]i>SD,

(16)
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with the sum restricted to botht|’+K andl;+I,+K even.
Equation(16) is the desired relation between the physical
translationally invariant density and the OBDME obtained in
the SD basis.

D. Properties

All the derivations presented in the Secs. Il A-ll C were
performed for a nucleon density. It should be noted that Eq.
(16) is trivially generalized to obtain the proton and neutron
densities separately. The relatich¥) involves spatial trans-
formations and remains valid even if we add spin or isospin
operators. Similarly, Eq(16) is readily generalizable for a
case of a nonlocal density that is needed as an input for some
semimicroscopic optical potential folding approaches, see,
e.g., Ref[16].

The physical density8) and (16), as well as the shell-
model density(5), are normalized as

= f dXsp(ANIM|pSH (0|ANIM)sp= A, (17)

where the superscripts “phys” and “SM” refer to E@8),
(16), and(5), respectively.

We note that the point-nucleon matter radius is obtained
only by using the physical density,

lwar . =
r2= <AAJM|ZEizl (F, = R)ZANIM)

1
= f d5(ANIM] pBYIX) ANIM). (18

The analogous integral for the shell-model density gives a
value different from the point-nucleon matter radius, as it
contains a contribution from the spurious c.m.

Equation(16) above can be compared to E@) of Ref.
[9] and, similarly, Eq(5) to Eq.(6) of Ref.[9]. In Ref.[9],
the transformation that removes the c.m. components was
made by inserting a complete set of nonspurious shell-model
eeigenstates between théanda operators, which introduces
the familiar (A/(A-1))@")2 factors that relate matrix ele-
ments in coordinates referred to the arbitrary origin and the
(A-1) core. The present result is more general, as a direct
relation to the OBDME was found and, consequently, no
sum of intermediate states is needed.

lll. APPLICATION TO °He

We tested the physical translationally invariant density
formulas (8) and (16) by performing identical calculations
for 3H, “He, and®He in the Jacobi-coordinate HO basis and
the SD HO basis, respectively. The Jacobi-coordinate HO
basis calculations were performed using the cod&YEFF
[13] that constructs thé-nucleon antisymmetrized Jacobi-
coordinate HO basis, calculates the effective interaction from
a nucleon-nucleoiiNN) potential, and, eventually, finds the
A-nucleon eigenvalues and wave functions. These wave
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0.1_=~\\ <oy _ —_— H?,f‘i‘f‘_ —_— .
IR N( 3 MeV ~otk NCSM (10Q, hQ=13 MeV) h
o : £ |
4 E 0.08 — — +: D —— proton - physical
- F — proton - physical ? 0.08 - g \\\ — neutron - physical |
Q006_ —— neutron - physical | "ol r // \\ --- proton - SM g
' --- proton - SM & 0.06 / \ — — neutron - SM _
B —— neutron - SM h L I’ M |
= _ 7 A\
0.04 0.04 - 2 N -
L | Py E
y Cama s
0021~ = 002 A N R -
' L N B . O ]
% 1 2 3 4 5 0.005 1 2 3 4 5 6
r [fm] ¥ [fm]
. 6 .
FIG. 1. (Color onling °He proton and neutron monopole-  FIG. 2. (Color onling ®He proton and neutron quadrupole tran-

ground state densities obtained in thé:@basis space and the HO sijtion densities from the ground state to the first excitédstate

frequency ofi{)=13 MeV. The NCSM two-body effective interac- obtained in the 18Q basis space and the HO frequency/d

tion was derived from the CD-BonNN potential. The full lines =13 MeV. The NCSM two-body effective interaction was derived

correspond to the physical densities calculated according to EdGrom the CD-BonnNN potential. The full lines correspond to the

(16), while the dashed lines correspond to the shell-model densitiephysical densities calculated according to E@6), while the

[Eq. (5)] that contain the spurious center-of-mass contribution.  dashed lines correspond to the shell-model densjifies (5)] that
contain the spurious center-of-mass contribution.

functions were then employed to calculate physical density
according to Eq(8). The same effective interaction, trans-  In Figs. 2 and 3 we present transition densities from the
formed to the single-particle basis, was used in the SD HOHe ground state to the first excited &tate and the lowest
basis calculation using the many-fermion dynami®¥-D) 1~ (“soft-dipole mode} state, respectively. The &0 basis
[17] shell-model code. A specialized code was then used tepace was employed for thé-8: 2* case, while the BQ (for
calculate the OBDME from the MFD eigenfunctions, andthe ground stajeand the @() (for the I" statg basis were
eventually, the physical density was calculated by applyinthilized for the 0 — 1~ transition. In both cases we can see
Eq. (16). We obtained identical results in the two indepen-substantial differences between the physid#l) and shell-
dent calculations. model (5) densities. By integrating the proton densities, one
As an illustration of the significance of the spurious c.m.obtains the reduceBK matrix element,
removal, we calculated th¥He physical(16) and the shell-
model (5) densities using wave functions obtained in Ref.
[18]. In Fig. 1, the proton and neutron monopole ground-
state densities are shown. A7l@ basis space and the HO
frequency of #(1=13 MeV was used. The two-body-
effective interaction was derived from the CD-BoNN po- 0
tential. The full lines correspond to the physical densities«-
calculated according to E¢16), while the dashed lines cor- )
respond to the shell-model densiti@s that contain the spu-
rious c.m. contribution. Obviously, the same OBDME were
employed in both calculations. The normalization of the den-
sities in Fig. 1 is 47 [ drr2pg=opm(r)=Z(N), wherep, n re-
fers to the proton and neutron, respectively, gnd(r)
=1/4m [ di{ANIM|p,p(F]ANIM). One can clearly see sub- F
stantial differences between the two sets of densities, in par 1% 1 2 3 4 5 6
ticular, at short distances. By performing the integfa) for
the physical density we indeed recover to point-proton and FIG. 3. (Color onling ®He proton and neutron dipole transition
point-neutron rms radii 1.763 and 2.361 fm, respectivelydensities from the ground state to the lowesstate obtained in the
[18]. Performing the same integral using the shell-model8-97%() basis space and the HO frequency/iéi=13 MeV. The
densities gives incorrect, larger radii 1.976 and 2.524 fmNCSM two-body effective interaction was derived from the CD-

respectively. The difference between the squares of the twgoMNN potential. The full lines correspond to the physical densi-

. S, . ties calculated according to E(L6), while the dashed lines corre-
sets of ra?" is equal to the meail value of the cRf.i.e., spond to the shell-model densitig€q. (5)] that contain the
st ANIMIR?|ANIM) sp=(1/A)(000 £000=0.798 fnf. spurious center-of-mass contribution.

Transition density 0" -> 1" |

4

—~
—
A
h
=
(=8

o 0.05—

—— proton - physical 1
— neutron - physical
--- proton - SM

—— neutron - SM -

-0.06 —
-0.07 —

-0.08 —

-0.09 —
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fd%(KYK,Mf—Mi(f(XA)\fJfMf|PgB}§(>z)|A)\iJiMi>

1
:_(JiMiKMf_Mi|Jfo)M(EK;Ji—>Jf), (19)

Ji

with B(EK;J,— J;)=[1/(23,+1)]|M(EK; J,— J;)|?. Here, the
bare nucleon charges are assunigg-1,e,=0). The result
of the integral(19) is unchanged for the shell-model densi-
ties, i.e., when the matrix elemef(it6) is replaced by the L
matrix element5) in Eq. (19). In the present particular cases -0z
we obtainB(E2;0"— 2")=1.056€? fm* and B(E1;0"—1")

=0.388¢€” fm?, in agreement with the results found in Ref.  *

p+6He

NCSM (10€2, hQ=13 Me

I3
=3
3

&
=

Spin-orbit interaction shape [fm-s]

— physical
-- SM

[18]. The normalization of the densities in Figs. 2 and 3 is o o5 1 15 2 25 3 EER—
Jdrr#*®p, ,(r)=M(EK) for the proton case and similarly for riiml
the neutron case. Here, FIG. 4. (Color onling The shape of the prototHe spin-orbit
~ optical potential,%(1/r)(d/dr)[2pK:0,p(r)+pK:0,n(r)], obtained us-
k(1) =Jf2Mik(JiMiKk|Jfo) ing the ground-statéHe densities from the ¥d), #0Q=13 MeV
NCSM calculation. The two-body effective interaction was derived
(R from the CD-BonnNN potential. The full lines correspond to the
X | drYg(r) (ANsJiM N|ANIM;).
J <(F) (AN M| po(P)| AN M) physical densities calculated according to E@6), while the

. . dashed lines correspond to the shell-model dendites (5)] that
It has been argued that the spin-orbit component of th@qnain the spurious center-of-mass contribution.

nucleon-nucleus optical potential is proportional to the de-
rivative of the monopole densif19]. The following form of

f[he p(_)tential tha_t takes into account the isovector component, cylations forA>4 are much more efficiently performed
is typically considered in the Cartesian-coordinate SD basis, which has the down
1d . side of contaminating the wave functions by the spurious
Vsdl) = _(Wls)vsFa[sz=O,p(r) + pr=on(N]l - 7, c.m. components. As the NCSM effective interaction is
translationally invariant, and for the basis space a complete
(20) Nma?{) space is used, these components can always be ex-

for the proton-nucleus potential, with theand n indexes ~ actly removed. In this paper, this was achieved for the den-
exchanged for the neutron-nucleus potential. In @@), V;  Sity, a case less trivial compared to other operators. This
(typically V,<0) is a constant. We calculated the proton- paves the way to utilize thab initio no-core shell-model
SHe spin-orbit optical potential according to Eg20) nuclear structure in folding approaches to optical potentials.
using the ®He ground-state monopole densities shown in We performed tests of the present formalism by perform-
Fig. 1. The resulting shape of the spin-orbit potential,ing independent calculations using the Jacobi-coordinate HO
%(1/I’)(d/dr)[2pK:0’p(l’)+pK:0’n(I‘)], is presented in Fig. 4. In basis and the Cartesian-coordinate HO SD basisHior'He
particular, we compare the result obtained using the physicand°He. Identical results for the densities were obtained.
density(16) with that obtained using the shell-model density ~ As an illustration, thé’He diagonal and transitional den-
(5) that includes the spurious c.m. contribution. Clearly, thesities were calculated from the NCSM wave functions ob-
differences of the densities as seen in Fig. 1 are even motained using the CD-Bonn nucleon-nucleon potential in the
magnified in the shape of spin-orbit potential. Such differ-10%0 basis space. These densities were compared to those
ences must have an impact on observables, like analyzingbtained without the spurious c.m. component removal. Sub-
powers calculated using these spin-orbit potentials. In ordestantial differences were found for both the diagonal mono-
to obtain meaningful results, one must employ the physicaﬁme and the transitional multipole densities. Only using the

density to construct the spin-orbit component of the opticalhysical density one can recover the point-nucleon matter

potential. radius. On the other hand, teK reduced matrix elements

can be obtained using both the physical and the uncorrected
density. A particularly significant impact of the exact re-
moval of the spurious c.m. motion was found for the spin-
In this paper, the translationally invariant nuclear densityorbit part of the optical potential proportional to the deriva-
was derived from the shell-model one-body densities by retive of the nuclear density.
moving their spurious &) c.m. motion component. The The physical density can now be used in folding ap-
main result of this paper, presented in Ej6) relates the proaches to nucleon-nucleus optical potentials, such as those
translationally invariant density to the OBDME calculated in described, e.g., in Ref§ll,16, and subsequently applied in
the shell-model codes by employing the second-quantizatiothe coupled-channel calculations. Work in this direction is
techniques. This is important for the NCSM approach, asinder way.

IV. CONCLUSIONS
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