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Thermal properties of single species nucleon matter are investigated assuming a simple form of the nucleon-
nucleon interaction. The nucleons are placed on a cubic lattice, hopping from site to site and interacting
through a spin-dependent force, as in the extended, attractive Hubbard model. A mean field calculation in the
Hartree-Fock-Bogoliubov approximation suggests that the superfluid ground state generated by strong nucleon
pairing undergoes a second-order phase transition to a normal state as the temperature increases. The calcula-
tion is shown to lead to a promising description of the thermal properties of low-density neutron matter. A
possibility of a density wave phase is also examined.
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I. INTRODUCTION

Nuclear excitations are complicated dynamical phenom-
ena, depending on the detailed structure of the individual
nucleus, and must be examined based on the specific struc-
ture of the nucleus, such as whether it is closed or open shell.
As the excitation energy gets higher, however, the excitations
depend less on specific nuclear structure and start to exhibit
more common features among(heavy) nuclei. These features
are expected to be reasonably well represented by excitations
of nuclear matter. Furthermore, dynamics of supernovae and
neutron stars, which have been of much astronomical inter-
est, are expected to be better understood through the study of
excitations of neutron matter[1,2]. The gross features of the
thermal properties of nucleon matter have been examined by
means of statistical models[3] and lattice gas models[4].
More realistic descriptions of the thermal properties have
been provided through applications of various approaches in
the nuclear many-body theories[5–10]. Applications of the
traditional nuclear many-body theories regarding nucleon
matter at zero temperature have been extensive[2,11–13],
and provide the most reliable information on the properties
of nucleon matter at low temperatures.

Previously, one of us(R.S.) collaborated on a Monte
Carlo calculation of nuclear matter on a lattice[14], which
provides a new framework for studying the thermal proper-
ties of nucleon matter. Though the computational space was
small and the nucleon-nucleon interaction was simple, the
calculation has proven to be of much promise, demonstrating
the occurrence of a phase transition around 15 MeV using
the parameters adjusted to reproduce the saturation proper-
ties. A similar calculation of nucleon matter of a single spe-
cies has also been initiated in the same work, using the same
form of the Hamiltonian. Though a phase transition appeared
to take place at a few MeV, the evidence for it was not quite
solid owing to statistical fluctuations, which are enhanced at
low temperature(a sign problem). The phase transitions may
correspond to those expected through paired nucleons(Coo-
per pairs) in nucleon matter[1,2].

In order to gain a better understanding of the possible,
latter phase transition, we apply in this work the analytic
means of a mean field approach to the problem in the same
lattice formulation. From this work, we do not expect to be
able to draw precise quantitative conclusions, but rather we
will try to learn the nature of the phase transition at a semi-
quantitative level. For this purpose, we take the thermody-
namical(infinite volume) limit for numerical results, so as to
obtain a clear signal of the phase transition. The mean field
results in this work will also serve as a reference for the more
extensive Monte Carlo calculation that we are currently car-
rying out.

Our Hamiltonian for single-species nucleon matter turns
out to be an extended, attractive Hubbard model, which has
been studied as a simple model of high-temperature super-
conductivity[15]. The mean field calculation shows that the
low-temperature, low-density state is a superfluid state and
undergoes a continuous(second-order) phase transition to
the normal state as the temperature and/or density increases.
As the Hamiltonian is not yet fully realistic and the values of
the interaction parameters are uncertain, our results are not
quite comparable to those for neutron matter, except perhaps
at a very low density. But we demonstrate that the approach
is promising for the study of low-density neutron matter.

Furthermore, we find that a density-wave state coexists
with the superfluid state, suggesting that the state of neutron
matter may be more complicated than the simple description
of a superfluid state as it is often characterized.

The outline of this work is as follows. After the introduc-
tion in Sec. I, the Hamiltonian and its discretized form in the
coordinate space are presented and are identified as an ex-
tended Hubbard model in Sec. II. The Hartree-Fock-
Bogoliubov approximation is applied and the Hamiltonian is
diagonalized in Sec. III. Thermodynamical properties nu-
merically calculated are shown in Sec. IV, an attempt to ap-
ply our calculation to the problem of low-density neutron
matter is discussed in Sec. V, and the possibility of a density-
wave phase is examined in Sec. VI. Discussions and conclu-
sion are presented in Sec. VII.
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II. SIMPLIFIED HAMILTONIAN AND EXTENDED
HUBBARD MODEL

The Hamiltonian consists of the kinetic and potential

termsK̂ and V̂, respectively:

Ĥ = K̂ + V̂ = −
"2

2mN
o
st
E dr ĉst

† sr d¹2ĉstsr d

+
1

2o
tt8
ss8

E dr E dr 8ĉst
† sr dĉs8t8

† sr 8d

3Vsr − r 8dĉs8t8sr 8dĉstsr d, s1d

wheremN is the nucleon mass, ands= ±1/2 andt= ±1/2
are the spin(↑ or ↓) and the isospin(p or n), respectively.

ĉst
† sr d andĉstsr d are the creation and annihilation operators

of the nucleon, with the spins and isospint at the position
r . As in the previous Monte Carlo lattice calculation[14], we
include only the central and spin-exchange interactions,Vc
andVs, respectively:

Vsr − r 8d = Vcsr − r 8d + Vssr − r 8ds · s8. s2d

Vc andVs are taken to consist of on-site and next-neighbor
interactions,

Vcsr − r 8d = Vc
s0ddsr − r 8d + Vc

s2df¹r
2dsr − r 8dg

s3d
Vssr − r 8d = Vs

s0ddsr − r 8d + Vs
s2df¹r

2dsr − r 8dg,

where Vs2d terms can be written explicitly exhibiting their
hermiticity.

As physics of the lattice description is more apparent in
the coordinate space, we consider the discretized coordinate
with an internucleon spacinga in the cubic lattice with the
torus boundary conditions. We thus focus our interest on the
physics of the spatial separation greater thana in each direc-
tion, or of the momentum component roughly betweenp /a
and −p /a, by eliminating(or integrating out) the physics of
the shorter distance. The discretization corresponds to

r → ani ,

E dr → a3o
i

,

o
st
E dr ĉst

† sr dĉstsr d → o
ist

ĉist
† ĉist,

wherei denotes a lattice site specified byni with its compo-
nent rangingf−aN/2 ,aN/2g. Here,N is the number of sites
in each spatial direction. Note that the creation and annihila-
tion operators,ĉist

† and ĉist, have no dimension as defined.
We also apply the identity

o
i

sab
sid sgd

sid = 2daddbg − dabdgd,

where i denotes the spatial componentssx,y,zd, and the
Greek indices denote the components of the Pauli spin ma-
trix, 1 or 2.

In this work, we study the simplified case of nucleon mat-
ter consisting of a single nucleon species, such as neutron
matter. The Hamiltonian Eq.(1) is then expressed in a spa-
tially discretized form:

Ĥ = − t o
ki,jls

ĉis
† ĉjs + 6to

is

ĉis
† ĉis + Ũo

i

ĉi↑
† ĉ†

i↓ĉi↓ĉi↑

+ V1 o
ki,jls

ĉis
† ĉjs

† ĉjsĉis + V2 o
ki,jls

ĉis
† ĉj−s

† ĉj−sĉis

+ V3 o
ki,jls

ĉis
† ĉj−s

† ĉjsĉi−s, s4d

whereki , jl denotes the pairs of next-neighbor sites, andt is
the hopping(kinetic energy) parameter defined as

t =
"2

2mNa2 . s5d

Here, the potential parametersŨ and V’s are expressed in
terms of linear combinations ofVs0d’s andVs2d’s. The Hamil-
tonian Eq.(4) is now in the form of an extended Hubbard
model, which is the Hubbard model with the on-site spin-

pairing interaction of theŨ term, modified by the next-

neighbor interaction of theV terms. As theŨ value will be
taken to be negative, our model is an extended, attractive
Hubbard model. The repulsive Hubbard model has been well
studied in condensed matter physics as a model of strongly
correlated electron systems[16], but the attractive model is
generally less studied. In recent years, however, the ex-
tended, attractive Hubbard model has drawn much attention
as the model describing the essential features of high-
temperature superconductivity[15]. Note that the extended,
attractive (negative-U) Hubbard model used in condensed
matter physics, however, is usually of the simpler form
shown below and has no 6t term as a part of the kinetic
energy[17].

When the spin-dependent next-neighbor interaction is
taken to be small and negligible,

Vs
s2d = 0, s6d

the Hamiltonian is simplified:

Ĥ = − t o
ki,jls

ĉis
† ĉjs + 6to

is

ĉis
† ĉis + Uo

i

ĉi↑
† ĉi↓

† ĉi↓ĉi↑

+ V o
ki,jlss8

ĉis
† ĉisĉjs8

† ĉjs8, s7d

where
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U =
1

a3SVc
s0d − 6

Vc
s2d

a2 − 3Vs
s0dD ,

V =
1

2a5Vc
s2d. s8d

Apart from the lattice spacinga, the Hamiltonian of Eq.
(7) now describes dynamics with two parameters. The
Hamiltonian Eq.(4) [and thus also Eq.(7)] possesses an
underlying particle-hole symmetry, which affects thermody-
namical properties as discussed in Sec. VI. The symmetry is
not an explicit property in our original Hamiltonian, Eqs.
(1)–(3). We elaborate on the symmetry in Appendix A.

III. HARTREE-FOCK-BOGOLIUBOV APPROXIMATION
AND GAP EQUATIONS

We now apply the mean field method in the Hartree-Fock-
Bogoliubov approximation[18]. Here, we expect effects of
the U term to dominate the thermal properties of the single
species matter as in the standard BCS description[19–21],
but we also wish to treat their single-particle aspects in the
Hartree-Fock approximation on the same footing. Since the
method is well known, we limit the description of the for-
malism to the key steps that are specifically relevant to our
calculation.

The nature of the mean field approximation is apparent in
the spatial representation. Through the application of the
Wick theorem, the decoupling scheme for theU term is

ĉi↑
† ĉi↓

† ĉi↓ĉi↑ . − Di
* ĉi↓ĉi↑ − Diĉi↑

† ĉi↓
† − uDiu2 + ni↑ĉi↓

† ĉi↓ + ni↓ĉi↑
† ĉi↑

− ni↑ni↓,

where

Di ; kĉi↑ĉi↓l = − kĉi↓ĉi↑l,

ni↑ ; kĉi↑
† ĉi↑l andni↓ ; kĉi↓

† ĉi↓l.

Here, k¯l denotes the expectation value in the BCS-like
ground state, which is to be determined in a self-consistent
way. The order parametersDi’s are related to the local den-
sity of the condensate of nucleon pairs, whileni’s are the
average number of nucleons. Note that the inclusion ofni as
a variational parameter distinguishes the present treatment
from the standard BCS[18]. For theV terms, we have

ĉis
† ĉisĉjs8

† ĉjs8 . nisĉjs8
† ĉjs8 + njs8ĉis

† ĉis − nisnjs8.

In the following, Di andni’s will be assumed to be inde-
pendent of the sitei, or global, and will be formally treated
as the variational parameters:

D . 2UDi = 2UDi
* ,

n . 2ni↑ = 2ni↓.

Our D is defined to be the gap energy itself, with the dimen-
sion of energy in the unit of 2U, and carries an extra factor of
2 in comparison to the often-usedD. We also note that we

ignore theV-term contribution to the hopping term, as they
merely change somewhat the strength of the hopping term
and of the constant part of the energy, without affecting the
physics of the phase transition. The mean field approxima-
tion then yields in a cubic lattice with six neighboring sites

Ĥ = − t o
ki,jls

ĉis
† ĉjs + S6t +

n

2
ŪDo

is

ĉis
† ĉis

−
D

2o
i

sĉi↑
† ĉi↓

† + ĉi↓ĉi↑d −
N3

4
SD2

U
+ n2ŪD , s9d

whereŪ;U+24V.
For convenience, we will carry out the mean field calcu-

lations in the momentum space. The momentum representa-
tion is introduced by discretizing the momentum asp
→2pk / sNad, with each component ofk being an integer,
ranging f−N/2 ,N/2g. Note that we now haver ·p
→2pni ·k /N. The coordinate and momentum representations
of the operatorĉ are related through the Fourier transforma-
tions

ĉjs =
1

ÎN3o
k

e−2ipk·n j/Nĉks,

ĉks =
1

ÎN3o
j

e2ipk·n j/Nĉjs,

and similarly for the nucleon creation operator,ĉ†. Note that
the discretized orthonormality relation is

o
j

exps2ipk ·n j/Nd = N3dk,0. s10d

With the chemical potentialm, Ĥ−mN3n̂ is in the momentum
space

Ĥ − mN3n̂ = o
k

sĉk↑
† ĉ−k↓d1ek − m̄ −

1

2
D

−
1

2
D − sek − m̄d 2S ĉk↑

ĉ−k↓
† D

−
N3

4
SD2

U
+ n2ŪD , s11d

where

m̄ = m − s6t + nŪ/2d, s12d

and

ek = − to
e

exps2ipk ·e/Nd = − 2t o
j=x,y,z

coss2pkj/Nd

s13d

is a part of the kinetic energy of a quasiparticle expressed in
terms of the unit vectore showing a next-neighbor site. Note
that e−k =ek andokek =0. We see that in the Hamiltonian,V

appears only asŪ=U+24V, and merely shifts the chemical
potential and the total energy: It does not actively participate
in the generation of the phase transition.
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As is well known, the spin densitys,

s= kŝl ;
1

2N3o
i

kĉi↑
† ĉi↑ − ĉi↓

† ĉi↓l =
1

2N3o
k

kĉk↑
† ĉk↑ − ĉ−k↓

† ĉ−k↓l,

s14d

is conserved in the mean field approach, whilen,

n = kn̂l ;
1

N3o
is

kĉis
† ĉisl =

1

N3o
ks

kĉks
† ĉksl s15d

(and thus the total nucleon number), is not, as the spin num-

ber operatorŝ commutes withĤ of Eq. (9), but the number
density operatorn̂ does not. We remedy this problem by the
standard method of introducing a Lagrange multiplier corre-
sponding to the chemical potentialm, by subtracting a term

mN3n̂=moisĉis
† ĉis from theĤ. m will be adjusted to achieve

the desired value of the conjugate parameter,n. The formal-
ism is thus essentially the canonical ensemble method.

We now diagonalize Ĥ−mN3n̂ by the use of the
Bogoliubov-Valatin transformation,

b̂k+
† = ukĉk↑

† − vkĉ−k↓,

s16d
b̂−k−

† = ukĉ−k↓
† + vkĉk↑,

whereuk andvk are taken to be real and are given by

uk
2 =

1

2
S1 +

ek − m̄

Ek
D and vk

2 =
1

2
S1 −

ek − m̄

Ek
D ,

satisfyinguk
2+vk

2=1. Ĥ−mN3n̂ is now expressed as that of a
system of free quasiparticles:

Ĥ − mN3n̂ = o
kl=±

Ekb̂kl
† b̂kl + N3sEGS− mnd, s17d

with the energy of a quasiparticle

Ek = Îsek − m̄d2 + D2/4 s18d

and the ground-state energy of the system

EGS= −
1

4
SD2

U
+ n2ŪD −

1

N3o
k

Ek − m̄ + mn. s19d

Equation(16) shows thatb̂kl’s obey anticommutation rela-
tions and that the quasiparticles are fermions. Furthermore,
Eq. (17) implies that they form a system of free fermions. As
a consequence of the thermal average, the internal energy is
then given by

E ; kĤl = o
kl

Eknkl + N3EGS, s20d

with the energy per lattice site beingE/N3. Here,nkl is the

momentum distribution of the quasiparticles,nkl;kb̂kl
† b̂kll,

and is determined by the requirement that the free energyF
introduced below is minimized by a variation ofnkl,
dF /dnkl=0 for l=±. We obtain

nk ; nk+ = nk− = fexpsEk/Td + 1g−1, s21d

which have the limiting values,nk →0 and →1/2 as T
→0+ and→`, respectively. Note that throughout this work,
we denote the temperatureT in the unit of the Boltzmann
constant.

By combining with the entropyS, the (Helmholtz) free
energy is expressed as

FsT,a;D,nd ; E − TS

= o
kl

Eknkl + N3EGS

+ To
kl

fnklln nkl + s1 − nkldlns1 − nkldg,

s22d

depending ona through thek sum because the spatial vol-
ume saNd3 depends ona with N fixed. F is a function ofD
and n. D and m are determined so as to minimizeF for
variations ofD and n, while T and a are fixed. The condi-
tions

1

N3

] F

] n
= m,

] F

] D
= 0

provide the gap equations

n − 1 =
1

N3o
k

ek − m̄

Ek
s2nk − 1d,

s23d

DS1 −
U

2N3o
k

2nk − 1

Ek
D = 0

from which m andD are determined.

IV. THERMODYNAMICAL PROPERTIES

We now apply the formalism so far described, to compute
various thermodynamical quantities. For clarifying our pre-
sentation, we place some expressions of the thermodynami-
cal variables in Appendix B. All numerical results are calcu-
lated in the thermodynamical limitN→`. In the limit, the
summation over the discretized momentum space of each
component ofk ranging in f−N/2 ,N/2g is replaced by the
integral over the first Brillioun zone with each component of
the momentump rangingf−p /a,p /ag:

1

N3o
k

→ S a

2p
D3E

−p/a

p/a E
−p/a

p/a E
−p/a

p/a

d3p.

A. Potential parameters

We apply the parameter values used in the previous
Monte Carlo lattice calculation for nuclear matter[14]:
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Vc
s0d = − 181.5 MeV fm3,

Vc
s2d = 37.8 MeV fm5,

s24d
Vs

s0d = − 31.25 MeV fm3,

Vs
s2d = 0,

with the lattice spacinga=1.842 fm. These parameter values
give

t = 6.11 MeV,

U = − 24.74 MeV,

V = 0.89 MeV.

The parameter values of Eq.(24) were chosen in Ref.[14] so
as to reproduce the saturation density and energy of nuclear
matter on a finite 43434 lattice for the same Hamiltonian
as ours, Eqs.(1)–(3). Our Hamiltonian has no explicit
t-dependent term, and the parameter values effectively in-
clude the strong neutron-proton interactions for nuclear mat-
ter. The use of the parameters is thus not quite adequate as a
realistic description of the nucleon matter of single species,
such as the neutron matter. Furthermore, finite lattice volume
effects make the thermodynamical limitsN→`d calculation
different from the finite volume calculation. For comparison
purposes with the previous and future Monte Carlo calcula-
tions, however, we use the above parameter values except
when theU dependence ofD is examined. Any conclusion
that we could draw from the numerical results in this section
is then qualitative.

B. Gap parameter D

Equations(23) determineD andm. Figure 1 illustratesD
as a function of the temperatureT for n=0.5 (one-quarter
filling ), 1.0 (one-half filling), and 1.5(three-quarter filling).
In the figure, we see thatD vanishes atT=Tc,

Tc = H0.66t or 4.0 MeV forn = 1.0,

0.55t or 3.3 MeV forn = 0.5 and 1.5.

The temperature dependence ofD is the same forn=0.5 and
1.5. This is a consequence of the symmetry with respect to

n=1 and is discussed further in Sec. IV D and Appendix A.
Figure 1 also shows

DsT = 0d . s2 − 2.5dt . 12 − 15 MeV.

The explicit values ofTc andDsT=0d depend sensitively on
the parameter values as discussed below, butTc and DsT
=0d satisfy

DsT = 0d . 3.6Tc,

which is the well-known relation at the weak-coupling limit
except for the latter to have a slightly smaller coefficient 3.54
[21]. In comparison to the weak limit, our calculation thus
somewhat underestimatesTc in relation toDsT=0d. Note that
different mean field calculations have been reported to yield
the coefficient smaller than the weak-limit value[10] and
also even much larger[9] than ours.

NearTc, the gap equations Eqs.(23) yield

D ~ HsT − Tcdb for T , Tc,

0 for T . Tc,

with b.0.45. Note that the well-known mean field value of
the critical exponentb in the simple BCS theory is 1/2[22].

The physics of the phase transition depends on the
strength of the potential parameterU. Figure 2 illustrates
how sensitively the value ofD depends onU. We see that
D→0 asU→0. As is well known,D does not vanish for a
finite U. In fact, Eq.(23) yields the well-known dependence
of D on uUu for U→0:

D → Ae−B/uUu,

whereA andB are constant and independent ofU.

C. Second-order (continuous) phase transition

The temperature dependence ofD in Fig. 1 is a well-
known dependence of the order parameter for a second-order
phase transition. The variation ofD as shown in Fig. 1 im-
plies that the phase transition takes place from a superfluid
state generated by spin pairing to the normal state, as the
temperature increases. The features of the second-order
phase transition are clearly seen in the temperature depen-
dence of the thermodynamic quantities expressed in terms of

FIG. 1. The order parameterD as a function of temperatureT in
the unit of hopping parametert for the densityn=0.5 and 1.5(long-
dashed curve) andn=1.0 (solid curve).

FIG. 2. The order parameterD as a function of the on-site po-
tential strengthU in the unit of hopping parametert at zero tem-
peraturesT=0d for the densityn=0.5,1.5 (long-dash curve), n
=1.0 (solid curve).
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the temperature derivatives of the free energyF in a succes-
sive order. We consider the internal energyE, the entropyS,
and the heat capacityCv,

E = − T2F ] sF/Td
] T

G
a,n

,

S= − F ] F

] T
G

a,n
, s25d

Cv = − TF ] S

] T
G

a,n
= − TF ]2F

] T2G
a,n

.

The temperature dependence of the quantities is calculated
using Eqs.(20), (22), (B1), and (B2), and is illustrated in
Figs. 3 and 4.E andS are continuous at the critical tempera-
tureTc as seen in Fig. 3, whileCv has a jump atTc as in Fig.
4. These behaviors demonstrate the generic features of the
second-order phase transition. The amount of the discontinu-
ity in Cv at Tc, DCv, is relative toCv of the normal phase,

DCv/Cvsnormald . H1.74 for n = 1.0,

1.43 for n = 0.5 and 1.5,

while the BCS mean field value is 12/7zs3d.1.43, indepen-
dent ofn [21]. (z is the zeta function.)

The thermal quantities involving volume derivatives form
a set of quantities similar to the temperature derivatives. We
consider the pressureP and the isothermal compressibility
kT. Here, following the common practice in nuclear physics,
we examine the incompressibilityK;9/skTrd, defined in
terms of the densityr=V / saNd3=n/a3 with the spatial vol-
umeV=saNd3. A volume derivative is then a derivative with
respect to the lattice spacinga. A derivative with respect toa
requires, however, the knowledge ofa dependence ofU and
V, that is, their renormalization flow whena is varied. In this
work, for simplicity, we assume that theira dependence is
small, at least around the value ofa we use.P and K are
written as

P = − F ] F

] VGT,a

, s26d

K = − 9
V
r
F ] P

] VGT,a

= − 9
V
r
F ]2F

] V2G
T,a

. s27d

P is calculated using Eq.(B4) andK is obtained numerically
from the temperature dependence ofP. The temperature de-
pendence ofP andK confirms the second-order phase tran-
sition, as seen in Fig. 4.

There are many other quantities that describe thermody-
namic properties of the system described by our Hamil-
tonian, but they are either related to the quantities already
shown, or their features depend strongly on the explicit form
of the Hamiltonian. We thus do not show them in this ex-
ploratory work. For example, the temperature dependence of
double occupancy per site,

D ;
1

N3o
i

kĉi↑
† ĉi↑ĉi↓

† ĉi↓l, s28d

provides the amount of the spin pairing that participates in
the phase transition. ButD, as well as the kinetic energy per
site, is related toD and n in the mean field approximation
[23] and provides no new information, as shown in Appen-
dices A and B.

D. Particle-hole symmetry and phase diagram

For illustrative purposes, however, we show the density
dependence ofm, D, E, andKE at T=0, in Fig. 5. As noted
above, Fig. 1 suggests a symmetric dependence ofD on the
density n, which is more clearly illustrated in Fig. 6. The
symmetry is generated as a consequence of the particle-hole
symmetry, as seen from the fact that Eq.(23) is invariant
under the particle-hole conjugation though the symmetry is
implicit in our Hamiltonian, Eqs.(4) and (7). There is a
group of Hamiltonians, in which the particle-hole symmetry
is implicit, yet yielding(in the mean field results) the energy
spectrum of the system with the explicit symmetry. The

FIG. 3. The Helmholtz free energyF (solid curve), the internal
energy E (long-dashed curve), and the entropy of the systemS
(short-dashed curve) as a function of temperatureT in the unit of
hopping parametert for the densityn=1.0. The left axis refers toF
andE, and the right one is forS.

FIG. 4. The heat capacityCv for the densityn=0.5 and 1.5
(long-dashed curve) andn=1.0 (solid curve), the pressureP for the
densityn=1.0 (short-dashed curve), and the incompressibilityK for
the densityn=1.0 (dotted curve) as a function of temperatureT in
the unit of hopping parametert.
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Hamiltonians do yield different behaviors of thermodynamic
variables. Figure 5 is an example. We elaborate on the issue
of this symmetry in Appendix A.

Some thermodynamic variables are made to exhibit this
symmetry explicitly by modifying the Hamiltonian to pos-
sess the explicit symmetry. Whether it is explicit or not, how-
ever, the thermodynamic properties obtained from the
Hamiltonian are affected by the symmetry. The symmetry is
a consequence of our computational method using the lattice
configuration, and it is an artifact. In order to extract physi-
cally realistic results, we should therefore stay away from the
region of the symmetry and should confine ourselves to a
small value ofn by appropriately adjusting the value of the
lattice spacinga, so as to simulate the desired density of the
nucleon matter. We discuss this point again in the following
section, where we attempt to apply our calculation to a case
of low-density neutron matter.

Combining the variations of the thermodynamic quanti-
ties, some of which have been presented so far, we obtain the
phase diagrams of the present system described in the mean
field theory. Figure 7 shows the phase diagram in the region
of small densities where we expect the above-mentioned
symmetry to be generating less distortion.

V. LOW-DENSITY NEUTRON MATTER

In the previous section, we have used the parameter val-
ues most appropriate as a description of nuclear matter and

have examined the nature of the single species nucleon mat-
ter described by our model. In this section, we discuss
whether our model could be made a realistic description of
neutron matter.

First, we have the question of whether our lattice would
meet the basic momentum requirement imposed by the lat-
tice spacing. A lattice description can be made realistic when
the lattice spacing is less than the momentum scale of the
system. By taking the Fermi momentum of the neutron mat-
ter as an estimate of the momentum scale, we have

p/a . pF. s29d

Our lattice spacing,a=1.842 fm, yields the density ofr
=1/a3.0.160 fm−3 for n=1.0 (the lattice space being half
full ). The Fermi momentum corresponding to this density is

pF . 1.68 fm−1

usingr=pF
3 /3p2. The value ofpF is practically the same as

p/a . 1.71 fm−1,

and thus the lattice with the above lattice spacing is appli-
cable to a density much smaller thanr.0.160 fm−3. Note
that the preceding discussion yields that the condition

p/3 . n

meets Eq.(29) independently ofa.
Second, there is the question of whether our Hamiltonian

is appropriate for a realistic description of low-density neu-
tron matter. The nucleon-nucleon1S0 phase shift is much
greater than the nucleon-nucleon phase shifts of other states
below the laboratory energyElab.100 MeV. The nucleon
momentum in the center-of-mass coordinate systempc.m. cor-
responding to thisElab is about 1.2 fm−1 through Elab
=4spc.m.

2 /2mNd, and is smaller than the abovep /a;pcutof f

.1.7 fm−1. We thus infer that our Hamiltonian form of theS
wave should be reasonable for neutron matter of a density
less than 0.17 fm−3, which corresponds to the Fermi momen-
tum of 1.7 fm−1.

As to the parameter values in the Hamiltonian, it would
be best to determine them for our lattice size from experi-
mental1S0 phase shifts by applying the method of effective
field theory[24,25]. Instead, as an exploratory study, we sim-
ply adjust theU-parameter value so as to see whether our
approach could come close to other mean field calculations
of low-density neutron matter in the literature. Figure 8 il-

FIG. 5. The chemical potentialm (solid curve), the double oc-
cupancyD (long-dashed curve), the internal energyE (short-dashed
curve), and the kinetic energy KE(dotted curve) in the unit of
hopping parametert as a function of the densityn at zero tempera-
ture sT=0d. The left axis refers tom, E, and KE, and the right one
is for D.

FIG. 6. D in the unit of hopping parametert as a function of the
densityn at zero temperaturesT=0d.

FIG. 7. T-r phase diagram.
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lustrates that we could obtain a somewhat reasonable density
dependence ofD by increasing the magnitude ofU. We leave
a more serious determination of the parameters for our future
work.

VI. DENSITY WAVE PHASE

Our analysis has so far been strictly based on the mean
field approximation applied to a spin-pairing phase at the
same site. In the approximation, theV term merely shifts the
effective chemical potential and is inactive in generating the
phase transition. As theV term represents the pairing of the
spin densities at the adjacent sites, such a role may be a
reasonable one in this phase transistion. Would theV term
ever play an active role in generating a different phase tran-
sition? In this section we briefly examine this possibility.

The most likely phase in which theV term would play the
major role would be a density-wave phase generated by a
coupling of the densities of the opposite spins at the adjacent
sites. We examine how theV term could generate such a
phase transition, again in the mean field approximation, and
see whether the phase transition would occur with our pa-
rameter values.

We follow the Hartree-Fock-Bogoliubov approximation
with the same decoupling scheme as before. For simplicity,
however, we ignore the superfluid phase. The density wave
phase is introduced by making a replacement,

kĉis
† ĉisl → nis + sd/2dcoss2pni ·q/Nd

. n/2 + sd/2dcoss2pni ·q/Nd. s30d

Here, the inhomogeneous order parameter for the density-
wave depends on the amplituded and the wave number vec-
tor q. In the following, we examine the wave modes in which
the adjacent sites are the maximum and minimum of the
amplitude in a cubic lattice. That is, at least one component
of 2pq̂/N is ±p. The number of the nonzero components, or
the dimension of the density waved, provides a convenient
parameterh,

h = 3 − 2d. s31d

As in the previous spin-pairing case,n and d are treated as
independent parameters, andm, the parameter conjugate ton,
is adjusted to the desired value ofn.

The steps to the gap equations are similar to the case of
the superfluid phase discussed in Sec. III, and are shown in
Appendix C. By minimizingF−mN3n, we obtain

n =
1

N3o
kl

nkl,

s32d

dS1 −
U + 8hV

N3 o
k

nk+ − nk−

jk
D = 0

by varyingn andd, respectively. Equation(32) determinesd
andm. Furthermore, asnk+,nk− and

U + 8hV , 0 s33d

for our parameter values, Eq.(32) shows that the density
waves of all dimensions are expected to occur owing to the
strong, attractiveU.

VII. DISCUSSION AND CONCLUSION

The form of the nucleon-nucleon interaction, Eqs.(1)–(3),
shows that the nucleon-nucleon interaction used in this work
is of the S states. As is well known, the realistic nucleon-
nucleon interaction is highly state dependent. The relevant
nucleon energy of interest to us here is a few hundred MeV,
corresponding to the Fermi energy region of the nuclear mat-
ter density. In this energy region, the attractive neutron-
neutron interaction is known to be dominated by the3P2
interaction driven by the spin-orbit force, coupled with the
3F2 interaction associated with the tensor force[27,28]. Our
Hamiltonian accommodates none of these features of the in-
teraction. Our objective as noted in Sec. I is to understand
the essential physics associated with the thermal properties
of nucleon matter, but our finding in this work is limited in
this sense and is perhaps most applicable to low-density neu-
tron matter.

There is a serious question of how good the mean field
calculation is in our case. A mean field approximation ig-
nores most features of particle correlations. As the particle
correlations are the vital ingredient of critical phenomena,
the mean field approximation is generally believed to be only
of qualitative use, and some times not even qualitative, as
fluctuations could alter the nature of the phase transition. The
situation, however, depends on the nature of the problem
[22], as the prominent success of the Ginzburg-Landau/BCS
theory shows[29], especially at temperatures not too close to
the critical one. Our problem is in three dimensions, close to
the usual upper critical dimension of four under the Ginsburg
criterion[22]. We are hoping that our calculation, being simi-
lar to the BCS theory, is not far off, but this remains to be
seen. This issue is under further investigation by incorporat-
ing a renormalization approach, as has recently been done at
zero temperature[30].

Our Hamiltonian has a form similar to that of the Skyrme
interaction [31] (though ours is a truncated form). The

FIG. 8. The gap energyD as a function of the Fermi momentum
kF for U=−45.8 MeV(solid curve) in comparison to a simple BCS
calculation (long-dashed curve) and a more elaborate one[10]
(short-dashed curve). The simple calculation is taken from Ref.[26]
[using Eq.(8) with the neutron mass of 940 MeV and the neutron-
neutron scattering length of −18.8 fm]. D in this figure is half theD
defined in the text, so that its definition agrees with the one used in
Refs.[10,26].
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Skyrme interaction is one of the effective interactions that
are phenomenologically introduced to achieve quantitative
agreement with experiments, usually by the use of a mean
field approximation such as the Hartree-Fock calculations.
Though it is still not quite realistic, our Hamiltonian has a
justification in this sense. A lattice calculation such as the
previous Monte Carlo lattice calculation[14], however, ac-
counts for all the complexity of the many-body interaction
with no approximation other than the numerical, in the lattice
framework. The nucleon-nucleon interaction used in it
should not be then an effective interaction like the Skyrme
interaction, but an interaction in free space. The parameters
U andV are expected to be determined from scattering data
through the use of effective field theory by extending
Lüscher’s formula[32,33] for the large1S0 scattering length.
This issue is presently under investigation[25]. Note that the
values ofU andV will depend on the lattice spacinga.

In conclusion, our mean field calculation on a lattice with
a simple nucleon-nucleon interaction suggests a second-
order phase transition taking place at a low temperature in
single species nucleon matter described by a simple Hamil-
tonian. Thermodynamic variables show their dependence on
the temperature and density variations as expected under the
phase transition in the mean field approach. The transition
changes the phase of the matter from a superfluid state due to
nucleon pairing, to a normal state as the temperature in-
creases and the density decrease. This dependence is in
qualitative agreement with the findings that have been re-
ported in the literature[1].
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APPENDIX A: THE PARTICLE-HOLE SYMMETRY

The Hamiltonian of Eq.(7) does not explicitly exhibit
particle-hole symmetry, but it can be modified to do so by
adding a single-particle Hamiltonian,

DĤ = N3Ū/4 − s6t + Ū/2do
is

n̂is, sA1d

wheren̂is; ĉis
† ĉis. The new Hamiltonian,

Ĥ8 ; Ĥ + DĤ = − t o
ki,jls

ĉis
† ĉjs + Uo

i
S1

2
− n̂i↑DS1

2
− n̂i↓D

+ V o
ki,jlss8

S1

2
− n̂isDS1

2
− n̂js8D , sA2d

is symmetric under the particle-hole conjugation(or with
respect to half filling,n=1):

ĉis
† ↔ ĉis

ĉis ↔ ĉis
† ,

or nis↔1−nis, which is n↔2−n with n;ois nis. Under
the conjugation, the Hamiltonian becomes that of holes, with
t→−t.

When we repeat the BCS formulation in Sec. III, after the
Bogoliubov transformation, we obtain the diagonalized form
of the new Hamiltonian, Eq.(A2), as

Ĥ8 = o
kl

Ek8n̂kl8 + N3EGS8 sA3d

with the quasiparticle energy

Ek8 = Îsek − m̄8d2 + D2/4 sA4d

and

nk8 ; nk+8 = nk−8 = fexpsEk8/Td + 1g−1. sA5d

Here, the ground-state energy is

EGS8 = −
1

4
SD2

U
+

n2 − 1

4
ŪD −

1

N3o
k

Ek8 − m̄8 + mn, sA6d

with

m̄8 = m − sn − 1dŪ/2. sA7d

Equations(12) and(A7) show that them value is shifted,
and Eqs.(19) and (A6) tell us that the expression of the
ground-state energy is altered. The kinetic energy is also
changed:

KE8 ; −
t

N3 o
ki,jl,s

kĉis
† ĉjsl = −

1

N3o
k

sek − m̄8dek

Ek8
, sA8d

in comparison to Eq.(B7). We also see thatEGS8 and KE8 for
the new Hamiltonian explicitly exhibit the particle-hole sym-
metry about half fillingsn=1d.

The double occupancy per site for the new Hamiltonian
D8,

D8 ;
1

N3o
i

kĉi↑
† ĉi↑ĉi↓

† ĉi↓l =
D2

4U2 +
n2

4
, sA9d

differs from that for the original Hamiltonian, Eq.(B6). Note
that neitherD nor D8 is symmetric aboutn=1.

The gap equations for the new Hamiltonian become
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n − 1 =
1

N3o
k

ek − m̄8

Ek8
s2nk8 − 1d,

sA10d

DS1 −
U

2N3o
k

2nk8 − 1

Ek8
D = 0.

These gap equations are the same as Eqs.(23) exceptm̄ is
replaced bym̄8. As we solve the gap equations forD andm
(or m̄) for a fixedn, the gap equations for the two Hamilto-
nians yield the same set ofD andm̄, thus the sameTc. Both
Hamiltonians thus provide the same excitation energy spec-
trum.

APPENDIX B: THERMODYNAMIC VARIABLES

We list here the expressions of the thermodynamic vari-
ables, which are used in Sec. IV. The entropy is given in
terms ofnkl in Eq. (21) by

S= o
kl

fnklln nkl + s1 − nkldlns1 − nkldg. sB1d

By the use of Eqs.(18), (19), and(22), the heat capacityCv
is expressed as

Cv = − TF ]2F

] T2G
a,n

=
1

N3o
k

DDT

4Ek
s2nk − 1d −

2

N3o
k

nk
2SDDT

4
−

Ek
2

T2DeEk/T

−
DDT

2U
. sB2d

Here,DT is

DT ;
] D

] T
, sB3d

and is numerically calculated from the solution of the gap
equations, Eq.(23).

The pressureP is written in terms of the space volume
V=saNd3 as

P = − F ] F

] VGT,n

= −
1

N3o
k

] Ek

] a3 s2nk − 1d +
n

2
Sn

2
− 1DS ] U

] a3 + 24
] V

] a3D ,

sB4d

where

] Ek

] a3 =
ek − m̄

Ek
F ] ek

] a3 +
n

2
S ] U

] a3 + 24
] V

] a3DG ,

] ek

] a3 =
2t

3a2 o
i=x,y,z

kicosS2p

N
kiD ,

] U

] a3 = −
1

a6FSVc
s0d − 5

Vc
s2d

a2 D − 3SVs
s0d − 5

Vs
s2d

a2 DG ,

] V

] a3 = −
5

6a8Vc
s2d. sB5d

The double occupancy per siteD is expressed as

D ;
1

N3o
i

kĉi↑
† ĉi↑ĉi↓

† ĉi↓l

=
1

N3

] E

] U

=
D2

4U2 +
n2

4
−

n

N3o
k

sek − m̄d
nk

2

T
eEk/T. sB6d

The kinetic energy per site KE is written as

KE ; −
t

N3 o
ki,jl,s

kĉis
† ĉjsl + 6

t

N3o
is

kĉis
† ĉisl

=
t

N3

] E

] t

=
1

N3o
k

sek − m̄dsek + 6td
Ek

F2nkS1 −
nk

T
EkeEk/TD − 1G + 6t.

sB7d

APPENDIX C: DENSITY WAVE PHASE

The Hamiltonian in the coordinate space is reduced to

Ĥ = − t o
ki,jls

ĉis
† ĉjs + s6t + nŪ/2do

is

ĉis
† ĉis

+ sU/2 + 4hVddo
is

coss2pni ·q/Ndĉis
† ĉis

− fsU/4dsn2 + d2/2d + Vs6n2 + hd2dgN3, sC1d

where the parameterh depends on the dimension of the den-
sity waved, h=3−2d. Here, we have used

o
ki,jls

snj↑ + nj↓dĉis
† ĉis → o

ki,jls
sni↑ + ni↓dĉis

† ĉis

+ do
ies

cosf2psni + ed ·q/Ngĉis
† ĉis

. 6no
is

ĉis
† ĉis

+ 2hdo
is

coss2pni ·q/Ndĉis
† ĉis

sC2d

and
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o
ki,jl

sni↑ + ni↓dsnj↑ + nj↓d → o
ki,jl

sni↑ + ni↓dsnj↑ + nj↓d

+ 2do
ki j ls

coss2pni ·q/Ndsnj↑ + nj↓d

+ d2o
ie

coss2pni ·q/Nd

3cosf2psni + ed ·q/Ng
. s6n2 + hd2dN3, sC3d

where the nucleon densitiesn’s are defined in the same way
as in Sec. III. In the last step of Eq.(C3), we have used the
identities

o
i

coss2pni ·q/Nd = 0,

sC4d

o
i

cos2s2pni ·q/Nd =
N3

2

by applying the discretized orthonormality relation, Eq.(10).
Using

o
is

cosS2p

N
ni ·qDĉis

† ĉis =
1

2o
ks

fĉk−q/2s
† ĉk+q/2s

+ ĉk+q/2s
† ĉk−q/2sg, sC5d

we obtain the momentum space representation

Ĥ − mN3n̂ =
1

2o
ks

se+ − m̄dĉ+s
† ĉ+s +

1

2o
ks

se− − m̄dĉ−s
† ĉ−s

+
1

8
d̄o

ks

sĉ−s
† ĉ+s + ĉ+s

† ĉ−sd −
1

2
dd̄N3 + E0N

3

=
1

2o
ks

sĉ+s
† ĉ−s

† d1e+ − m̄
1

4
d̄

1

4
d̄ e− − m̄2Sĉ+s

ĉ−s

D
−

1

16
dd̄N3 + E0N

3, sC6d

where the subscripts + and − denotek +q /2 and k −q /2,
respectively; that is,ĉ±s= ĉk±q/2s. e± is defined as

e± = − to
e

expfi2psk ± q/2d ·e/Ng

= − 2t o
j=x,y,z

cosf2pskj ± qj/2d/Ng.

We have also defined

d̄ = ds2U + 16hVd. sC7d

Ĥ−mN3n̂ is diagonalized through the transformation

âk+ = ukĉ+s + vkĉ−s,
sC8d

âk− = ukĉ−s − vkĉ+s,

whereuk andvk are taken to be real and are given by

uk
2 =

1

2
S1 +

e+ − e−

jk
D and vk

2 =
1

2
S1 −

e+ − e−

jk
D ,

satisfyinguk
2+vk

2=1. Here,

jk = Îse+ − e−d2 + d̄2/4. sC9d

Ĥ−mN3n̂ is now expressed as that of a system of free
quasiparticles:

Ĥ − mN3n̂ =
1

2o
kl

Eklâkl
† âkl + N3sEGS− mnd, sC10d

wherel=± and

Ek± =
1

2
fse+ + e− − 2m̄d ± jkg sC11d

is the energy of the quasiparticles, and

EGS= − dd̄/16 −n2Ū/4 + mn sC12d

is the ground-state energy of the system.
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