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Mean field calculation of thermal properties of simple nucleon matter on a lattice
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Thermal properties of single species nucleon matter are investigated assuming a simple form of the nucleon-
nucleon interaction. The nucleons are placed on a cubic lattice, hopping from site to site and interacting
through a spin-dependent force, as in the extended, attractive Hubbard model. A mean field calculation in the
Hartree-Fock-Bogoliubov approximation suggests that the superfluid ground state generated by strong nucleon
pairing undergoes a second-order phase transition to a normal state as the temperature increases. The calcula-
tion is shown to lead to a promising description of the thermal properties of low-density neutron matter. A
possibility of a density wave phase is also examined.
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I. INTRODUCTION In order to gain a better understanding of the possible,
Nucl o licated d ical oh latter phase transition, we apply in this work the analytic
uclear excitations are complicated dynamical phenoMi,aang of 4 mean field approach to the problem in the same

ena, depending on the detailed structure of the inOIiVid“"j‘r;utice formulation. From this work, we do not expect to be

nucleus, and must be examined based on the Specific Stiugpje to draw precise quantitative conclusions, but rather we
ture of the nucleus, such as whether itis closed or open shelyjj| try to learn the nature of the phase transition at a semi-
As the excitation energy gets higher, however, the excitationgyantitative level. For this purpose, we take the thermody-
depend less on specific nuclear structure and start to exhibifamical(infinite volume limit for numerical results, so as to
more common features amogigeavy nuclei. These features obtain a clear signal of the phase transition. The mean field
are expected to be reasonably well represented by excitatiomssults in this work will also serve as a reference for the more
of nuclear matter. Furthermore, dynamics of supernovae anextensive Monte Carlo calculation that we are currently car-
neutron stars, which have been of much astronomical intemrying out.

est, are expected to be better understood through the study of Our Hamiltonian for single-species nucleon matter turns
excitations of neutron matté¢,2]. The gross features of the out to be an extended, attractive Hubbard model, which has
thermal properties of nucleon matter have been examined biyeen studied as a simple model of high-temperature super-
means of statistical mode[8] and lattice gas modelgl].  conductivity[15]. The mean field calculation shows that the
More realistic descriptions of the thermal properties havdow-temperature, low-density state is a superfluid state and
been provided through applications of various approaches iondergoes a continuousecond-ordér phase transition to

the nuclear many-body theori¢s—-10. Applications of the the normal state as the temperature and/or density increases.
traditional nuclear many-body theories regarding nucleorAs the Hamiltonian is not yet fully realistic and the values of
matter at zero temperature have been extengiyEl-13, the interaction parameters are uncertain, our results are not
and provide the most reliable information on the propertiegjuite comparable to those for neutron matter, except perhaps

of nucleon matter at low temperatures. at a very low density. But we demonstrate that the approach
Previously, one of ugR.S) collaborated on a Monte is promising for the study of low-density neutron matter.
Carlo calculation of nuclear matter on a lattiged], which Furthermore, we find that a density-wave state coexists

provides a new framework for studying the thermal proper-with the superfluid state, suggesting that the state of neutron
ties of nucleon matter. Though the computational space wasmatter may be more complicated than the simple description
small and the nucleon-nucleon interaction was simple, thef a superfluid state as it is often characterized.

calculation has proven to be of much promise, demonstrating The outline of this work is as follows. After the introduc-
the occurrence of a phase transition around 15 MeV usingon in Sec. I, the Hamiltonian and its discretized form in the
the parameters adjusted to reproduce the saturation propateordinate space are presented and are identified as an ex-

ties. A similar calculation of nucleon matter of a single spe-tended Hubbard model in Sec. Il. The Hartree-Fock-
cies has also been initiated in the same work, using the sanBogoliubov approximation is applied and the Hamiltonian is
form of the Hamiltonian. Though a phase transition appearediagonalized in Sec. Ill. Thermodynamical properties nu-

to take place at a few MeV, the evidence for it was not quitemerically calculated are shown in Sec. IV, an attempt to ap-
solid owing to statistical fluctuations, which are enhanced aply our calculation to the problem of low-density neutron
low temperaturga sign problem The phase transitions may matter is discussed in Sec. V, and the possibility of a density-
correspond to those expected through paired nucl€das-  wave phase is examined in Sec. VI. Discussions and conclu-
per pairg in nucleon mattef1,2]. sion are presented in Sec. VII.
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II. SIMPLIFIED HAMILTONIAN AND EXTENDED 2 ol o =25 5 —5..8
HUBBARD MODEL | ﬁ 75 ad®By  CaByd

The Hamiltonian consists of the kinetic and potential

~ A where i denotes the spatial compone ,Z), and the
termsK andV, respectively: P ponerts,y. 2)

Greek indices denote the components of the Pauli spin ma-

trix, 1 or 2.
H=K+V=- _2 J dr ¢, (r)Vzl// (r) In this work, we study the simplified case of nucleon mat-
2my o, ar o ter consisting of a single nucleon species, such as neutron
1 matter. The Hamiltonian Edl) is then expressed in a spa-
4= ar | drat (e, Lo tially discretized form:
22 f f YDy, ()
w’ ) ) H=-t> & &,+61> & &, + UE el el &
XV = 1) g o (1) (1), (1) e 7
. + Vl E C|o Jo'cja'clo'+ V2 E |TG'CJT Géj—a'éio
wheremy is the nucleon mass, ang=+1/2 andr=+1/2 (ipo (Lo
nge the ser(T or |) and the |§osp|r(p or n) re_specuvely. S AITUCJT Bl @)
¥, (r) andy,.(r) are the creation and annihilation operators (Do

of the nucleon, with the spin- and isospinr at the position
r. As in the previous Monte Carlo lattice calculatifi®], we  where(i, j) denotes the pairs of next-neighbor sites, il

include only the central and spin-exchange interactidis, the hopping(kinetic energy parameter defined as
andV,, respectively:

ﬁZ
-r')= -r')+ -ro-o'. t= . 5
V(r=r)y=V(r-r")+V,(r-r'o o 2) mal (5)
V. andV, are taken to consist of on-site and next-neighbor -
interactions, Here, the potential parameteks and V's are expressed in
terms of linear combinations &f%’s andV(?s. The Hamil-
Ve(r = 1) =VOs(r —r) + VA[V28(r —1")] tonian Eq.(4) is now in the form of an extended Hubbard
3) model, which is the Hubbard model with the on-site spin-
V,(r —r’):fo)(S(r —r’)+Vf,2)[Vr25(r -], pairing interaction of theU term, modified by the next-

neighbor interaction of th& terms. As theU value will be
where V® terms can be written explicitly exhibiting their taken to be negative, our model is an extended, attractive
hermiticity. Hubbard model. The repulsive Hubbard model has been well
As physics of the lattice description is more apparent instudied in condensed matter physics as a model of strongly
the coordinate space, we consider the discretized coordinaterrelated electron systenfi6], but the attractive model is
with an internucleon spacing in the cubic lattice with the generally less studied. In recent years, however, the ex-
torus boundary conditions. We thus focus our interest on théended, attractive Hubbard model has drawn much attention
physics of the spatial separation greater than each direc- as the model describing the essential features of high-
tion, or of the momentum component roughly betwesta  temperature superconductivifg5]. Note that the extended,
and -w/a, by eliminating(or integrating outthe physics of  attractive (negatived) Hubbard model used in condensed
the shorter distance. The discretization corresponds to matter physics, however, is usually of the simpler form
shown below and has not Germ as a part of the kinetic
r —an;, energy[17].
When the spin-dependent next-neighbor interaction is
taken to be small and negligible,
f dr —a3>,
I

V2 =o, (6)

the Hamiltonian is simplified:

2 f dr ;zbj‘rf(r)(}o'r(r) - E E\-;iT(r‘reiO'T’

17T H=-t> & &,+ GtE ¢l Cio+ UE c,Tc,lc,lc,T
. . . - - (.o
wherei denotes a lattice site specified bywith its compo-
nent rangind —aN/2,aN/2]. Here,N is the number of sites SAADI o 7)
in each spatial direction. Note that the creation and annihila- (ijyoo’
tion operatorsf:?m and¢,,, have no dimension as defined.
We also apply the identity where
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2)

1 0 \/f: ignore theV-term contribution to the hopping term, as they
Ueg\Ve "0z T

3VE?))’ merely change somewhat the strength of the hopping term
and of the constant part of the energy, without affecting the
physics of the phase transition. The mean field approxima-

V= ivg (8) tion then yields in a cubic lattice with six neighboring sites
2a°
— AT A
Apart from the lattice spacing, the Hamiltonian of Eq. = ‘t<2> Clo'CJO' ( 6t+ - U)E CisCis
i,j)o

(7) now describes dynamics with two parameters. The
Hamiltonian Eq.(4) [and thus also Eq(7)] possesses an Af At LA A N3 [ A2 o
underlying particle-hole symmetry, which affects thermody- - EE (GG, + € Gy - VANTRARI L (9)
namical properties as discussed in Sec. VI. The symmetry is '
not an explicit property in our original Hamiltonian, Egs. \hereU = U +24V.
(D—=3). We elaborate on the symmetry in Appendix A. For convenience, we will carry out the mean field calcu-
lations in the momentum space. The momentum representa-
tion is introduced by discretizing the momentum ps
—2mk/(Na), with each component df being an integer,
ranging [-N/2,N/2]. Note that we now haver-p

We now apply the mean field method in the Hartree-Fock-— 27n;-k/N. The coordinate and momentum representations
Bogoliubov approximatiorj18]. Here, we expect effects of of the operatoc are related through the Fourier transforma-
the U term to dominate the thermal properties of the singletions
species matter as in the standard BCS descrigti®s-21], 1
but we also wish to treat their single-particle aspects in the &, = =32 -amkeniNg,
Hartree-Fock approximation on the same footing. Since the k
method is well known, we limit the description of the for-
malism to the key steps that are specifically relevant to our . 1 2imkn NG
calculation. Cko‘ﬁz 7 Cio

The nature of the mean field approximation is apparent in S
the spatial representation. Through the application of thend similarly for the nucleon creation operatdk, Note that

IIl. HARTREE-FOCK-BOGOLIUBOV APPROXIMATION
AND GAP EQUATIONS

Wick theorem, the decoupling scheme for theerm is the discretized orthonormality relation is
el & 8 = - ATG & - Al - AP +nyElE) + el > exp2ik - ni/N) = N3 . (10)
- niTnil, : ~
where With the chemical potentigk, H- uN3 is in the momentum
space
A = (GG ) = - (€| Ci),
€ — E - EA e
ni = (€& andny; = @€&)). H- uN%fi= 3 (&8 . (@kw )
Here, (---) denotes the expectation value in the BCS-like K _EA - (g — W) ki
ground state, which is to be determined in a self-consistent
way. The order parameters’s are related to the local den- N3(fAZ  —
sity of the condensate of nucleon pairs, whilgs are the T4 U+n Ul (11
average number of nucleons. Note that the inclusion; afs
a variational parameter distinguishes the present treatmemthere
from the standard BCEL8]. For theV terms, we have _ —
u=pu—(6t+nU/2), (12

ata at o oAt af o

Ci(rCiO'ng—'CjO" - nia'cja—'cja" + nja”ci(rcia'_ nionjo’ and
In the following, A; andn;’s will be assumed to be inde-

pendent of the sitg or global, and will be formally treated

as the variational parameters:

A = 2UA;=2UA;,

:—tz expl2iz7k -e/N) =-2t > cog27kj/N)
=Xy,

(13

is a part of the kinetic energy of a quasiparticle expressed in
terms of the unit vectoe showing a next-neighbor site. Note
that ., =€, andZ, g =0. We see that in the Hamiltonia¥,
Our A is defined to be the gap energy itself, with the dimen-appears only al=U+24V, and merely shifts the chemical

sion of energy in the unit of@, and carries an extra factor of potential and the total energy: It does not actively participate
2 in comparison to the often-used We also note that we in the generation of the phase transition.

n=2n; =2n;.
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As is well known, the spin density,

1 ot n ot n 1
NE @& -ele) =

S==<§» = 5565

AT ~ AT ~
2 <CkTCkT - C—klc—kl>a
k

(14)
is conserved in the mean field approach, while
ey L Ata L at o
n= <n> = @2 <Cig-cio'> - @kz <Ckg-cko'> (15)
lo (o8

(and thus the total nucleon numlpes not, as the spin num-

ber operatos commutes withH of Eq. (9), but the number
density operatof does not. We remedy this problem by the

standard method of introducing a Lagrange multiplier corre-

sponding to the chemical potential by subtracting a term

uN3h=u=; & &, from theH. u will be adjusted to achieve
the desired value of the conjugate parametefhe formal-

ism is thus essentially the canonical ensemble method.

We now diagonalizeH-uN3i by the use of the
Bogoliubov-Valatin transformation,

Bl = Wl — vk
(16)

o at a
Bk~ = UWCoy| + vKCyy,
whereu, andv, are taken to be real and are given by

1<1+ 1(1——6'(_#),
2 2 Ex

o —
K M) and vi=

=

ug =

satisfyinguZ +vZ=1. |:|—,uN3ﬁ is now expressed as that of a
system of free quasiparticles:

H-puN*i= 3 EfyBo+ N¥(Egs=pn),  (17)
kh=%
with the energy of a quasiparticle
Ey = V(e —p)* + A%4 (18

and the ground-state energy of the system

A2 )1 _
—+n?U| - SX E-p+un. (19
U N3 <

1

il

Egs=--

Equation(16) shows that@kk’s obey anticommutation rela-

PHYSICAL REVIEW C70, 014315(2004

N = Ny = N = [exp(E/T) + 1177, (21)
which have the limiting valuesn,—0 and —1/2 asT
— 0" and —x, respectively. Note that throughout this work,
we denote the temperatuiiein the unit of the Boltzmann
constant.

By combining with the entropys, the (Helmholt? free
energy is expressed as

F(T,a;A,n)=E-TS

= > Exnyy + N°Egs
K\

+ T2 [NIn Ny + (1 —n)In(L = ni,) 1,
I
(22

depending ora through thek sum because the spatial vol-
ume (aN)? depends ora with N fixed. F is a function ofA
andn. A and u are determined so as to minimiZe for
variations ofA andn, while T anda are fixed. The condi-
tions

19F_9F_,
Nean M gA”
provide the gap equations
1o & M
n-1l=— 2n,—1),
Ngg Ek ( k )
(23)
U 2n -1
A(l——3 - ):
2\ S =

from which x and A are determined.

IV. THERMODYNAMICAL PROPERTIES

We now apply the formalism so far described, to compute
various thermodynamical quantities. For clarifying our pre-
sentation, we place some expressions of the thermodynami-
cal variables in Appendix B. All numerical results are calcu-
lated in the thermodynamical lim\l—cc. In the limit, the
summation over the discretized momentum space of each

tions and that the quasiparticles are fermions. Furthermor%omponent ok ranging in[-N/2,N/2] is replaced by the

Eq. (17) implies that they form a system of free fermions. As

a consequence of the thermal average, the internal energy s

then given by

E=(H)=> ExNi + N3Egs, (20)
K\

with the energy per lattice site beirigy N°. Here,n, is the

momentum distribution of the quasiparticlexﬁxzwlxﬂkx),
and is determined by the requirement that the free enérgy
introduced below is minimized by a variation ofy,,
SF/ ony, =0 for A\=+. We obtain

integral over the first Brillioun zone with each component of
e momentunp ranging[-=/a, w/al:

3 rmla (mla [mla
e
2m -mla Y -7wla Y -7la

A. Potential parameters

1
N34

We apply the parameter values used in the previous
Monte Carlo lattice calculation for nuclear matfé¢:

014315-4
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FIG. 1. The order parametéras a function of temperatuiein FIG. 2. The order parametér as a function of the on-site po-
the unit of hopping parametéfor the densityn=0.5 and 1.5long- tential strengthl in the unit of hopping parametérat zero tem-
dashed curveandn=1.0 (solid curve. perature(T=0) for the densityn=0.5,1.5 (long-dash curvg n

=1.0(solid curve.
V9 =-181.5 MeV fnd,

c

n=1 and is discussed further in Sec. IV D and Appendix A.

V(cz) =37.8 MeV fn?, Figure 1 also shows
(29) A(T=0)=(2-25t=12-15 MeV.
V9 =-31.25 MeV fnf, » .
The explicit values ofl, and A(T=0) depend sensitively on
v@ =0 the parameter values as discussed below, Touand A(T
7 ’ =0) satisfy
with the lattice spacing=1.842 fm. These parameter values
give A(T=0) = 3.6T,
t=6.11 MeV, which is the well-known relation at the weak-coupling limit
except for the latter to have a slightly smaller coefficient 3.54
U=-24.74 MeV, [21]. In comparison to the weak limit, our calculation thus
somewhat underestimat@gin relation toA(T=0). Note that
V=0.89 MeV. different mean field calculations have been reported to yield

the coefficient smaller than the weak-limit val{i£0] and
The parameter values of E@4) were chosen in Ref14] so  also even much largd®] than ours.
as to reproduce the saturation density and energy of nuclear NearT,, the gap equations Eq&3) yield
matter on a finite K4 X 4 lattice for the same Hamiltonian
A {(T— T)P for T<T,,

0 forT>T,,

as ours, Egs.(1)—«3). Our Hamiltonian has no explicit
7-dependent term, and the parameter values effectively in-
clude the strong neutron-proton interactions for nuclear mat- )
ter. The use of the parameters is thus not quite adequate adh 8=0.45. Note that the well-known mean field value of
realistic description of the nucleon matter of single speciestn€ critical eéxponeng in the simple BCS theory is 1/[22].
such as the neutron matter. Furthermore, finite lattice volume 1h€ Physics of the phase transition depends on the
effects make the thermodynamical linil — =) calculation strength of the potential parameter. Figure 2 illustrates

different from the finite volume calculation. For comparison how sensitively the value of depends orl. We see that

purposes with the previous and future Monte Carlo calcula® >0 @sU—0. As is well known,A does not vanish for a
ite U. In fact, Eq.(23) yields the well-known dependence

tions, however, we use the above parameter values exce
when theU dependence of is examined. Any conclusion ©f & on{U| for U—0:
that we could draw from the numerical results in this section A — AUl
is then qualitative.
whereA andB are constant and independentlbf
B. Gap parameter A

Equations(23) determineA and w. Figure 1 illustrates\ C. Second-order (continuous) phase transition
as a function of the temperatuiie for n=0.5 (one-quarter
filling), 1.0 (one-half filling), and 1.5(three-quarter fillingy
In the figure, we see that vanishes af=T,,

The temperature dependence dfin Fig. 1 is a well-
known dependence of the order parameter for a second-order
phase transition. The variation af as shown in Fig. 1 im-
0.6 or 4.0 MeV forn=1.0, plies that the phase transition takes place from a superfluid
c= 0.55% or 3.3 MeV forn=05 and 1.5. state generat_ed by spin pairing to the normal state, as the

temperature increases. The features of the second-order
The temperature dependencefofs the same fon=0.5 and phase transition are clearly seen in the temperature depen-
1.5. This is a consequence of the symmetry with respect tdence of the thermodynamic quantities expressed in terms of
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0.8

4.8

46

4.4

4.2 J 1 1 1

Th

FIG. 3. The Helmholtz free enerdy (solid curve, the internal
energy E (long-dashed curve and the entropy of the systef®
(short-dashed curyeas a function of temperature in the unit of
hopping parametdrfor the densityn=1.0. The left axis refers tb
andE, and the right one is fo8.

the temperature derivatives of the free eneffgiyn a succes-
sive order. We consider the internal enekgythe entropys,
and the heat capaci@,,

]a,n,

{
15,
I

The temperature dependence of the quantities is calculat
using E@s.(20), (22), (B1), and (B2), and is illustrated in
Figs. 3 and 4E andS are continuous at the critical tempera-
ture T, as seen in Fig. 3, whil€, has a jump af; as in Fig.

d(FIT)
aT

JdF
- 25
aT 29

PE

C,=-T —
v { IT?

4. These behaviors demonstrate the generic features of the

PHYSICAL REVIEW C70, 014315(2004

1.74 forn=1.0,
1.43 forn=0.5 and 1.5,

while the BCS mean field value is 124(B) =1.43, indepen-
dent ofn [21]. (¢ is the zeta function.

The thermal quantities involving volume derivatives form
a set of quantities similar to the temperature derivatives. We
consider the pressurié and the isothermal compressibility
x1. Here, following the common practice in nuclear physics,
we examine the incompressibilitl{ =9/(ktp), defined in
terms of the densitp=V/(aN)®=n/a3 with the spatial vol-
umeV=(aN)3. A volume derivative is then a derivative with
respect to the lattice spacirgA derivative with respect ta
requires, however, the knowledge aflependence dfl and
V, that is, their renormalization flow whemis varied. In this
work, for simplicity, we assume that thedr dependence is
small, at least around the value afwe use.P andK are
written as

AC,/C,(norma) = {

JF
)., -
V[ap] V[aZF}
K==9—|——| =-9~|——=| - (27)
p v Ta P % Ta

P is calculated using EqB4) andK is obtained numerically
from the temperature dependenceRofThe temperature de-
pendence oP andK confirms the second-order phase tran-
sition, as seen in Fig. 4.

There are many other quantities that describe thermody-
namic properties of the system described by our Hamil-
tonian, but they are either related to the quantities already
shown, or their features depend strongly on the explicit form
of the Hamiltonian. We thus do not show them in this ex-

oratory work. For example, the temperature dependence of
ouble occupancy per site,

1 At A At a
D= @E (ciTTciTci‘lcu), (298
I

second-order phase transition. The amount of the diSCOhtianrovides the amount of the Spin pairing that participates in

ity in C, at T., AC,, is relative toC, of the normal phase,

0.8 [ T T T T
[ Ktx10%,n=1.0
0.6

Cyt,n=1.0

04 |
L P, n=1.0

0.2

_~cpn=0515
02 0.8 1

0.4 0.6
Th

FIG. 4. The heat capacitg, for the densityn=0.5 and 1.5
(long-dashed curyveandn=1.0(solid curvg, the pressur® for the
densityn=1.0(short-dashed curyeand the incompressibilitil for
the densityn=1.0 (dotted curvg as a function of temperatufgin
the unit of hopping parametér

the phase transition. Bld, as well as the kinetic energy per
site, is related ta\ andn in the mean field approximation
[23] and provides no new information, as shown in Appen-
dices A and B.

D. Particle-hole symmetry and phase diagram

For illustrative purposes, however, we show the density
dependence of, D, E, andKE at T=0, in Fig. 5. As noted
above, Fig. 1 suggests a symmetric dependenck af the
density n, which is more clearly illustrated in Fig. 6. The
symmetry is generated as a consequence of the particle-hole
symmetry, as seen from the fact that E83) is invariant
under the particle-hole conjugation though the symmetry is
implicit in our Hamiltonian, Eqs(4) and (7). There is a
group of Hamiltonians, in which the particle-hole symmetry
is implicit, yet yielding(in the mean field resulighe energy
spectrum of the system with the explicit symmetry. The
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15 T T T S/ 1 5 T T T
4 T <4
10 B normal ]
i =3 ]
()]
g ]
F = 2 superfluid B
5+ ]
L 1 ]
0 ! 0 1 1 ]
0 0 0.04 0.08 0.12 0.16
n o [fm™
FIG. 5. The chemical potential (solid curve, the double oc- FIG. 7. T-p phase diagram.

cupancyD (long-dashed curyethe internal energf (short-dashed
curve), and the kinetic energy KHdotted curve in the unit of
hopping parametedras a function of the density at zero tempera-
ture (T=0). The left axis refers tqu, E, and KE, and the right one
is for D.

have examined the nature of the single species nucleon mat-
ter described by our model. In this section, we discuss
whether our model could be made a realistic description of
neutron matter.

Hamiltonians do yield different behaviors of thermodynamic  First, we have the question of whether our lattice would
variables. Figure 5 is an example. We elaborate on the issy8€€t the basic momentum requirement imposed by the lat-
of this symmetry in Appendix A. tice spacing. A lattice description can be made realistic when

Some thermodynamic variables are made to exhibit thidh€ lattice spacing is less than the momentum scale of the
symmetry explicitly by modifying the Hamiltonian to pos- system. By tgkmg the Fermi momentum of the neutron mat-
sess the explicit symmetry. Whether it is explicit or not, how-€r @S an estimate of the momentum scale, we have
ever, the thermodynamic properties obtained from the mla > pe. (29)
Hamiltonian are affected by the symmetry. The symmetry is
a consequence of our computational method using the lattic@ur lattice spacinga=1.842 fm, yields the density of
configuration, and it is an artifact. In order to extract physi-=1/2°=0.160 fm® for n=1.0 (the lattice space being half
cally realistic results, we should therefore stay away from thdull). The Fermi momentum corresponding to this density is
region of the symmetry and should confine ourselves to a - -1

. S Pe = 1.68 fm
small value ofn by appropriately adjusting the value of the
lattice spacing, so as to simulate the desired density of theusingp:p§/37r2. The value ofpg is practically the same as
nucleon matter. We discuss this point again in the following Ja~1.71 fit
section, where we attempt to apply our calculation to a case 77 ' '
of low-density neutron matter. and thus the lattice with the above lattice spacing is appli-

Combining the variations of the thermodynamic quanti-cable to a density much smaller thar=0.160 fni3. Note
ties, some of which have been presented so far, we obtain thilat the preceding discussion yields that the condition
phase diagrams of the present system described in the mean
field theory. Figure 7 shows the phase diagram in the region m3>n
of small densities where we expect the above-mentionegheets Eq(29) independently of.
symmetry to be generating less distortion. Second, there is the question of whether our Hamiltonian
is appropriate for a realistic description of low-density neu-
tron matter. The nucleon-nucleodt®, phase shift is much

In the previous section, we have used the parameter vagreater than the nucleon-nucleon phase shifts of other states
ues most appropriate as a description of nuclear matter arselow the laboratory energF,,,=100 MeV. The nucleon
momentum in the center-of-mass coordinate sygigmcor-
responding to thisE,, is about 1.2 fm' through E,
=4(p?,,/2my), and is smaller than the above/a= pgit
=1.7 fm L. We thus infer that our Hamiltonian form of tig
= ] wave should be reasonable for neutron matter of a density
< 1 less than 0.17 fA¥, which corresponds to the Fermi momen-
1F . tum of 1.7 fniL,

] As to the parameter values in the Hamiltonian, it would
] be best to determine them for our lattice size from experi-
0 o 0'5 1' 1'5 5 mental 1S, phase shifts by applying the method of effect.ive
' . ' field theory[24,23. Instead, as an exploratory study, we sim-

ply adjust theU-parameter value so as to see whether our

FIG. 6. A in the unit of hopping parameteias a function of the approach could come close to other mean field calculations
densityn at zero temperatur€lr=0). of low-density neutron matter in the literature. Figure 8 il-

V. LOW-DENSITY NEUTRON MATTER

3 T T T
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3 T T ] 7]:3_21. (31)

As in the previous spin-pairing case,and & are treated as
T independent parameters, gadthe parameter conjugate o
is adjusted to the desired value rof

The steps to the gap equations are similar to the case of
the superfluid phase discussed in Sec. lll, and are shown in
Appendix C. By minimizingF —uN3n, we obtain

A [MeV]

1
ke [fm™"] N
. : (32
FIG. 8. The gap energk as a function of the Fermi momentum U+87V e Ns—h
ke for U=-45.8 MeV(solid curve in comparison to a simple BCS <1 - 377 P k‘) =0
calculation (long-dashed curyeand a more elaborate orfd0] N k &

(short-dashed curyeThe simple calculation is taken from REg26]
[using Eq.(8) with the neutron mass of 940 MeV and the neutron-
neutron scattering length of —18.8 fnA in this figure is half theA
defined in the text, so that its definition agrees with the one used in U+87V<0 (33)
Refs.[10,26.

by varyingn and 6, respectively. Equatio(82) determinesd
and u. Furthermore, as,, <n,_ and

for our parameter values, E@32) shows that the density

lustrates that we could obtain a somewhat reasonable densif{gves of all dimensions are expected to occur owing to the
dependence af by increasing the magnitude bf We leave ~ StONg, attractivel.
a mEre serious determination of the parameters for our future VII. DISCUSSION AND CONCLUSION
work.

The form of the nucleon-nucleon interaction, EQ9—(3),
shows that the nucleon-nucleon interaction used in this work
is of the S states. As is well known, the realistic nucleon-

Our analysis has so far been strictly based on the meaucleon interaction is highly state dependent. The relevant
field approximation applied to a spin-pairing phase at thehucleon energy of interest to us here is a few hundred MeV,
same site. In the approximation, thieterm merely shifts the ~corresponding to the Fermi energy region of the nuclear mat-
effective chemical potential and is inactive in generating thef€r density. In this energy region, the attractive neutron-
phase transition. As th¥ term represents the pairing of the neutron interaction is known to be dominated by fti%
Spin densities at the adjacent sites, such a role may be iateraction driven by the Spin—orbit force, COUpled with the

reasonable one in this phase transistion. Would\thierm ~ °F interaction associated with the tensor fofe&,2g. Our
ever play an active role in generating a different phase tranHamiltonian accommodates none of these features of the in-

sition? In this section we briefly examine this possibility. ~ teraction. Our objective as noted in Sec. | is to understand
The most likely phase in which thé term would play the the essential physics associated with the thermal properties
major role would be a density-wave phase generated by gf nucleon matter, but our finding in this work is limited in
coupling of the densities of the opposite spins at the adjacerifis sense and is perhaps most applicable to low-density neu-
sites. We examine how th¥ term could generate such a tron matter.
phase transition, again in the mean field approximation, and There is a serious question of how good the mean field
see whether the phase transition would occur with our pacalculation is in our case. A mean field approximation ig-
rameter values. nores most features of particle correlations. As the particle
We follow the Hartree-Fock-Bogoliubov approximation correlations are the vital ingredient of critical phenomena,
with the same decoupling scheme as before. For simplicitythe mean field approximation is generally believed to be only
however, we ignore the superfluid phase. The density wavef qualitative use, and some times not even qualitative, as

VI. DENSITY WAVE PHASE

phase is introduced by making a rep|acement, fluctuations could alter the nature of the phase transition. The
ot situation, however, depends on the nature of the problem
(€i,Cip) — Nip+ (d2)cog27n; - g/N) [22], as the prominent success of the Ginzburg-Landau/BCS

~ /2 +(812)cog 2, - gIN). (30) theory showg29], especially at temperatures not too close to

the critical one. Our problem is in three dimensions, close to
Here, the inhomogeneous order parameter for the densityhe usual upper critical dimension of four under the Ginsburg
wave depends on the amplitudexnd the wave number vec- criterion[22]. We are hoping that our calculation, being simi-
tor g. In the following, we examine the wave modes in which lar to the BCS theory, is not far off, but this remains to be
the adjacent sites are the maximum and minimum of theeen. This issue is under further investigation by incorporat-
amplitude in a cubic lattice. That is, at least one componening a renormalization approach, as has recently been done at
of 277G/N is +ar. The number of the nonzero components, orzero temperaturg30].
the dimension of the density wawk provides a convenient Our Hamiltonian has a form similar to that of the Skyrme
parameters, interaction [31] (though ours is a truncated foymThe
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Skyrme interaction is one of the effective interactions that . N - it oa 1 . \/1 .

are phenomenologically introduced to achieve quantitative H'=H+AH=-t 2 CioCio UE (5 - n”><5 - nil)
agreement with experiments, usually by the use of a mean (i3 '

field approximation such as the Hartree-Fock calculations. 1 . 1

Though it is still not quite realistic, our Hamiltonian has a VXY (5 - nia)(a - nitf')’ (A2)
justification in this sense. A lattice calculation such as the (i.p)oo’

previous Monte Carlo lattice calculatidd4], however, ac-
counts for all the complexity of the many-body interaction
with no approximation other than the numerical, in the lattice
framework. The nucleon-nucleon interaction used in it el o8,
should not be then an effective interaction like the Skyrme

interaction, but an interaction in free space. The parameters R ot
U andV are expected to be determined from scattering data Cio = Cig

through the use of effective field theory by extendingOr n <1-n . which isn<2-n with n=3 n . Under
o 1o - “o Yo

Luscher’s formulg 32,33 for the large'S, scattering length. : - - :
This issue is presently under investigati@b]. Note that the :hj ftonjuganon, the Hamiltonian becomes that of holes, with

values ofU andV will depend on the lattice spacira

In conclusion, our mean field calculation on a lattice with
a simple nucleon-nucleon interaction suggests a secon
order phase transition taking place at a low temperature in
single species nucleon matter described by a simple Hamil-
tonian. Thermodynamic variables show their dependence on
the temperature and density variations as expected under the
phase transition in the mean field approach. The transitiowith the quasiparticle energy
changes the phase of the matter from a superfluid state due to
nucleon pairing, to a normal state as the temperature in- Er= V(e — )2+ A%4 (A4)
creases and the density decrease. This dependence is in
qualitative agreement with the findings that have been reand
ported in the literaturgl].

is symmetric under the particle-hole conjugatir with
respect to half fillingn=1):

When we repeat the BCS formulation in Sec. lll, after the
ogoliubov transformation, we obtain the diagonalized form
f the new Hamiltonian, Eq(A2), as

H' = 3 Eqfiy, + N°Egs (A3)
kA

n, = n, =n,_=[exp(E/T) + 1] (A5)
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: . 1(A% n?-1—\ 1 R
This work is supported by the U.S. Department of EnergyEg=-~| —+——U | - —32 Ey— ' +pun, (AB)
under Grant No. DE-FG03-87ER40347 at CSUN, and the 4\u 4 N™¢

U.S. National Science Foundation under Grant Nos. .

PHY0071856 and PHY0244899 at Caltech. T. A. is sup-Vit

ported under the 21st Century COE Program at the Tokyo _ —

Institute of Technology, “Nanometer-Scale Quantum Phys- p' =p=(=-1U/2. (A7)

ics,” by the Ministry of Education, Culture, Sports, Science  Equations(12) and(A7) show that thew value is shifted,
and Technology in Japan. R.S. acknowledges Satoshi Okapq Egs.(19) and (A6) tell us that the expression of the

moto for patiently explaining various aspects of condensedound-state energy is altered. The kinetic energy is also
matter BCS theory. For his warm hospitality, R.S. thankschanged:

Masahiko Iwasaki of RIKEN, where a part of this work was

done. T.A. and R.S. acknowledge for its hospitality the Insti- t e 1« (6—1')e
tute for Nuclear Theory at the University of Washington, KE' = - INE E @8, :—mE T (A8)
where the last stage of this work was carried out. (R K k

in comparison to Eq(B7). We also see th&;gand KE for
the new Hamiltonian explicitly exhibit the particle-hole sym-
metry about half filling(n=1).

The Hamiltonian of Eq(7) does not explicitly exhibit The double occupancy per site for the new Hamiltonian
particle-hole symmetry, but it can be modified to do so byD '

APPENDIX A: THE PARTICLE-HOLE SYMMETRY

adding a single-particle Hamiltonian, 1 A2 2
B B D' = @2 <éiTTéiTéiTléii> = m + Z, (A9)
AH =N3U/4 - (6t + U/2) Y iy, (A1) '
o differs from that for the original Hamiltonian, E¢B6). Note
that neitherD nor D’ is symmetric abouh=1.
wheref;, =& &,. The new Hamiltonian, The gap equations for the new Hamiltonian become
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1o &- ou 1 ( \/2>> ( V2
n-1=—; 2n;, - 1), —= v - Vo - :
N32 E, ( = ga  af { a® 3
(A10)
U 2n, -1
A :I_——3 k, =0. ﬂ__i (2) (B5)
2N E 9a3 6ad ¢’
These gap equations are the same as B2f.exceptu is  The double occupancy per sileis expressed as
replaced byu’. As we solve the gap equations farand u
(or w) for a fixedn, the gap equations for the two Hamilto- 1 e
nians yield the same set df and u, thus the sam@,. Both D= @E @heele)
Hamiltonians thus provide the same excitation energy spec- i
trum. 1 §E
TN2OU
APPENDIX B: THERMODYNAMIC VARIABLES A2 2 2
_ s /T
We list here the expressions of the thermodynamic vari- - 4U2 4 N32 (e = « (B6)
ables, which are used in Sec. IV. The entropy is given in
terms ofny, in Eq. (21) by The kinetic energy per site KE is written as
S=2 [naIn g+ (L-n)in(1 -ny)l. (BY)
kn KE=- N— PIRCHE 6—2 (G
By the use of Eqs(18), (19), and(22), the heat capacitZ, e
is expressed as _tJE
NS at
), )
=T 1 - + 6t n
JT? = @E (&= a0 MI)E(EK )[an<1 - ;“EkeEk’T> - 1} +6t.
k
AAg 2 2<AAT E2> - “
== =1 —-—=2n|— ek
N3k FAGURE RI Rat B7)
L B2
2U (B2) APPENDIX C: DENSITY WAVE PHASE
Here, At is The Hamiltonian in the coordinate space is reduced to
) (83) A==t 6lg,+ @+ U X0,
ﬂT (i,j)o
and is numerically calculated from the solution of the gap +(U/2+41;V)52 coq2mn; - q/N)c Cio
equations, Eq(23). ior
The pressureP is written in terms of the space volume —[(UI4)(n2 + §%/2) + V(B2 + n?) N3, (C1)
y=(aN)® as
where the parametey depends on the dimension of the den-
- 9k sity waved, »=3-2d. Here, we have used
Vv T,n
LBy ), h (_ ) 1)( LAY ) > (g +nELe,— 2 (ny+neLg,
TN g & 2 ga® " oad e e
(B4) + 5%’ cog2m(n;+e) - q/NJE' &,
where =6n>, ¢ ¢,
P& _a—ploa nfou oV y :
ga®  E, |Loa® 2\9a® " 9a’/]’ +2’75i2 cog2mn; - 4/N)Ci,Ci
(C2
d €
PR E kc s( )
Ja | =X.y,Z and
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E (i + i (N +ny) — E (niy + (N +1y))
(BN ((B)
+ 252, cog2am; - q/N)(n;; + ;)
(ij)o
+ 8%, cog2mm; - g/N)
ie

Xcog2m(n; +e) - g/N]

= (6n%+ p6°)N®, (C3

where the nucleon densitiess are defined in the same way

as in Sec. lll. In the last step of E(¢C3), we have used the
identities

> cog2mn; - q/N) =0,

(C4
N3
E co(2mn; - q/N) = >

by applying the discretized orthonormality relation, ED).
Using

2 .
2 cos(Wni -q)cfrgcigz
lo

e ar »
EE [Ck-qr20Ck+q/20
ko

AT A
+ Ck+q/20'ck—q/2(r]! (CS)
we obtain the momentum space representation

~ .1 —nt 1 — At A
H- /.LN3n = EE (e M)CIUC+U + 52 (e.— /.L)CLTC_U
ko ko

1= .+ oA 1 —
+ 552 @' g, +el e ,)- 556N3 + EoN3
ko

1=
€&—pn —0 .
1w .+ . 4 Cio
s (&)
2 ko 1— — C—o'
25 €~ W
- ia‘a\ﬁ + E N3 (C6)
16 o
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where the subscripts + and — dendteq/2 andk-q/2,

respectively; that is¢,,=Cysq/2.- €: is defined as
€. = -t exdi2m(k + q/2) - e/N]
e
=-2t 2 cog2m(k; + qy/2)/N].
j=xy.z
We have also defined
5= 62U + 167V). (C7)

I:|—,uN3ﬁ is diagonalized through the transformation

Elk+ = Uke_m. + ka:_g,
(C8)
ag- = UgC_, — vkCip,

whereu, andv, are taken to be real and are given by

€ 5, 1 €.~ €
and vpy=2|1- ,
2 &
satisfyinguz +vZ=1. Here,
&=V(e,—€)? + &4,

H-uN3f is now expressed as that of a system of free
quasiparticles:

€.~

1
u§:§<1+
k

(C9

~ L1 at o~
H = uN*h = ) B i + N(Egs— ), (C10)
kN

wherex=+ and

1
Eie = Sler+ e = 20) £ §] (C11)
is the energy of the quasiparticles, and
Eos= - 68/16 —n2U/4 + un (C12)

is the ground-state energy of the system.
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