PHYSICAL REVIEW C 70, 014302(2004)

High-lying single-particle modes, chaos, correlational entropy, and doubling phase transition

Chavdar Stoyandvand Vladimir Zelevinsk§
Ynstitute for Nuclear Research and Nuclear Energy, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing,
Michigan 48824-1321, USA
(Received 13 April 2004; published 1 July 2004

Highly excited single-particle states in nuclei are coupled with the excitations of a more complex character,
first of all with collective phononlike modes of the core. In the framework of the quasiparticle-phonon model,
we consider the structure of resulting complex configurations, usingkifye brbital in 2°%Pb as an example.
Although, on the level of one- and two-phonon admixtures, the fully chaotic Gaussian orthogonal ensemble
regime is not reached, the eigenstates of the model carry a significant degree of complexity that can be
guantified with the aid of correlational invariant entropy. With artificially enhanced particle-core coupling, the
system undergoes the doubling phase transition with the quasiparticle strength concentrated in two repelling
peaks. This phase transition is clearly detected by correlational entropy.
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[. INTRODUCTION as far as they are revealed in the response of the system to a

It is now firmly established that many-body quantum dy- perturbation. Taking the strength of the interaction as a con-
namics acquire typical features of quantum chaos in the relf0l parameter, one can clearly see the quantum phase tran-
gion of high level density. The interrelation between many-Sition as it was demonstrated in the interacting boson model
body physics and quantum chaos was studied, in particulat8] and in the evolution of pairing in the shell modél.
in the framework of the nuclear shell model with realistic ~ The problem of the interaction of a quasiparticle with an
and random interactions, see Ref8—4], and references even-even core is of considerable interest for nuclear phys-
therein. A description of a stable many-body system startés. It was quite well studied for low-lying excited states
with the mean field and quasiparticles, determined by thavhere the interactions of the quasiparticle predominantly
symmetry of the mean field. As excitation energy and levewith quadrupole and octupole surface vibrations are impor-
density increase, residual interactions convert stationarfant. At higher excitation energies, a large number of other
states of independent quasiparticles into exceedingly connuclear modes influence the damping of the quasiparticle
plex superpositions of many basis states. The many-bodinotion. The mixing of the simple mode with the states of the
structure at this stage should be described in statistical termpgext levels of complexity leads to the fragmentation of the
and in the limiting case of extreme chaos it locally ap-single-particle strength over a wide domain of excitation
proaches the predictions of the Gaussian orthogonal ergnergy—the single-particle state obtains a spreading width.
semble(GOE) of random matrices. It was shown in Ref[10] that the spreading occurs in two

The complexity of stationary many-body states can bestages. At the first stage of fragmentation, the single-particle
quantified with the aid of such characteristics as informatiorstate is spread over several doorway states. At the second
entropy or inverse participation ratif2,3,5,§ of generic  step, the doorway states are spread through the mixing with
wave functions. These quantities smoothly change with thénany complex excitations related to other degrees of free-
excitation energy, revealing strong mixing of original statesdom. The limiting case of the self-consistent hierarchy of
and a loss of simple quantum numbers, typical features ofultistep spreading was discussed in Réf].
qguantum chaos. However, such measures of complexity are The highly excited single-particle mode has been experi-
unavoidably associated with a starting basis, which in thesgnentally studied via one-nucleon transfer reactid. For
cases is determined by the mean field. They actually providexample, broad structures located around a 10 MeV excita-
the localization length of a complex state in a chosen basition energy have been observed in the react8Rb(«, *He)
with no information on the correlations still present in the 2°Pb. It was showr{12] that the structures are connected
wave function. with the excitation of high-spin orbitalsj,, 2h;4, and

Different characteristics can be used in order to probe thék,;;,,. The fragmented wave functions based on these states
sensitivity of the system to external perturbations. In classi€ontain many components. The related complexity of the
cal cases, such sensitivity is known to be the main propertyvave function was analyzed in RdfL3]. It was concluded
of dynamical chaos. A special entropylike quantity, calledthat the damping of a simple mode cannot be unambiguously
invariant correlational entropyICE), was suggested in Ref. associated with the random contribution of more complex
[7] as a measure of complexity related to the response of @omponents to the structure of the states.
system to a random noise included in the Hamiltonian. This The goal of the presented study is to introduce a new
guantity is, by construction, invariant with respect to the ba-measure of the complex structure of highly excited states.
sis transformations. It also reflects the correlations and phasghe paper is organized as follows. In Sec. Il the formalism of
relationships between the components of the wave functionsorrelation entropy is introduced. In Sec. Ill the main fea-

0556-2813/2004/70)/0143027)/$22.50 70014302-1 ©2004 The American Physical Society



C. STOYANOV AND V. ZELEVINSKY PHYSICAL REVIEW C 70, 014302(2004)

tures of the used model for the structure of excited states affuctuations of the wave functions are strongly enhanced.
presented. The complexity of the excited states and the coMith further change of the average value of the noise param-
nection to the ICE is discussed in Sec. IV. The doublingeter, the ICE, as a rule, goes down. This means that the
phase transition in the regime of strong coupling in odd nustronger interaction has established a new order with greater
clei is demonstrated in Sec. V. Finally, in Sec. VI, the con-rigidity with respect to fluctuations of parameters. In this

clusions are drawn. way, the sharp boundaries between the different symmetry
classes were confirmg®] in the interacting boson models,
Il. CORRELATIONAL ENTROPY and the critical strengths of isovector and isoscalar pairing in

the sd shell model were establishgé].
To study the sensitivity of the excited states to variation of
external parameters, we use the ICH. The ICE method !l THE MODEL OF EXCITED STATES IN ODD NUCLEI
presumes that HamiltoniaH(\) of a system depends on a |\ adopted the quasiparticle-phonon mo@@PM) by

random parametex. The parameten (“noise”) is consid-  goloviev [14] to describe the properties of highly excited
ered as a member of an ensemble characterized by the NQgates in odd spherical nuclei. According to the model, the

malized distribution functioP(), Hamiltonian of the system of an odd numk@+1) of par-
ticles has the form
d\P(\) =1. (1)
f H=h+ Hcore+ Hcoupl- (7)

In an arbitrary primary basik), we follow the evolution of ~ The first termh, describes the motion of a quasiparticle in a
any stationary stater;\) as a function oh. At a given value mean-field potentiall created by the even-even core,
of \, the state can be decomposed as 1

h= VZ+U. 8
v =3 . @ 2m ®
k
) _ The core Hamiltonian is a sum of single-particle Hamilto-
The ICE is defined as niansh; and two-body residual interactions;,
S*=-Tr{e" In(e)}, 3 A A
wherep® is the density matrix of the state) averaged over Heore™ 21 hi + z Vij- ©)
the noise ensemble. In the bakksprior to the averaging, we
first construct this matrix for a given value afas The last term in Eq(7) is a sum of interactions between the
N - odd quasiparticle and particles in the core,
2 () = CEICE V), @ R
and then average over the ensemble, Heoupi= 2 Vo- (10)
i=1
Orie :f dAP(N) gy, (V). (5)  In the spirit of the QPM, the HamiltoniaH . is treated in

the random-phase approximati@RPA), i.e., the particle-

While the density matrixp®, Eq.(4), of a pure state, being a hole configurations are built with the subsequent RPA diago-
projector onto the stater) and having correspondingly only nalization.

one nonzero eigenvalue equal to one, leads to zero entropy The properties of théA+1)-nucleus can be described in
v, the averaged density matri®) has its eigenvalues be- terms of the quasiparticle stategl(0), quasiparticle-plus-
tween 0 and 1 and produces nonzero correlational entropy,phonon states[«.® Q!]|0), and quasiparticle-plus-two-

In contrast to the informatio(Shannoh entropyl® of the  phonon stateiaQ@[QL@QI]ﬂO), where all combinations
same stat¢a), conventionally used for quantifying the com- have the same total spin and parity quantum numbaks.
plexity, Here, o is the quasiparticle creation operator Q/vith Tshell-

" o " model quantum numbera=(n,l,j,m), whereasQ,=Q, ,
lo==2 |C(k )|2 I”(|C(k )|2)' (6) denotes the phonon creation operator with the angulgr mo-
K mentum)\, projectionu, and RPA root numbeir.
the ICE is basis-independent von Neumann entropy that re- The following wave functions describe, in the QPM, the
flects the correlations between the wave-function compoground and excited states of the odd nucleus with angular
nents that are subject to fluctuations determined by the panomentumJ and projectionM:

rameter\. The valueS* for a given state typically increases " of o+ , it

with the complexity of the state and reaches the maximum at W5 =C5l aly+ 2 DiJa)[alQlTim

the point where the change of the parameter around some a

average value implies the most radical change of the struc- W', tr~t T

ture of the system. Such a poifih fact, a region in finite * az Fa' (1590l Q,Q, Il Wo- - (A1)

systems can be identified with the quantum phase transition
or crossover, and in the vicinity of this point, the structural The wave functionW, represents the ground state of the
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neighboring even-even nucleyalso the quasiparticle and 0.45
phonon vacuurny and « stands for the number within a se- 04|
quence of states of gived™. The coefficientsCj, D (Ja), 0.35l
and F;”’(I.;Ja). are the quasiparticle, qgasiparticle + phonon > o3l
and quasiparticle + two phonons amplitudes, respectively, for g
the statew. The norm of the wave functio(ll) reads = 028
g 02f
s, \1’3*M>:<c3*)2{1 + DR+ 23 R ;Ja>]2}. © ol
av avy 0.1
(12 0.05
The Hamiltonian(7) contains several parameters. The 0 ; . . . . . .

mean field(8) was chosen to be the Woods-Saxon potential. 2 4 6 &8 10 12 14 16
The residual interactio(®) in the particle-hole channel was E [MeV]

taken in a separable form with interaction strengths in each
mode considered as adjusted parameters. The quasiparticl%—
phonon coupling terni10) does not contain any additional st
freedom. The core excitations with all spins and natural par-
ity, 1, 2, 37, 4*, 57, 6", 7, and &, were included in the Structure of the lowest two excited states, where 8% of the
calculations. For each angular momentum and parity, théingle-particle strength is concentrated. The component
RPA states of up to a 20 MeV excitation energy were taken 20e;2® 411172+ @lso contributes to the structure of these ex-
into account. The large phonon basis is necessary for a cogited states. The contribution of the components, where the
rect description of the single-particle strength distribution inparticle is coupled to2 47, and § phonons, is more impor-
a broad range of excitation energy. tant at the higher part of the distributiqabove 13 MeV.

The used set of parameters have been successfully appliddie coupling of particles with Sphonons is significant in
to describe the properties of low-lying as well as highly ex-the domain of the main peak, where the coupling with the 3
cited states if°Pb, see for example Ref15]. For studying ~Phonon is also importarit5]. The 7 and 8 phonons mainly
the ICE, we selected the single-particlé; 4, state. The contribute at excitations around 10 Mg¥5]. More complex
properties of this state are studied in detail in R&§]. This ~ quasiparticle-plus-two-phonon components influence pre-
orbital is quasibound in the Woods-Saxon potential beinglominantly the secondary fragmentation of quasiparticle-
located at 4.88 MeV, a much higher energy than the Fermplus-one-phonon components.
level of 2°%Pb. Because of its high energy, the state is sur- The correlation entropy3) connected with the excited
rounded by many quasiparticle-plus-phonon  andstates was calculated using two types of the distribution

FIG. 1. The distribution of the single-particle strength of the
te 1(17/2 in 20%p,

quasiparticle-plus-two-phonon states. function, the Lorentzian function,
1 A
IV. COMPLEXITY OF STATES AND PN\ = ———5—, (13
2w N2+ A%/4
CORRELATIONAL ENTROPY
At a high excitation energy, the level density is large andand normakGaussiapn distribution,
it is convenient to calculate the single-particle strength dis-
tribution by means of the strength functighO] using an 1 —\2
averaging Lorentzian function. The distribution of the single- P(N) = ’—TeXpﬁl (14)
oNzZTmT

particle strengthcoefficient C? of Eq. (11)] of the ;7

state is shown in Fig. 1. The number of quasiparticle-plus- , )
phonon components included in the wave functidd) is The value of the parameters used in the calculations Avas

420, while the number of quasiparticIe-pIus-two-phonon:0-8 ando=0.5. For this choice of parameters, both distri-

components is 1116. The Lorentzian smoothing parametdfutions have the same maximum value.
was chosen to be 0.2 MeV. The calculation was done as follows. For the values of

It is seen from Fig. 1 that the single-particle strength is =\ the matrix elements dficoup Eq. (10), are multiplied
spread over a broad interval of excitation energies. The larg?y the corresponding value G?(A.). The new matrix ele-
est fraction, 81% of the strength, is concentrated between BI€Nts are used to calculate the eigenvalues and eigenvectors
and 13 MeV excitation energy, and the state acquires th&f the Hamiltonian(7). The elements of the density matrix
large spreading width in this domaifi}=1.5 MeV (T is @« (Ao are calculated according to the E4) and averaged,
calculated as the second moment of the distribytitrwas  Ed. (5). In the case of the Lorentzian distribution, the value
shown [10,16 that the main mechanism leading to the of \; is changed in the intervak-3A,3A], while in the case
spreading is the interaction of the particle with the vibrationsof the normal distribution functiony, is taken from the in-
of the even core. terval[-2.50,2.50].

In the case of%Pb, the lowest core excitation is in thg 3 To estimate quantitatively the absolute value of the ICE,
state. The componentljs,® 37]17>+ dominates in the we also use the summed correlational entropyNdtates,
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FIG. 2. The dependence of correlation entropy on the truncation
of the quasiparticle-plus-phonon basis. 1F (b) Lorentzian distribution function -
N 08|
FIN =X s, (15)
o o 06
wherea labels the eigenstates in the sector with given quan- 04|
tum numbers. The normalized value BfN) is defined as
02}
1
F=—F(N). (16)
N 0
4 6 8 10 12 14
The wave function(11) includes many components. Because E [MeV]

of the different structure of the components, the values of the . .

matrix elements 0o, reveal large fluctuations. There are FIG. 3. The correlation entropy of the excited states 17if2
nents are weakly correlated. Their contribution to the spreadt@!culation for the upper panel, ab) the Lorentzian distribution
ing process has to be negligible. The ICE gives the opportu'—s u;ed for the lower panel. The wave function includes only
nity to construct the appropriate basis including only theduasiparticle-plus-phonon components.

most important components. The dependence of the ICE of the enlargement of entropy when the excitation energy
the dimension of the basis is presented in Fig. 2. The basis iicreases and a larger density of the states at a higher exci-
truncated according to the criterion connected with the maxitation energy enters the game.

mum matrix element. All components having the matrix el-  The calculation of the ICE with the Lorentzian distribu-
ement of the coupling with the original single-particle statetion function shown in Fig. @) leads to results similar to
less than a certain fraction of the maximum matrix elementthose in Fig. 8). The regions including the enhanced den-
are not included in the calculation. Here, only the one-sity of states with large entropy appear at the same excitation
phonon componentsz] ® QTJ(0) of the wave function11)  energy. In the case of the normal distribution the value of
are taken into account. It is seen that the normalized entropy;(N), EQ.(15), is 37.50, while for the Lorentzian it is 54.44,
Eq. (16), reveals saturation for the small values of the trun-mainly because the Lorentzian has the long tails. In spite of
cation parameter. The components, whose matrix element §is difference in the value ¢#(N), the main features of both
less than 5% of the maximum one, contribute weaklyrto distributions of the ICE are similar being determined mostly
The number of such components is large, but their influenc®y the interaction and density of states, and only marginally
on the spreading process is negligible. by the type of the noise distribution function.

The results for the ICE found with the two distribution ~ To test the sensitivity of the results to the parameters of
functions(13) and (14) are compared in Fig. 3. Figurggd  the model, we introduce a new parameteMultiplying the
displays the correlation entropy of the obtained states in théhatrix elements oHc,,, [Eq. (10)] by this number, we vary
case of the normal distribution, E¢l4). There is a back- the overall strength of the particle-core coupling. The value
ground of small values of the ICE due to the large amount oPf k=1 corresponds to the realistic strengthHgf,,,, chosen
weakly interacting states. The greater values of entropy araccording to the initially fitted parameters. This case is pre-
located in the vicinity of the peaks of the single-particle sented in Fig. 3. Only the componerjis}® Q!](0) of the
strength distribution pointing to the regions where the prox-wave function(11) are taken into account.
imity of many strongly coupled states leads to an enhanced The absolute value of entrogy(N), Eq.(15), depends on
sensitivity of the wave functions. One can see the tendencthe value ofk, i.e., F(N)O F(N,k); the functionF(N,K) is
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FIG. 4. The dependence of the integral correlation entropy on FIG. 5. The nearest-neighbor spacing distribution of 17/2
the strength of particle-core coupling. Only the componentsstates in?°Pb. The calculated values are fit by the Brody distribu-
[ag® Q:E]|O> of the wave function11) are taken into account. tion with the Brody parameter equal to 0.6.

shown in Fig. 4 revealing a pronounced maximumkat in Fig. 5. The distribution is calculated for the region of the

=1.6. The maximum ofF(N,k) at k=k; can be identified main single-particle strength, 5—-13 MeV, where the density
with a quantum phase transition smeared, as expected, in® the states is not changed much. As seen from Fig. 5, the
finite system. The single-particle state interacts strongly wittflistribution can be described by the Brody distribution with

the sea of more complex excitations, and its contribution tghe parameter equal to 0.6. The higher degree of chaoticity
the structure of any individual excited state is strongly re-ndicates the importance of more complex components and
duced. But it has to be pointed out that even for the case df€ir influence on the damping process. At the first stage,

maximum entropyk=1.6, thesingle—particlecomponentpre-W en the single-particle states interact only with

: . : t . quasiparticle-plus-one-phonon components, the regularities
serves Its dominance in the main peaks (.)f th_e strength dls|?1duced by the mean field, such as the structure of the level
tribution. When the more complex quasiparticle-plus-two-

- : i letel . At th
phonon components are included in the wave funcgidb, density, are not completely destroyed. At the next stage,

when the interaction with the components of the next level of

the correlation entropy rapidly increases. The value of nor'complexity is switched on, these regularities are partly

malized entropyEq. (16)] for the case presented in Fig. 1iS gmeared, but the wave functiohl) is still relatively simple.
larger than the maximum value shown in F|g._ 2 by a factorone can recall old resulti23], where the coupling of an
close to 6. The additional correlations are mainly due to thnpaired particle with the collective monopole and quadru-
coupling of quasiparticle-plus-one- and quasiparticle-pluspole modes was considered in detéiter, these results were
two-phonon components. Because of this hierarchy of couapplied[24] to the spreading width of giant resonances due
plings, the distribution of the single-particle strength is notto their mixing with low-lying shape vibrationsin exactly
affected too much by the new terms in the wave functionsolvable models with a particle attached to a single level it
(12). was shown[23] that the main effect of the particle-phonon

For small values ok, the mixing of states is suppressed coupling is in creating a coherent state of the phonon field.
and the ICE decreases rapidly, see Fig. 4. This case corrdhe chaotic elements should be associated with the mixing
sponds to the weak particle-core coupling and relativelybetween various quasiparticle levels and coupling with dif-
simple wave function. The strength of single-particle states igerent phonon modes.
distributed in a narrow vicinity of its unperturbed energy. ~More multiphonon components are to be taken into ac-
The nearest-neighbor level spacing distributionKe10.2 is  count for reaching the full complexity. As the degree of com-
very close to the Poisson distribution. In the case where onlplexity grows, the wave functioll) approaches the realis-
quasiparticle-plus-phonon components are included in th&c wave function necessary to describe the complex stricture
wave function(11), even atk=1 the correlations are quite Of high-lying excited states. It has to be pointed out that a
large, see Fig. 4. This influences the level spacing distribufew quasiparticle components are weakly influenced by the
tion of 17/2" states. The nearest-neighbor spacing distribugrowth of complexity. By this reason, even a rather simple
tion of 17/2" excitations can be fit by the Brody distribution Wave function, truncated, for example, by the quasiparticle
[1] with the Brody parameter equal to 0.4. At this stage, theand quasiparticle-plus-phonon components, can be used to
single-particle component is not completely smeared andescribe the transition probabilities connecting high-lying
chaotically distributed over the excitations of the systemand low-lying excited states. For this purpose, a simple prac-
Clear remnants of the simple excitation seen in the complitical procedure of averaging high-lying single-particle
cated wave functions are similar to the phenomenon of scagfrength can be usg@5].
[17] existing in simple quantum systems.

The nearest-neighbor spacing distribution of 17 éci-
tations for the case when the quasiparticle-plus-two-phonons For large values ok, the particle-core coupling becomes
components are included in the wave functi{@d) is shown very strong. The single-particle strength is split into two

V. DOUBLING PHASE TRANSITION
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1.2 - - ' If the quantitiesV?, the average valugV,|?) of coupling
] k=2.0 matrix elements squared, alyj the mean-level spacing in
I ] the background, can be considered to be weakly fluctuating
% 08l ] from one statgv) to another, the result of the mixing is
s determined by the ratio of the “standashbreading width,
:}\‘.\_ 06 1 2
(@] -
= ol | I's 27-rD, (22)
02l J ] to the energy ranga=ND, whereN is a number of effec-
tively interacting background states. Typically, one has a
0 Breit-Wigner strength functiof19] with the width (21) for

0 s 10 15 20 I's<a; the further evolution as a function of increasing cou-

E [MeV] pling leads to the Gaussian shape with the width increasing
towards and beyond [18,20-22. In the transitional region,
the dependence of the strength function upon the coupling
intensity V changes from the quadratic to the lingas,20.
Finally, at even stronger coupling, Eq48) and(19) predict
o ) o _a phase transition to the new situation when the strength is
main pieces repelled to low and high excitation energiesgccumulated in two peaks on both sides of the centisie
This effect is clearly seen for the value lof 1.6 (the maxi- Fig. 2 in Ref.[18]). In the extreme limit, the peaks are

mal value of ICB. The strength distribution fok=2.0,  pushed out of the region of the background states,
where the doubling effect is fully pronounced, is shown in

Fig. 6. The single-particle strength corresponding to the low E~Ey+ [E |VV|2] vz (22)

and high energy peaks is 31% and 21%, respectively. The v

rest of the strength is distributed in between the peaks. - , .
To identify the physical nature of the quantum phase tranfand the strength of the original state, according to(&@), is

sition that occurs at an enhanced particle-phonon couplingevenly divided between the peaks.
we can analyze the behavior of the strength function of th The physical mechanism of thioubling phase transition

- . . ) e(known also in quantum optigss the following. In the re-
original single-particle state coupled with states of a more ime of strong coupling, the background states of the same
complex .charaqter._ Such an analysis was first presentgd mmetry turn out to bé intensely interacting among them-
Eerﬁ[flasgtmaa::)%eltlizitlgqi:ﬁigéznéégzooqinggﬁéﬁgLISLTE;%?UO” selves through the_bright state. Effectively, this interaction ?s
e . close to the factorized one built as a product of the matrix
OT a “bright” state coup_led to t_he backgrou_nd that (_:ontam_s %lements to and from the bright state. The factorized cou-
glrzrt?orr?h);h(g ztﬁéi? ZI;P&)geﬁmgufongxt% Igatrrgss?r?gnlse'_d'pling leads to the formation of the second collective state as
particle’ state with unpertur,bed enerly, is mixed with the a coherent superposition of the background states. This state
background statels), that contain apa,rt from the quasipar- accumulates a_S|gn|f|cant strength, and the repulsion between
ticle, the phonon e;<citations of :the core with unperturbedthe two collective stat_es_leads to the two-peak pattern. The
- . L doubling pattern of a similar natutgansfer of the quasipar-
energies,. The e|genstate|§a_> that emerge from this mixing ticle strength to the so-called Hubbard bandas also found
are complicated superpositions in the Mott metal-insulator phase transitif26]. We see that
) = C2J0) + D CYw). (17) the c_ioubling phase t_ransition is adequately identified by the
0 T maximum of correlational entropy.

FIG. 6. The distribution of the single-particle strength of the
state k;7,in 2°%Pb for a large value of particle-core coupling after
the doubling phase transition. The valuekof k=2.0.

Their energie€,, are the roots of the secular equation
VI. CONCLUSION

V.2
X(E)=E-Ep- > E_e 0, (18) In the presented study, the recently suggested measure of
v v the complexity was tested for the wave function of a high-
whereV, are the matrix elements of coupling of the bright lying excited quasiparticle state in a system where the fermi-

state with the background states. The fragmentation of th@NiC quasiparticle strongly interacts with bosonic collective
strength over the eigenstates is given by excitations of the core. The new quantity—invariant correla-

tional entropy—was used to estimate the growth of complex-

a2 [ 9X _ v,]2 | ity as a result of the admixture of many new components to
|Col°= dE/.. ~ 1+ m : (19) the wave function of a quasiparticle.

BEa v In contrast to information entropy, which displays the de-

The strength function of the bright state is found as gree of complexity of individual states with respect to a cer-
tain reference basis, the ICE is basis independent, reflecting

FE) = 2 |Cg|25(E -E,). (20) mostly the sensitivity of a given state to the external noise. It

@ was shown that the ICE depends mainly on the interaction
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strength and density of the background levels, but less on th@odes are well studied, the coupling of quasiparticles with
distribution function used as a noise generator. collective modes is strong enough to make the resulting
We have also calculated the neighboring level spacingvave functions sufficiently complex, but it is still weaker
distribution as a conventional indicator of quantum chaos. lthan would be needed for the doubling transition. Especially
is shown that this distribution is correlated with ICE, moving interesting would be a search in nuclei with soft vibrational
in the direction of the Wigner distribution characteristic for modes, near the instability of a spherical shape, where the
the Gaussian orthogonal ensemigleut not reaching this qgyasiparticles strongly interact with collective degrees of
limit), parallel to the increase of the value of ICE. Although fraedom. Another manifestation of analogous physics can be
the model wave function truncated on the level of thegqqp in low-lying “pigmy”-branches of giant resonances,

quasiparticle-plus-two-phonon components is not sufficientIXNhiCh borrow the strength from the main peak and become

chaotic to entirely manifest the complicated structure Ofmore pronounced in loosely bound nucl@7]. Here, the

high-lying excited states, it can be used to describe the disyiying force is the strong interaction with and through the

tribution of a few quasiparticle components. These COMPOL 4 ntinuum.

nﬁnts, in fact, play a role similar to the scars in quantum - gjmjjar calculations have been also performed for the ex-
¢ ‘ZOS' functi ¢ th I h of articl cited neutron deep-hole orbitahi, in 2°Pb and high-lying
s a function of the overall strength of quasiparticle- , o orpital 1,5, in %Eu. The obtained results are in

phonon interaction, the ICE increases and reaches a prgeement with the above conclusions, confirming the ge-
nounced maximum at the coupling strength equal to 1.6 of S aric features of underlying physics

realistic value. In this region, the system would undergo the

quantum doubling transition when the original single-particle

excitation forms its own counterpart built of more compli- ACKNOWLEDGMENTS
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