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Highly excited single-particle states in nuclei are coupled with the excitations of a more complex character,
first of all with collective phononlike modes of the core. In the framework of the quasiparticle-phonon model,
we consider the structure of resulting complex configurations, using the 1k17/2 orbital in 209Pb as an example.
Although, on the level of one- and two-phonon admixtures, the fully chaotic Gaussian orthogonal ensemble
regime is not reached, the eigenstates of the model carry a significant degree of complexity that can be
quantified with the aid of correlational invariant entropy. With artificially enhanced particle-core coupling, the
system undergoes the doubling phase transition with the quasiparticle strength concentrated in two repelling
peaks. This phase transition is clearly detected by correlational entropy.
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I. INTRODUCTION

It is now firmly established that many-body quantum dy-
namics acquire typical features of quantum chaos in the re-
gion of high level density. The interrelation between many-
body physics and quantum chaos was studied, in particular,
in the framework of the nuclear shell model with realistic
and random interactions, see Refs.[1–4], and references
therein. A description of a stable many-body system starts
with the mean field and quasiparticles, determined by the
symmetry of the mean field. As excitation energy and level
density increase, residual interactions convert stationary
states of independent quasiparticles into exceedingly com-
plex superpositions of many basis states. The many-body
structure at this stage should be described in statistical terms,
and in the limiting case of extreme chaos it locally ap-
proaches the predictions of the Gaussian orthogonal en-
semble(GOE) of random matrices.

The complexity of stationary many-body states can be
quantified with the aid of such characteristics as information
entropy or inverse participation ratio[2,3,5,6] of generic
wave functions. These quantities smoothly change with the
excitation energy, revealing strong mixing of original states
and a loss of simple quantum numbers, typical features of
quantum chaos. However, such measures of complexity are
unavoidably associated with a starting basis, which in these
cases is determined by the mean field. They actually provide
the localization length of a complex state in a chosen basis
with no information on the correlations still present in the
wave function.

Different characteristics can be used in order to probe the
sensitivity of the system to external perturbations. In classi-
cal cases, such sensitivity is known to be the main property
of dynamical chaos. A special entropylike quantity, called
invariant correlational entropy(ICE), was suggested in Ref.
[7] as a measure of complexity related to the response of a
system to a random noise included in the Hamiltonian. This
quantity is, by construction, invariant with respect to the ba-
sis transformations. It also reflects the correlations and phase
relationships between the components of the wave functions

as far as they are revealed in the response of the system to a
perturbation. Taking the strength of the interaction as a con-
trol parameter, one can clearly see the quantum phase tran-
sition as it was demonstrated in the interacting boson model
[8] and in the evolution of pairing in the shell model[9].

The problem of the interaction of a quasiparticle with an
even-even core is of considerable interest for nuclear phys-
ics. It was quite well studied for low-lying excited states
where the interactions of the quasiparticle predominantly
with quadrupole and octupole surface vibrations are impor-
tant. At higher excitation energies, a large number of other
nuclear modes influence the damping of the quasiparticle
motion. The mixing of the simple mode with the states of the
next levels of complexity leads to the fragmentation of the
single-particle strength over a wide domain of excitation
energy—the single-particle state obtains a spreading width.

It was shown in Ref.[10] that the spreading occurs in two
stages. At the first stage of fragmentation, the single-particle
state is spread over several doorway states. At the second
step, the doorway states are spread through the mixing with
many complex excitations related to other degrees of free-
dom. The limiting case of the self-consistent hierarchy of
multistep spreading was discussed in Ref.[11].

The highly excited single-particle mode has been experi-
mentally studied via one-nucleon transfer reactions[10]. For
example, broad structures located around a 10 MeV excita-
tion energy have been observed in the reaction208Pbsa , 3Hed
209Pb. It was shown[12] that the structures are connected
with the excitation of high-spin orbitals 1j13/2, 2h11/2, and
1k17/2. The fragmented wave functions based on these states
contain many components. The related complexity of the
wave function was analyzed in Ref.[13]. It was concluded
that the damping of a simple mode cannot be unambiguously
associated with the random contribution of more complex
components to the structure of the states.

The goal of the presented study is to introduce a new
measure of the complex structure of highly excited states.
The paper is organized as follows. In Sec. II the formalism of
correlation entropy is introduced. In Sec. III the main fea-

PHYSICAL REVIEW C 70, 014302(2004)

0556-2813/2004/70(1)/014302(7)/$22.50 ©2004 The American Physical Society70 014302-1



tures of the used model for the structure of excited states are
presented. The complexity of the excited states and the con-
nection to the ICE is discussed in Sec. IV. The doubling
phase transition in the regime of strong coupling in odd nu-
clei is demonstrated in Sec. V. Finally, in Sec. VI, the con-
clusions are drawn.

II. CORRELATIONAL ENTROPY

To study the sensitivity of the excited states to variation of
external parameters, we use the ICE[7]. The ICE method
presumes that HamiltonianHsld of a system depends on a
random parameterl. The parameterl (“noise”) is consid-
ered as a member of an ensemble characterized by the nor-
malized distribution functionPsld,

E dlPsld = 1. s1d

In an arbitrary primary basisukl, we follow the evolution of
any stationary stateua ;ll as a function ofl. At a given value
of l, the state can be decomposed as

ua;ll = o
k

Ck
asldukl. s2d

The ICE is defined as

Sa = − Trh%a lns%adj, s3d

where%a is the density matrix of the stateual averaged over
the noise ensemble. In the basisukl prior to the averaging, we
first construct this matrix for a given value ofl as

%kk8
a sld = Ck

asldCk8
a*sld, s4d

and then average over the ensemble,

%kk8
a =E dlPsld%kk8

a sld. s5d

While the density matrix%a, Eq. (4), of a pure state, being a
projector onto the stateual and having correspondingly only
one nonzero eigenvalue equal to one, leads to zero entropy
Sa, the averaged density matrix(5) has its eigenvalues be-
tween 0 and 1 and produces nonzero correlational entropy.

In contrast to the information(Shannon) entropyIa of the
same stateual, conventionally used for quantifying the com-
plexity,

Ia = − o
k

uCk
sadu2 lnsuCk

sadu2d, s6d

the ICE is basis-independent von Neumann entropy that re-
flects the correlations between the wave-function compo-
nents that are subject to fluctuations determined by the pa-
rameterl. The valueSa for a given state typically increases
with the complexity of the state and reaches the maximum at
the point where the change of the parameter around some
average value implies the most radical change of the struc-
ture of the system. Such a point(in fact, a region in finite
systems) can be identified with the quantum phase transition
or crossover, and in the vicinity of this point, the structural

fluctuations of the wave functions are strongly enhanced.
With further change of the average value of the noise param-
eter, the ICE, as a rule, goes down. This means that the
stronger interaction has established a new order with greater
rigidity with respect to fluctuations of parameters. In this
way, the sharp boundaries between the different symmetry
classes were confirmed[8] in the interacting boson models,
and the critical strengths of isovector and isoscalar pairing in
the sd shell model were established[9].

III. THE MODEL OF EXCITED STATES IN ODD NUCLEI

We adopted the quasiparticle-phonon modelsQPMd by
Soloviev [14] to describe the properties of highly excited
states in odd spherical nuclei. According to the model, the
Hamiltonian of the system of an odd numbersA+1d of par-
ticles has the form

H = h + Hcore+ Hcoupl. s7d

The first term,h, describes the motion of a quasiparticle in a
mean-field potentialU created by the even-even core,

h = −
1

2m
¹2 + U. s8d

The core Hamiltonian is a sum of single-particle Hamilto-
nianshi and two-body residual interactionsVi,j,

Hcore= o
i=1

A

hi + o
i, j

A

Vi,j . s9d

The last term in Eq.(7) is a sum of interactions between the
odd quasiparticle and particles in the core,

Hcoupl= o
i=1

A

V0,i . s10d

In the spirit of the QPM, the HamiltonianHcore is treated in
the random-phase approximationsRPAd, i.e., the particle-
hole configurations are built with the subsequent RPA diago-
nalization.

The properties of thesA+1d-nucleus can be described in
terms of the quasiparticle statesaa

†k0l, quasiparticle-plus-
phonon statesfaa

†
^ Qn

†gu0l, and quasiparticle-plus-two-
phonon statesfaa

†
^ fQm

†
^ Qn

†ggu0l, where all combinations
have the same total spin and parity quantum numbersJpM.
Here, aa

† is the quasiparticle creation operator with shell-
model quantum numbersa;sn, l , j ,md, whereasQn

†;Qlmi
†

denotes the phonon creation operator with the angular mo-
mentuml, projectionm, and RPA root numberi.

The following wave functions describe, in the QPM, the
ground and excited states of the odd nucleus with angular
momentumJ and projectionM:

CJM
a = CJ

aHaJM
† + o

an

Da
nsJadfaa

†Qn
†gJM

+ o
ann8

Fa
nn8sI ;Jadfaa

†fQn
†Qn8

† gIgJMJC0. s11d

The wave functionC0 represents the ground state of the
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neighboring even-even nucleus(also the quasiparticle and
phonon vacuum), anda stands for the number within a se-
quence of states of givenJp. The coefficientsCJ

a, Da
nsJad,

andFa
nn8sI ;Jad are the quasiparticle, quasiparticle + phonon

and quasiparticle + two phonons amplitudes, respectively, for
the statea. The norm of the wave function(11) reads

kCJM
a* uCJM

a l=sCJ
ad2H1 + o

an

fDa
nsJadg2 + 2o

ann8

fFa
nn8sI ;Jadg2J .

s12d

The Hamiltonian (7) contains several parameters. The
mean field(8) was chosen to be the Woods-Saxon potential.
The residual interaction(9) in the particle-hole channel was
taken in a separable form with interaction strengths in each
mode considered as adjusted parameters. The quasiparticle-
phonon coupling term(10) does not contain any additional
freedom. The core excitations with all spins and natural par-
ity, 1−, 2+, 3−, 4+, 5−, 6+, 7−, and 8+, were included in the
calculations. For each angular momentum and parity, the
RPA states of up to a 20 MeV excitation energy were taken
into account. The large phonon basis is necessary for a cor-
rect description of the single-particle strength distribution in
a broad range of excitation energy.

The used set of parameters have been successfully applied
to describe the properties of low-lying as well as highly ex-
cited states in209Pb, see for example Ref.[15]. For studying
the ICE, we selected the single-particle 1k17/2 state. The
properties of this state are studied in detail in Ref.[15]. This
orbital is quasibound in the Woods-Saxon potential being
located at 4.88 MeV, a much higher energy than the Fermi
level of 209Pb. Because of its high energy, the state is sur-
rounded by many quasiparticle-plus-phonon and
quasiparticle-plus-two-phonon states.

IV. COMPLEXITY OF STATES AND
CORRELATIONAL ENTROPY

At a high excitation energy, the level density is large and
it is convenient to calculate the single-particle strength dis-
tribution by means of the strength function[10] using an
averaging Lorentzian function. The distribution of the single-
particle strength[coefficient C2 of Eq. (11)] of the 1k17/2
state is shown in Fig. 1. The number of quasiparticle-plus-
phonon components included in the wave function(11) is
420, while the number of quasiparticle-plus-two-phonon
components is 1116. The Lorentzian smoothing parameter
was chosen to be 0.2 MeV.

It is seen from Fig. 1 that the single-particle strength is
spread over a broad interval of excitation energies. The larg-
est fraction, 81% of the strength, is concentrated between 5
and 13 MeV excitation energy, and the state acquires the
large spreading width in this domain,G↓=1.5 MeV (G↓ is
calculated as the second moment of the distribution). It was
shown [10,16] that the main mechanism leading to the
spreading is the interaction of the particle with the vibrations
of the even core.

In the case of209Pb, the lowest core excitation is in the 31
−

state. The componentf1j15/2^ 31
−g17/2+ dominates in the

structure of the lowest two excited states, where 8% of the
single-particle strength is concentrated. The component
f2g9/2^ 41

+g17/2+ also contributes to the structure of these ex-
cited states. The contribution of the components, where the
particle is coupled to 21

+, 41
+, and 61

+ phonons, is more impor-
tant at the higher part of the distribution(above 13 MeV).
The coupling of particles with 5− phonons is significant in
the domain of the main peak, where the coupling with the 31

−

phonon is also important[15]. The 7− and 8+ phonons mainly
contribute at excitations around 10 MeV[15]. More complex
quasiparticle-plus-two-phonon components influence pre-
dominantly the secondary fragmentation of quasiparticle-
plus-one-phonon components.

The correlation entropy(3) connected with the excited
states was calculated using two types of the distribution
function, the Lorentzian function,

Psld =
1

2p

D

l2 + D2/4
, s13d

and normal(Gaussian) distribution,

Psld =
1

sÎ2p
exp

− l2

2s2 . s14d

The value of the parameters used in the calculations wasD
=0.8 ands=0.5. For this choice of parameters, both distri-
butions have the same maximum value.

The calculation was done as follows. For the values of
l=lc, the matrix elements ofHcoupl, Eq. (10), are multiplied
by the corresponding value ofPslcd. The new matrix ele-
ments are used to calculate the eigenvalues and eigenvectors
of the Hamiltonian(7). The elements of the density matrix
%kk8

a slcd are calculated according to the Eq.(4) and averaged,
Eq. (5). In the case of the Lorentzian distribution, the value
of lc is changed in the intervalf−3D ,3Dg, while in the case
of the normal distribution function,lc is taken from the in-
terval f−2.5s ,2.5sg.

To estimate quantitatively the absolute value of the ICE,
we also use the summed correlational entropy ofN states,

FIG. 1. The distribution of the single-particle strength of the
state 1k17/2 in 209Pb.
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FsNd = o
a=1

N

Sa, s15d

wherea labels the eigenstates in the sector with given quan-
tum numbers. The normalized value ofFsNd is defined as

F =
1

N
FsNd. s16d

The wave function(11) includes many components. Because
of the different structure of the components, the values of the
matrix elements ofHcoupl reveal large fluctuations. There are
many small matrix elements and the corresponding compo-
nents are weakly correlated. Their contribution to the spread-
ing process has to be negligible. The ICE gives the opportu-
nity to construct the appropriate basis including only the
most important components. The dependence of the ICE on
the dimension of the basis is presented in Fig. 2. The basis is
truncated according to the criterion connected with the maxi-
mum matrix element. All components having the matrix el-
ement of the coupling with the original single-particle state
less than a certain fraction of the maximum matrix element,
are not included in the calculation. Here, only the one-
phonon componentsfaa

†
^ Qn

†gk0l of the wave function(11)
are taken into account. It is seen that the normalized entropy,
Eq. (16), reveals saturation for the small values of the trun-
cation parameter. The components, whose matrix element is
less than 5% of the maximum one, contribute weakly toF.
The number of such components is large, but their influence
on the spreading process is negligible.

The results for the ICE found with the two distribution
functions(13) and (14) are compared in Fig. 3. Figure 3(a)
displays the correlation entropy of the obtained states in the
case of the normal distribution, Eq.(14). There is a back-
ground of small values of the ICE due to the large amount of
weakly interacting states. The greater values of entropy are
located in the vicinity of the peaks of the single-particle
strength distribution pointing to the regions where the prox-
imity of many strongly coupled states leads to an enhanced
sensitivity of the wave functions. One can see the tendency

to the enlargement of entropy when the excitation energy
increases and a larger density of the states at a higher exci-
tation energy enters the game.

The calculation of the ICE with the Lorentzian distribu-
tion function shown in Fig. 3(b) leads to results similar to
those in Fig. 3(a). The regions including the enhanced den-
sity of states with large entropy appear at the same excitation
energy. In the case of the normal distribution the value of
FsNd, Eq. (15), is 37.50, while for the Lorentzian it is 54.44,
mainly because the Lorentzian has the long tails. In spite of
this difference in the value ofFsNd, the main features of both
distributions of the ICE are similar being determined mostly
by the interaction and density of states, and only marginally
by the type of the noise distribution function.

To test the sensitivity of the results to the parameters of
the model, we introduce a new parameterk. Multiplying the
matrix elements ofHcoupl [Eq. (10)] by this number, we vary
the overall strength of the particle-core coupling. The value
of k=1 corresponds to the realistic strength ofHcoupl, chosen
according to the initially fitted parameters. This case is pre-
sented in Fig. 3. Only the componentsfaa

†
^ Qn

†gk0l of the
wave function(11) are taken into account.

The absolute value of entropyFsNd, Eq. (15), depends on
the value ofk, i.e., FsNd⇒FsN,kd; the functionFsN,kd is

FIG. 2. The dependence of correlation entropy on the truncation
of the quasiparticle-plus-phonon basis.

FIG. 3. The correlation entropy of the excited states 17/2+ in
209Pb.(a) The normal(Gaussian) distribution function is used in the
calculation for the upper panel, and(b) the Lorentzian distribution
is used for the lower panel. The wave function includes only
quasiparticle-plus-phonon components.
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shown in Fig. 4 revealing a pronounced maximum atkc
=1.6. The maximum ofFsN,kd at k=kc can be identified
with a quantum phase transition smeared, as expected, in a
finite system. The single-particle state interacts strongly with
the sea of more complex excitations, and its contribution to
the structure of any individual excited state is strongly re-
duced. But it has to be pointed out that even for the case of
maximum entropy,k=1.6, the single-particle component pre-
serves its dominance in the main peaks of the strength dis-
tribution. When the more complex quasiparticle-plus-two-
phonon components are included in the wave function(11),
the correlation entropy rapidly increases. The value of nor-
malized entropy[Eq. (16)] for the case presented in Fig. 1 is
larger than the maximum value shown in Fig. 2 by a factor
close to 6. The additional correlations are mainly due to the
coupling of quasiparticle-plus-one- and quasiparticle-plus-
two-phonon components. Because of this hierarchy of cou-
plings, the distribution of the single-particle strength is not
affected too much by the new terms in the wave function
(11).

For small values ofk, the mixing of states is suppressed
and the ICE decreases rapidly, see Fig. 4. This case corre-
sponds to the weak particle-core coupling and relatively
simple wave function. The strength of single-particle states is
distributed in a narrow vicinity of its unperturbed energy.
The nearest-neighbor level spacing distribution fork=0.2 is
very close to the Poisson distribution. In the case where only
quasiparticle-plus-phonon components are included in the
wave function(11), even atk=1 the correlations are quite
large, see Fig. 4. This influences the level spacing distribu-
tion of 17/2+ states. The nearest-neighbor spacing distribu-
tion of 17/2+ excitations can be fit by the Brody distribution
[1] with the Brody parameter equal to 0.4. At this stage, the
single-particle component is not completely smeared and
chaotically distributed over the excitations of the system.
Clear remnants of the simple excitation seen in the compli-
cated wave functions are similar to the phenomenon of scars
[17] existing in simple quantum systems.

The nearest-neighbor spacing distribution of 17/2+ exci-
tations for the case when the quasiparticle-plus-two-phonons
components are included in the wave function(11) is shown

in Fig. 5. The distribution is calculated for the region of the
main single-particle strength, 5–13 MeV, where the density
of the states is not changed much. As seen from Fig. 5, the
distribution can be described by the Brody distribution with
the parameter equal to 0.6. The higher degree of chaoticity
indicates the importance of more complex components and
their influence on the damping process. At the first stage,
when the single-particle states interact only with
quasiparticle-plus-one-phonon components, the regularities
induced by the mean field, such as the structure of the level
density, are not completely destroyed. At the next stage,
when the interaction with the components of the next level of
complexity is switched on, these regularities are partly
smeared, but the wave function(11) is still relatively simple.
One can recall old results[23], where the coupling of an
unpaired particle with the collective monopole and quadru-
pole modes was considered in detail(later, these results were
applied[24] to the spreading width of giant resonances due
to their mixing with low-lying shape vibrations). In exactly
solvable models with a particle attached to a single level it
was shown[23] that the main effect of the particle-phonon
coupling is in creating a coherent state of the phonon field.
The chaotic elements should be associated with the mixing
between various quasiparticle levels and coupling with dif-
ferent phonon modes.

More multiphonon components are to be taken into ac-
count for reaching the full complexity. As the degree of com-
plexity grows, the wave function(11) approaches the realis-
tic wave function necessary to describe the complex stricture
of high-lying excited states. It has to be pointed out that a
few quasiparticle components are weakly influenced by the
growth of complexity. By this reason, even a rather simple
wave function, truncated, for example, by the quasiparticle
and quasiparticle-plus-phonon components, can be used to
describe the transition probabilities connecting high-lying
and low-lying excited states. For this purpose, a simple prac-
tical procedure of averaging high-lying single-particle
strength can be used[25].

V. DOUBLING PHASE TRANSITION

For large values ofk, the particle-core coupling becomes
very strong. The single-particle strength is split into two

FIG. 4. The dependence of the integral correlation entropy on
the strength of particle-core coupling. Only the components
faa

†
^ Qn

†gu0l of the wave function(11) are taken into account.

FIG. 5. The nearest-neighbor spacing distribution of 17/2+

states in209Pb. The calculated values are fit by the Brody distribu-
tion with the Brody parameter equal to 0.6.
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main pieces repelled to low and high excitation energies.
This effect is clearly seen for the value ofk=1.6 (the maxi-
mal value of ICE). The strength distribution fork=2.0,
where the doubling effect is fully pronounced, is shown in
Fig. 6. The single-particle strength corresponding to the low
and high energy peaks is 31% and 21%, respectively. The
rest of the strength is distributed in between the peaks.

To identify the physical nature of the quantum phase tran-
sition that occurs at an enhanced particle-phonon coupling,
we can analyze the behavior of the strength function of the
original single-particle state coupled with states of a more
complex character. Such an analysis was first presented in
Ref. [18] in application to giant resonances. Our formulation
is, in fact, a particular limiting case of a generic problem[19]
of a “bright” state coupled to the background that contains a
hierarchy of states of increasing complexity. In this consid-
eration, the bright stateu0l, in our case the bare single-
particle state with unperturbed energyE0, is mixed with the
background statesunl, that contain, apart from the quasipar-
ticle, the phonon excitations of the core with unperturbed
energiesen. The eigenstatesual that emerge from this mixing
are complicated superpositions

ual = C0
au0l + o

n

Cn
aunl. s17d

Their energiesEa are the roots of the secular equation

XsEd ; E − E0 − o
n

uVnu2

E − en

= 0, s18d

whereVn are the matrix elements of coupling of the bright
state with the background states. The fragmentation of the
strength over the eigenstatesual is given by

uC0
au2 = SdX

dE
D

E=Ea

= F1 + o
n

uVnu2

sEa − end2G−1

. s19d

The strength function of the bright state is found as

FsEd = o
a

uC0
au2dsE − Ead. s20d

If the quantitiesV2, the average valuekuVnu2l of coupling
matrix elements squared, andD, the mean-level spacing in
the background, can be considered to be weakly fluctuating
from one stateunl to another, the result of the mixing is
determined by the ratio of the “standard9 spreading width,

Gs = 2p
V2

D
, s21d

to the energy rangea.ND, whereN is a number of effec-
tively interacting background states. Typically, one has a
Breit-Wigner strength function[19] with the width (21) for
Gs!a; the further evolution as a function of increasing cou-
pling leads to the Gaussian shape with the width increasing
towards and beyonda [18,20–22]. In the transitional region,
the dependence of the strength function upon the coupling
intensityV changes from the quadratic to the linear[18,20].
Finally, at even stronger coupling, Eqs.(18) and(19) predict
a phase transition to the new situation when the strength is
accumulated in two peaks on both sides of the centroid(see
Fig. 2 in Ref. [18]). In the extreme limit, the peaks are
pushed out of the region of the background states,

E < E0 ± Fo
n

uVnu2G1/2
, s22d

and the strength of the original state, according to Eq.(19), is
evenly divided between the peaks.

The physical mechanism of thisdoubling phase transition
(known also in quantum optics) is the following. In the re-
gime of strong coupling, the background states of the same
symmetry turn out to be intensely interacting among them-
selves through the bright state. Effectively, this interaction is
close to the factorized one built as a product of the matrix
elements to and from the bright state. The factorized cou-
pling leads to the formation of the second collective state as
a coherent superposition of the background states. This state
accumulates a significant strength, and the repulsion between
the two collective states leads to the two-peak pattern. The
doubling pattern of a similar nature(transfer of the quasipar-
ticle strength to the so-called Hubbard bands) was also found
in the Mott metal-insulator phase transition[26]. We see that
the doubling phase transition is adequately identified by the
maximum of correlational entropy.

VI. CONCLUSION

In the presented study, the recently suggested measure of
the complexity was tested for the wave function of a high-
lying excited quasiparticle state in a system where the fermi-
onic quasiparticle strongly interacts with bosonic collective
excitations of the core. The new quantity—invariant correla-
tional entropy—was used to estimate the growth of complex-
ity as a result of the admixture of many new components to
the wave function of a quasiparticle.

In contrast to information entropy, which displays the de-
gree of complexity of individual states with respect to a cer-
tain reference basis, the ICE is basis independent, reflecting
mostly the sensitivity of a given state to the external noise. It
was shown that the ICE depends mainly on the interaction

FIG. 6. The distribution of the single-particle strength of the
state 1k17/2 in 209Pb for a large value of particle-core coupling after
the doubling phase transition. The value ofk is k=2.0.
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strength and density of the background levels, but less on the
distribution function used as a noise generator.

We have also calculated the neighboring level spacing
distribution as a conventional indicator of quantum chaos. It
is shown that this distribution is correlated with ICE, moving
in the direction of the Wigner distribution characteristic for
the Gaussian orthogonal ensemble(but not reaching this
limit ), parallel to the increase of the value of ICE. Although
the model wave function truncated on the level of the
quasiparticle-plus-two-phonon components is not sufficiently
chaotic to entirely manifest the complicated structure of
high-lying excited states, it can be used to describe the dis-
tribution of a few quasiparticle components. These compo-
nents, in fact, play a role similar to the scars in quantum
chaos.

As a function of the overall strength of quasiparticle-
phonon interaction, the ICE increases and reaches a pro-
nounced maximum at the coupling strength equal to 1.6 of its
realistic value. In this region, the system would undergo the
quantum doubling transition when the original single-particle
excitation forms its own counterpart built of more compli-
cated states with the same quantum numbers, and the two
peaks repel each other and share the original strength. The
ICE properly reflects this transformation.

The question remains whether such a phenomenon,
known in quantum optics and condensed matter physics,
could be observed in real nuclear spectra. Our estimates
show that in near-magic nuclei, where the single-particle

modes are well studied, the coupling of quasiparticles with
collective modes is strong enough to make the resulting
wave functions sufficiently complex, but it is still weaker
than would be needed for the doubling transition. Especially
interesting would be a search in nuclei with soft vibrational
modes, near the instability of a spherical shape, where the
quasiparticles strongly interact with collective degrees of
freedom. Another manifestation of analogous physics can be
seen in low-lying “pigmy”-branches of giant resonances,
which borrow the strength from the main peak and become
more pronounced in loosely bound nuclei[27]. Here, the
driving force is the strong interaction with and through the
continuum.

Similar calculations have been also performed for the ex-
cited neutron deep-hole orbital 1h11/2 in 207Pb and high-lying
proton orbital 1i13/2 in 145Eu. The obtained results are in
agreement with the above conclusions, confirming the ge-
neric features of underlying physics.
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