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Translationally invariant nuclear density is derived from the shell model one-body densities by removing
their spurious 0"V center-of-mass(c.m.) motion component. This paves the way to utilizing theab initio
no-core shell-model(NCSM) nuclear structure in folding approaches to optical potentials. As an illustration,
the 6He diagonal and transitional densities are calculated from the NCSM wave functions obtained using the
CD-Bonn nucleon-nucleon potential in the 10"V basis space. A particularly significant impact of the exact
removal of the spurious c.m. motion is found for the spin-orbit part of the optical potential proportional to the
derivative of the nuclear density.
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I. INTRODUCTION

There has been significant progress in theab initio ap-
proaches to the structure of light nuclei. Starting from the
realistic two- and three-nucleon interactions, methods like
the Green’s function Monte Carlo(GFMC) [1] or the ab
initio no-core shell model(NCSM) [2] can predict the low-
lying levels inp-shell nuclei.

The principal foundation of theab initio NCSM approach
is the use of effective interactions appropriate for the large
but finite basis spaces employed in the calculations. These
effective interactions are derived from the underlying realis-
tic internucleon potentials through a unitary transformation
in a way that guarantees convergence to the exact solution as
the basis size increases. For the basis, one uses antisymme-
trized A-nucleon harmonic-oscillator(HO) states that span
the completeNmax "V space. A disadvantage of the HO basis
is its unphysical asymptotic behavior. On the other hand, the
nuclear system is translationally invariant and, particularly in
the case of light nuclei, it is important to preserve this sym-
metry. The HO basis is the only basis that allows a switch
from Jacobi coordinates to single-particle Cartesian coordi-
nates without violating the translational invariance. Conse-
quently, one may choose the coordinates according to what-
ever is more efficient for the problem at hand. In practice, it
turns out that theA=3 system is the easiest solved in the
Jacobi basis, theA=4 system can be solved either way with
the same efficiency when only the two-body interaction is
utilized, but the Jacobi basis is more efficient when the three-
body interaction is included. For systems withA.4, it is by
far more advantageous to use the Cartesian coordinates and
the Slater determinant(SD) basis, and employ the powerful
shell model codes like Antoine[3] that rely on the second
quantization techniques.

While the NCSM eigenenergies are independent on the
choice of coordinates, the eigenfunctions obtained in the
Cartesian-coordinate SD basis include a 0"V spurious
center-of-mass(c.m.) component. The ways to remove these
components and obtain physical matrix elements of different
operators were investigated in the past[4–10]. Typically, in
earlier investigations the basis space was limited to a single
major HO shell. In the NCSM, the basis space spans several
major shells. Unlike in some phenomenological shell-model

studies that used a multimajor shell basis, the c.m. motion is
completely separated from the internal motion due to the
translational invariance of the interactions and the choice of
the completeNmax "V HO basis, as already discussed. In
general, it is necessary to revisit and adapt the techniques of
the spurious c.m.. motion removal to make them applicable
for the NCSM. This paper, in particular, focuses on the con-
struction of the translationally invariant density starting from
the Cartesian-coordinate SD wave functions. This case is
much less trivial than, e.g., the removal of spurious compo-
nents from spectroscopic amplitudes.

The motivation for this work is the desire to apply theab
initio NCSM nuclear structure to describe nuclear reactions
on light nuclei. In general, it is a challenging task to extend
theab initio methods to describe nuclear reactions. Concern-
ing direct reactions, particularly the nucleon-nucleus elastic
and inelastic scattering, a first and straightforward answer for
the NCSM is the application of semimicroscopic approaches,
e.g., the Jeukenne-Lejeune-Mahaux(JLM) [11], to construct
optical potentials from the nuclear densities obtained in the
NCSM. Eventually, these optical potentials are used in
coupled-channel calculations by employing the standard
codes, e.g., Fresco[12]. To fully utilize the NCSM nuclear
structure for this purpose, the spurious c.m. contribution
must be removed from the density. In Sec. II, the transla-
tional invariant density is derived from both the Jacobi-
coordinate HO wave functions, as well as from the
Cartesian-coordinate wave functions. In Sec. III, numerical
tests forA=3,4, and 5systems are described and an appli-
cation to 6He is presented. A spin-orbit part of thep+ 6He
optical potential is constructed to demonstrate the impor-
tance of the spurious c.m. removal. Conclusions are given in
Sec. IV.

II. DERIVATION OF THE TRANSLATIONALLY
INVARIANT DENSITY

A. Coordinate and HO wave-function transformations

We follow the notation of Ref.[13]. We consider nucleons
with the massm neglecting the difference between the proton
and the neutron mass. For the purpose of the present paper
we use the following set of Jacobi coordinates:
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jW0 =Î1

A
frW1 + rW2 + . . . +rWAg, s1ad

jW1 =Î1

2
frW1 − rW2g, s1bd

jW2 =Î2

3
F1

2
srW1 + rW2d − rW3G , s1cd

¯

jWA−2 =ÎA − 2

A − 1
F 1

A − 2
srW1 + rW2 + . . . +rWA−2d − rWA−1G ,

s1dd

jWA−1 =ÎA − 1

A
F 1

A − 1
srW1 + rW2 + . . . +rWA−1d − rWAG . s1ed

Here,jW0 is proportional to the c.m. of theA-nucleon system:

RW =Î1/AjW0. On the other hand,jWr is proportional to the rela-
tive position of ther+1st nucleon and the c.m. of ther
nucleons. Let us rewrite the last and the first equation from
(1) as

jWA−1 =Î1

A
RW c.m.

A−1 −ÎA − 1

A
rWA, s2ad

jW0 =ÎA − 1

A
RW c.m.

A−1 +Î1

A
rWA, s2bd

where RW c.m.
A−1=Î1/A−1frW1+rW2+ . . . +rWA−1g. Following, e.g.,

Ref. [14], the HO wave functions depending on the coordi-
nates(2) transform as

o
M1m1

sL1M1l1m1uQqdwN1L1M1
sRW c.m.

A−1dwn1l1m1
srWAd

= o
nlmNLM

knlNLQuN1L1n1l1Ql1/A−1slmLMuQqd

3wnlmsjWA−1dwNLMsjW0d, s3d

where knlNLQuN1L1n1l1Ql1/sA−1d is the general HO bracket
for two particles with the mass ratio 1/sA−1d.

B. Nuclear density

The nuclear density operator is defined as[15]

ropsrWd = o
i=1

A

dsrW − rWid = o
i=1

A
dsr − r id

rr i
o
lm

Ylmsr̂ idYlm
* sr̂d. s4d

Its matrix element between an initial and a final state that
were obtained in the Cartesian-coordinate single-particle SD
basis can be written in the form

SDkAl fJfMfuropsrWduAliJiMilSD

=
1

Ĵf

o sJiMiKkuJfMfdYKk
* sr̂dRn1l1

srdRn2l2
srd

3kl1
1
2 j1iYKil2

1
2 j2l

− 1

K̂

3SDkAl fJfisan1l1j1
† ãn2l2j2

dsKdiAliJilSD. s5d

Here, uAlJMlSD is anA-nucleon eigenstate with the angular

momentumJ and its third componentM, K̂=Î2K+1, and
ãjm=s−1d j−maj ,−m. Thel stands for remaining quantum num-
bers. The subscript SD refers to the fact that this state was
obtained in the Slater determinant basis, i.e., by using a
shell-model code, and, consequently, contains the spurious
c.m. component. TheRnlsrd in Eq. (5) is the radial HO wave
function with the oscillator length parameterb=b0
=Î" /mV, wherem is the nucleon mass. Due to our use of
the coordinate transformations(1) the oscillator length pa-
rameter is the same for all coordinates, i.e.,b0. The term

s−1/K̂dSDkAl fJfisan1l1j1
† ãn2l2j2

dsKdiAliJilSD represents the
standard one-body density matrix elements(OBDME) com-
puted in shell-model codes. The coordinaterW in (5) is mea-
sured from the center of the HO potential well. Clearly, the
density given in(5) contains a contribution from the spurious
c.m. motion.

The physical density should depend on the coordinate

measured from the c.m. of the nucleus,rW−RW . The corre-
sponding matrix element is obtained by employing the eigen-
states depending on the Jacobi coordinates. By modifying the
last relation in(4) we get

kAl fJfMfuropsrW − RW duAliJiMil

= AS A

A − 1
D3/2

kAl fJfMfudsjW − jWA−1duAliJiMil, s6d

wherejW =−ÎA/ sA−1dsrW−RW d, and jWA−1 given by Eq.(1e) is

reexpressed asjWA−1=−ÎA/ sA−1dsrWA−RW d. We used the anti-
symmetry of the eigenstates and the properties of the Dirac
delta function. The relationship between the Jacobi coordi-
nate and SD eigenstates is

krW1 . . . rWAs1 . . . sAt1 . . . tAuAlJMlSD

= kjW1 . . . jWA−1s1 . . . sAt1 . . . tAuAlJMlw000sjW0d, s7d

with s andt the spin and isospin coordinates, respectively.
Similarly as in(5), the physical density(6) can be related

to “one-body” density matrix elements derived from the
Jacobi-coordinate eigenstates(discussed, e.g., in Appendix B
of Ref. [13]). In particular, we obtain

PETR NAVRÁTIL PHYSICAL REVIEW C 70, 014317(2004)

014317-2



s8d

Here the eigenstates are expanded in a basis with a lower
degree of antisymmetry using the coefficients of fractional
parentage[13],

ksNA−1iA−1JA−1;nljdJuAlJl = o kNA−1iA−1JA−1;nlj uuNiJl

3kNiJuAlJl, s9d

with N=NA−1+2n+ l the total number of HO excitations for
the A nucleons andi , iA−1 the additional quantum numbers
that characterize theA- andsA−1d-nucleon antisymmetrized
basis states, respectively.

C. Physical density in terms of the SD OBDME

It turns out that obtaining the eigenstates(9) becomes
increasingly difficult with the number of nucleonsA,
mostly due to the complicated antisymmetrization. As
stated in Sec. I forA.4 it is by far more efficient
to use the SD basis. Consequently, it is desirable to
relate the matrix element(6) to the SD OBDME

s−1/K̂dSDkAl fJfisan1l1j1
† ãn2l2j2

dsKdiAliJilSD.
Let us note that an intermediate result that eventually

leads to the right-hand side of Eq.(8) reads

kAl fJfMfuropsrW − RW duAliJiMil

= AS A

A − 1
D3/2

o RnlsjdRn8l8sjd
l̂ l̂8

Î4pK̂
sl0l80uK0d

3YKk
* sĵdslml8m8uKkd E djW1 . . .djWA−2djWA−1djWA−18

3kAl fJfMfujW1 . . . jWA−1lwnlmsjWA−1dwn8l8m8sj
W

A−18 d

3kjW1 . . . jWA−2j
W

A−18 uAliJiMil, s10d

where for simplicity we suppress from now on spin and
isospin coordinates. In deriving Eq.(10) we used the

Dirac delta function properties and the relationdsjW −jWA−1d
=onlmwnlmsjWA−1dwnlm

* sjWd.
We now investigate an analogous integral to that appear-

ing on the right-hand side of Eq.(10) for the Cartesian-
coordinate wave functions and, as the first result, we relate it
to the OBDME,

o
sitim1m2

sl1m1l2m2uKkd E drW1 . . .drWA−1drWAdrWA8

3SDkAl fJfMfurW1 . . . rWAlwn1l1m1
srWAdwn2l2m2

srWA8d

3 krW1 . . . rWA−1rWA8 uAliJiMilSD

=
1

A
o j1j2 SDkAl fJfMfusan1l1j1

† ãn2l2j2
dk

sKduAliJiMilSD

3s− 1dl1+l2+K+j2−1/2ĵ1 ĵ25 j1 j2 K

l2 l1
1

2
6 . s11d

Next, we rewrite the left-hand side of Eq.(11) and perform a
change of variables to the Jacobi coordinates,

o
sitim1m2

sl1m1l2m2uKkd E drW1 . . .drWA−1drWAdrW18 . . .drWA−18 drWA8SDkAl fJfMfurW1 . . . rWAlwn1l1m1
srWAdwn2l2m2

srWA8d

3dsrW1 − rW18d . . . dsrWA−1 − rWA−18 dkrW18 . . . rWA−18 rWA8 uAliJiMilSD

= o
sitim1m2

sl1m1l2m2uKkd E djW1 . . .djWA−2dRW c.m.
A−1drWAdjW18 . . .djWA−28 dRW c.m.8A−1drWA8kAl fJfMfujW1 . . . jWA−1lw000

* sjW0d

3wn1l1m1
srWAdwn2l2m2

srWA8ddsjW1 − jW18d . . . dsjWA−2 − jWA−28 ddsRW c.m.
A−1 − RW c.m.8A−1dw000sjW08dkjW18 . . . jWA−18 uAliJiMil

= o
sitim1m2

sl1m1l2m2uKkd E djW1 . . .djWA−2dRW c.m.
A−1drWAdRW c.m.8A−1drWA8kAl fJfMfujW1 . . . jWA−1lw000

* sjW0d

3wn1l1m1
srWAdwN1L1M1

sRW c.m.
A−1ds− 1dm2wn2l2−m2

* srWA8dwN1L1M1

* sRW c.m.8A−1dw000sjW08dkjW1 . . . jWA−2j
W

A−18 uAliJiMil

= o
sitinlmn8l8m8N1L1

s− 1dl+l8+K+L1Hl1 L1 l

l8 K l2
J l̂ l̂8knl00l uN1L1n1l1ll1/sA−1dkn8l800l8uN1L1n2l2l8l1/sA−1dslml8m8uKkd

3E djW1 . . .djWA−2djWA−1djWA−18 kAl fJfMfujW1 . . . jWA−1lwnlmsjWA−1dwn8l8m8sj
W

A−18 dkjW1 . . . jWA−2j
W

A−18 uAliJiMil. s12d
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In the above derivation, we used the relations(1)–(3) and(7)
together with

dsRW c.m.
A−1 − RW c.m.8A−1d = oN1L1M1

wN1L1M1
sRW c.m.

A−1dwN1L1M1

* sRW c.m.8A−1d.

The last term in Eq.(12) contains the integral appearing on
the right-hand side of Eq.(10). We can now relate this inte-
gral to the OBDME, i.e., the right-hand side of Eq.(11). In
order to do that, we define a matrix

sMKdn1l1n2l2,nln8l8

= o
N1L1

s− 1dl+l8+K+L1

3Hl1 L1 l

l8 K l2
J l̂ l̂8knl00l uN1L1n1l1ll1/sA−1d

3kn8l800l8uN1L1n2l2l8l1/sA−1d. s13d

As we are interested only in the case whens−dl+l8+K

=s−1dl1+l2+K=1, the above definition assumes this restriction.
Then, by inverting the matrixMK we obtain

o
sitimm8

slml8m8uKkd E djW1 . . .djWA−2djWA−1djWA−18

3kAl fJjMfujW1 . . . jWA−1lwnlmsjWA−1dwn8l8m8sj
W

A−18 d

3kjW1 . . . jWA−2j
W

A−18 uAliJiMil

=
1

A
on1l1j1n2l2j2

sMKdnln8l8,n1l1n2l2

−1

3SDkAl fJfMfusan1l1j1
† ãn2l2j2

dk
sKduAliJiMilSD

3s− 1dl1+l2+K+j2−1/2ĵ1 ĵ2H j1 j2 K

l2 l1
1
2
J . s14d

Eventually, with the help of

kl1
1
2 j1iYKil2

1
2 j2l =

1
Î4p

ĵ1 ĵ2l̂1l̂2s− 1d j2+1/2sl10l20uK0d

3H j1 j2 K

l2 l1
1
2
J s15d

for the spherical harmonics matrix element, we arrive at the
main result of this paper,

s16d

with the sum restricted to bothl + l8+K and l1+ l2+K even.
Equation (16) is the desired relation between the physical
translationally invariant density and the OBDME obtained in
the SD basis.

D. Properties

All the derivations presented in the Secs. II A–II C were
performed for a nucleon density. It should be noted that Eq.
(16) is trivially generalized to obtain the proton and neutron
densities separately. The relation(14) involves spatial trans-
formations and remains valid even if we add spin or isospin
operators. Similarly, Eq.(16) is readily generalizable for a
case of a nonlocal density that is needed as an input for some
semimicroscopic optical potential folding approaches, see,
e.g., Ref.[16].

The physical density(8) and (16), as well as the shell-
model density(5), are normalized as

E dxWkAlJMurop
physsxWduAlJMl

=E dxWSDkAlJMurop
SMsxWduAlJMlSD = A, s17d

where the superscripts “phys” and “SM” refer to Eqs.(8),
(16), and(5), respectively.

We note that the point-nucleon matter radius is obtained
only by using the physical density,

rm
2 = kAlJMu

1

A
oi=1

A
srWi − RW d2uAlJMl

=
1

A
E dxWx2kAlJMurop

physsxWduAlJMl. s18d

The analogous integral for the shell-model density gives a
value different from the point-nucleon matter radius, as it
contains a contribution from the spurious c.m.

Equation(16) above can be compared to Eq.(7) of Ref.
[9] and, similarly, Eq.(5) to Eq. (6) of Ref. [9]. In Ref. [9],
the transformation that removes the c.m. components was
made by inserting a complete set of nonspurious shell-model
eigenstates between thea† anda operators, which introduces
the familiar sA/ sA−1dds2n+ld/2 factors that relate matrix ele-
ments in coordinates referred to the arbitrary origin and the
sA−1d core. The present result is more general, as a direct
relation to the OBDME was found and, consequently, no
sum of intermediate states is needed.

III. APPLICATION TO 6He

We tested the physical translationally invariant density
formulas (8) and (16) by performing identical calculations
for 3H, 4He, and5He in the Jacobi-coordinate HO basis and
the SD HO basis, respectively. The Jacobi-coordinate HO
basis calculations were performed using the codeMANYEFF

[13] that constructs theA-nucleon antisymmetrized Jacobi-
coordinate HO basis, calculates the effective interaction from
a nucleon-nucleon(NN) potential, and, eventually, finds the
A-nucleon eigenvalues and wave functions. These wave
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functions were then employed to calculate physical density
according to Eq.(8). The same effective interaction, trans-
formed to the single-particle basis, was used in the SD HO
basis calculation using the many-fermion dynamics(MFD)
[17] shell-model code. A specialized code was then used to
calculate the OBDME from the MFD eigenfunctions, and
eventually, the physical density was calculated by applying
Eq. (16). We obtained identical results in the two indepen-
dent calculations.

As an illustration of the significance of the spurious c.m.
removal, we calculated the6He physical(16) and the shell-
model (5) densities using wave functions obtained in Ref.
[18]. In Fig. 1, the proton and neutron monopole ground-
state densities are shown. A 10"V basis space and the HO
frequency of "V=13 MeV was used. The two-body-
effective interaction was derived from the CD-BonnNN po-
tential. The full lines correspond to the physical densities
calculated according to Eq.(16), while the dashed lines cor-
respond to the shell-model densities(5) that contain the spu-
rious c.m. contribution. Obviously, the same OBDME were
employed in both calculations. The normalization of the den-
sities in Fig. 1 is 4pedrr2rK=0,psndsrd=ZsNd, wherep, n re-
fers to the proton and neutron, respectively, andrK=0srd
=1/4pedr̂kAlJMuropsrWduAlJMl. One can clearly see sub-
stantial differences between the two sets of densities, in par-
ticular, at short distances. By performing the integral(18) for
the physical density we indeed recover to point-proton and
point-neutron rms radii 1.763 and 2.361 fm, respectively
[18]. Performing the same integral using the shell-model
densities gives incorrect, larger radii 1.976 and 2.524 fm,
respectively. The difference between the squares of the two

sets of radii is equal to the mean value of the c.m.RW 2, i.e.,

SDkAlJMuRW 2uAlJMlSD=s1/Adk000ujW0
2u000l=0.798 fm2.

In Figs. 2 and 3 we present transition densities from the
6He ground state to the first excited 2+ state and the lowest
1− (“soft-dipole mode”) state, respectively. The 10"V basis
space was employed for the 0+→2+ case, while the 8"V (for
the ground state) and the 9"V (for the 1− state) basis were
utilized for the 0+→1− transition. In both cases we can see
substantial differences between the physical(16) and shell-
model (5) densities. By integrating the proton densities, one
obtains the reducedEK matrix element,

FIG. 1. (Color online) 6He proton and neutron monopole-
ground state densities obtained in the 10"V basis space and the HO
frequency of"V=13 MeV. The NCSM two-body effective interac-
tion was derived from the CD-BonnNN potential. The full lines
correspond to the physical densities calculated according to Eq.
(16), while the dashed lines correspond to the shell-model densities
[Eq. (5)] that contain the spurious center-of-mass contribution.

FIG. 2. (Color online) 6He proton and neutron quadrupole tran-
sition densities from the ground state to the first excited 2+ state
obtained in the 10"V basis space and the HO frequency of"V
=13 MeV. The NCSM two-body effective interaction was derived
from the CD-BonnNN potential. The full lines correspond to the
physical densities calculated according to Eq.(16), while the
dashed lines correspond to the shell-model densities[Eq. (5)] that
contain the spurious center-of-mass contribution.

FIG. 3. (Color online) 6He proton and neutron dipole transition
densities from the ground state to the lowest 1− state obtained in the
s8−9d"V basis space and the HO frequency of"V=13 MeV. The
NCSM two-body effective interaction was derived from the CD-
BonnNN potential. The full lines correspond to the physical densi-
ties calculated according to Eq.(16), while the dashed lines corre-
spond to the shell-model densities[Eq. (5)] that contain the
spurious center-of-mass contribution.
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E dxWxKYK,Mf−Mi
sx̂dkAl fJfMfurop,p

physsxWduAliJiMil

=
1

Ĵf

sJiMiKMf − MiuJfMfdMsEK;Ji → Jfd, s19d

with BsEK;Ji →Jfd=f1/s2Ji +1dguMsEK;Ji →Jfdu2. Here, the
bare nucleon charges are assumedsep=1,en=0d. The result
of the integral(19) is unchanged for the shell-model densi-
ties, i.e., when the matrix element(16) is replaced by the
matrix element(5) in Eq. (19). In the present particular cases
we obtainBsE2;0+→2+d=1.056e2 fm4 and BsE1;0+→1−d
=0.388e2 fm2, in agreement with the results found in Ref.
[18]. The normalization of the densities in Figs. 2 and 3 is
edrr2+KrK,psrd=MsEKd for the proton case and similarly for
the neutron case. Here,

rKsrd = ĴfoMik
sJiMiKkuJfMfd

3E dr̂YKsr̂d kAl fJfMfuropsrWduAliJiMil.

It has been argued that the spin-orbit component of the
nucleon-nucleus optical potential is proportional to the de-
rivative of the monopole density[19]. The following form of
the potential that takes into account the isovector component
is typically considered

Vsosrd = − sp/3dVs
1

r

d

dr
f2rK=0,psrd + rK=0,nsrdglW · sW ,

s20d

for the proton-nucleus potential, with thep and n indexes
exchanged for the neutron-nucleus potential. In Eq.(20), Vs
(typically Vs,0) is a constant. We calculated the proton-
6He spin-orbit optical potential according to Eq.(20)
using the 6He ground-state monopole densities shown in
Fig. 1. The resulting shape of the spin-orbit potential,
1
3s1/rdsd/drdf2rK=0,psrd+rK=0,nsrdg, is presented in Fig. 4. In
particular, we compare the result obtained using the physical
density(16) with that obtained using the shell-model density
(5) that includes the spurious c.m. contribution. Clearly, the
differences of the densities as seen in Fig. 1 are even more
magnified in the shape of spin-orbit potential. Such differ-
ences must have an impact on observables, like analyzing
powers calculated using these spin-orbit potentials. In order
to obtain meaningful results, one must employ the physical
density to construct the spin-orbit component of the optical
potential.

IV. CONCLUSIONS

In this paper, the translationally invariant nuclear density
was derived from the shell-model one-body densities by re-
moving their spurious 0"V c.m. motion component. The
main result of this paper, presented in Eq.(16) relates the
translationally invariant density to the OBDME calculated in
the shell-model codes by employing the second-quantization
techniques. This is important for the NCSM approach, as

calculations forA.4 are much more efficiently performed
in the Cartesian-coordinate SD basis, which has the down
side of contaminating the wave functions by the spurious
c.m. components. As the NCSM effective interaction is
translationally invariant, and for the basis space a complete
Nmax"V space is used, these components can always be ex-
actly removed. In this paper, this was achieved for the den-
sity, a case less trivial compared to other operators. This
paves the way to utilize theab initio no-core shell-model
nuclear structure in folding approaches to optical potentials.

We performed tests of the present formalism by perform-
ing independent calculations using the Jacobi-coordinate HO
basis and the Cartesian-coordinate HO SD basis for3H, 4He
and 5He. Identical results for the densities were obtained.

As an illustration, the6He diagonal and transitional den-
sities were calculated from the NCSM wave functions ob-
tained using the CD-Bonn nucleon-nucleon potential in the
10"V basis space. These densities were compared to those
obtained without the spurious c.m. component removal. Sub-
stantial differences were found for both the diagonal mono-
pole and the transitional multipole densities. Only using the
physical density one can recover the point-nucleon matter
radius. On the other hand, theEK reduced matrix elements
can be obtained using both the physical and the uncorrected
density. A particularly significant impact of the exact re-
moval of the spurious c.m. motion was found for the spin-
orbit part of the optical potential proportional to the deriva-
tive of the nuclear density.

The physical density can now be used in folding ap-
proaches to nucleon-nucleus optical potentials, such as those
described, e.g., in Refs.[11,16], and subsequently applied in
the coupled-channel calculations. Work in this direction is
under way.

FIG. 4. (Color online) The shape of the proton-6He spin-orbit
optical potential,1

3s1/rdsd/drdf2rK=0,psrd+rK=0,nsrdg, obtained us-
ing the ground-state6He densities from the 10"V, "V=13 MeV
NCSM calculation. The two-body effective interaction was derived
from the CD-BonnNN potential. The full lines correspond to the
physical densities calculated according to Eq.(16), while the
dashed lines correspond to the shell-model densities[Eq. (5)] that
contain the spurious center-of-mass contribution.
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