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A self-consistent calculation with variation after parity projection is proposed to study both ground and
excited states of light nuclei. This procedure provides description of the ground state incorporating some
correlation effects, and self-consistent solutions for the excited states of negative parity. For flexible description
of nuclear shapes, single particle orbitals are represented on a uniform grid in the three-dimensional Cartesian
coordinates. The angular momentum projection is performed after variation to calculate rotational spectra. To
demonstrate the usefulness of the method, results are shown for twoN=Z nuclei, 20Ne and12C, for which
clustering correlations are known to be important. In the20Ne nucleus, both cluster-like and shell-model-like
states are described simultaneously in the present framework. For12C nucleus, the appearance of three-alpha
clustering correlation in the ground state is investigated in relation to the strength of the two-body spin-orbit
interaction.
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Nuclear mean-field calculations have been successful for
systematic description of nuclear ground state properties
with a few adjustable parameters[1]. The mean-field theory
has also been extensively applied to description of excited
states. For example, collective vibrational as well as single
particle-hole excitations are described by the random phase
approximation which is equivalent to a small amplitude limit
of the time-dependent mean-field dynamics. Excited states
may also be described as local-minimum solutions if there is
more than one self-consistent solution in the static calcula-
tion. In principle, the generator coordinate method is ex-
pected to provide a unified description for any kind of exci-
tations. However, in practice, one need to specify a few
important generator coordinates in advance by physical intu-
ition.

In this article, we present an attempt to describe both
ground and excited states in the self-consistent approach
with the variation after parity projection(VAPP). For an
even-even nucleus, the lowest energy positive-parity solution
describes the ground state in which the correlation beyond
the mean field is incorporated to a certain extent. Self-
consistent negative-parity solutions should correspond to the
negative-parity excited states.

The theory of the variation after projection(VAP) of the
symmetry-violating internal state has a long history[2].
However, practical applications with full variation of single-
particle orbitals are rather few even for projection with re-
spect to the parity. Previously we achieved the VAPP calcu-
lation employing the uniform grid representation in the
three-dimensionals3Dd Cartesian coordinates in which the
simple BKN interaction was used[3]. In the ordinary mean-
field calculations, one usually obtains self-consistent solu-

tions with axial and reflection symmetries for most nuclei.
However, in the VAPP calculations, the self-consistent solu-
tions are found to violate these symmetries. A preliminary
report on the realistic calculations employing the Skyrme
interaction has been presented in Refs.[4,5].

We apply the method to lightN=Z nuclei, 20Ne and12C.
There are several reasons why we consider the light nuclei.
For light nuclei, the VAP may significantly modify the mean-
field solutions and lead to the energy gain by the projection.
In the excited states of light nuclei, various cluster structures
have been found to appear. They have been successfully ana-
lyzed with the microscopic cluster models in which the VAP
calculation was carried out[6]. The present approach is use-
ful to understand the mechanism for the appearance of the
cluster structures. Finally, there are rapid progresses in the
experimental research on light unstable nuclei. The present
framework will be useful to analyze and predict structures of
unstable nuclei.

The antisymmetrized molecular dynamics(AMD ) method
developed by Kanada-En’yo and Horiuchi[7] has been uti-
lized to describe clustering phenomena in light stable and
unstable nuclei. In the simplest version of AMD, the method
is identical to the VAPP with a restricted Slater determinant
in which each orbital is a Gaussian wave packet. This may be
regarded as an approximation to our present approach. The
feasibility of the AMD allows them to perform the variation
after angular momentum projection[8]. On the other hand,
the present work brings more accurate description of the
single particle orbitals, and establishes an intimate link to the
Skyrme Hartree-Fock theory.

We start with a brief description of the theory[3]. We
consider an arbitrary Slater determinant F
=s1/ÎN!ddethfisxjdj, with x=srW ,sd, the space and spin coor-
dinates. We apply the parity projection operator for this

Slater determinant,Fs±d=s1/Î2ds1±P̂dF, where P̂ is the
space inversion operator. We then consider the energy expec-
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tation value for the states with definite parity,Fs±d, and make
a variation with respect to the single particle orbitalsfi,

d

dfi
*F kFs±duĤuFs±dl

kFs±duFs±dl
− o

i,j
ei jkfiuf jl − hWo

i

kfiurWufilG = 0

s1d

Here we imposed two kinds of constraints in the above varia-
tion [3]. The first one with the Lagrange multipliersei j is
introduced to orthonormalize single particle orbitals,fi. The
second with the multiplierhW is to coincide the center-of-mass
of the wave functionF with the origin of the coordinate,
oikfiurWufil=0. This constraint assures that the parity opera-
tion is made with respect to the center-of-mass of the nucleus
and minimizes the occurrence of the spurious center-of-mass
excitations by the parity projection.

The variation of Eq. (1) yields the following self-
consistent equation:

sh − hW · rWdfi ± kFuP̂uFlHhPf̃i − o
j

f̃ jkf juhPuf̃ilJ
+ sEs±d − Edf̃i = o

j

ei jf j s2d

whereh is the usual Hartree-Fock Hamiltonian.hP has the
same structure ash, however, all the densities are replaced
with the transition densities which are the matrix elements of
density operators between the wave functionF and its

parity-inverted stateP̂F. Es±d is the energy expectation value
with respect to the wave functionFs±d, while E is with re-
spect toF. f̃i is defined by

f̃i = o
j

P̂f jsB−1d ji s3d

with Bij =kfiuP̂uf jl.
In the practical calculations, Eq.(2) is not solved directly.

Instead, the imaginary-time method is employed in which the
left-hand-side of Eq.(2) is used as the gradient of the energy
functional. We discretize the 3D Cartesian coordinates into
uniform square grid and represent the single particle wave
functions on the grid points. The grid spacing is taken to be
0.8 fm, and the grid points inside a sphere of radius 7.2 fm
are used in the calculations below.

After obtaining the self-consistent solutions, we make the
angular momentum projection(AMP) to calculate rotational
spectra. The self-consistent solutions in the VAPP are usually
not axially symmetric. Therefore, one must perform three-
dimensional rotation in Euler angles,V=sa ,b ,gd, for the
AMP. We define the AMP state as usual,

uFMK
Js±dl =

2J + 1

8p2 E dVDMK
J* sVdRsVduFs±dl, s4d

whereRsVd is the rotation operator andDMK
J sVd is the Wign-

er’s D-function. We then define relevant matrix elements,
h

KK8
Js±d andn

KK8
Js±d. The Hamiltonian matrix elementh

KK8
Js±d is given

by

hKK8
Js±d = kFMK

Js±duĤuFMK8
Js±d l=

2J + 1

8p2 E dVDKK8
J* sVd

3 kFue−iaĴzĤs1 ± P̂de−ibĴye−igĴzuFl, s5d

and the similar expression for the norm matrix element,n
KK8
Js±d.

For practice, we achieved the rotation of the single particle
orbitals by successive rotations of a small angle. Following
the Taylor expansion method for time evolution which was
employed in the time-dependent Hartree-Fock calculations
[9], we calculate the rotation of small angleDa aroundz-axis
by

fi
a+Da = o

k=0

Nmax sDadk

k!
s jzdkfi

a, s6d

whereNmax is taken to be 4. Typically, each Euler angle is
discretized into 200 steps fora andg, and into 400 steps for
b. In Eq. (5), the integrations over Euler angles are achieved
with discretization of 20 points fora and g and 400(all)
points forb. It is important to divide rotations of three Euler
angles into two and one; the rotations of the anglesb andg
for the ket state, and the rotation of the anglea for the bra
state, to reduce the computational costs.

We employ the Skyrme interaction in constructing the en-
ergy functional in Eq.(1). There is ambiguity in the choice of
the density of density dependent force for off-diagonal ma-
trix elements[10], which appear in Eqs.(1), (2), and(5). In
this paper, we simply use corresponding transition densities
for them. We will hereafter abbreviate the present scheme as
the parity-projected Skyrme Hartree-Fock(PPSHF) method.

Before showing our results, we mention some problematic
aspects of the Skyrme interaction in the present framework
which we have encountered in the practical calculations.
Since the Skyrme interaction has been so constructed to be
used for a single Slater determinant state, it is by no means
evident whether it may provide a reasonable description in
the VAPP calculations. Indeed, we have observed that, if we
make a variation of single particle orbitals without any re-
striction, we obtain an unphysical solution in which the time-
reversal symmetry is violated in the ground state. For ex-
ample, the total binding energy of20Ne in the ordinary
Skyrme Hartree-Fock(SHF) calculation with SGII force is
about 170 MeV, while we obtain the binding energy of
230 MeV with the PPSHF. Since the parametrization of the
Skyrme interaction relevant to the time-odd component has
not been fully tested, we restrict our wave function to be
time-reversal invariant. Namely, we force nucleons either to
fully occupy or unoccupy a pair of orbitals which are mutu-
ally related to each other by the time-reversal operation in
the Slater determinant. This restriction removes most part of
the problems. However, in the positive parity solutions of
some light nuclei, we still encounter a problem that the den-
sity of the self-consistent solution shows a small but un-
physical oscillation, namely, the density shows staggering in
the neighboring grids. This problem can be overcome if we
further ignore a part of the Skyrme energy functionals in-

cluding termsrW, jW, TW [11,12]. For a single Slater determinant
with time-reversal invariance, these time-odd densities,rW, jW,
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TW , vanishes identically. However, this is not the case for tran-

sition densities betweenF and P̂F.
The problems are related to the fact that the superposition

of two Slater determinants by the parity projection may rep-
resent more varieties of correlation effects than the single
Slater determinant may do. We leave it an interesting future
problem to find appropriate Skyrme energy functional to be
used in the PPSHF framework. In the following calculations,
we will employ SGII parameter set[13]. This force has been
successful in describing the response properties of nuclei,
although the absolute binding energies are not reproduced
accurately.

We first show the results of20Ne. In Table I, the calcu-
lated results are summarized. The definition of the deforma-
tion parameters is in Ref.[14]. Octupole deformation param-
etersb31 andb33 are negligible and not shown. The positive-
parity solution corresponds to the ground state. In the SHF
calculation, this has a prolate shape with reflection symme-
tries. On the other hand, the PPSHF calculation gives the
solution with substantialb30 deformation. The energy in the
PPSHF calculation gets lower by 0.3 MeV from the ordinary
SHF calculation.

There are two solutions in the negative parity. The lowest
energy solution has a smallb32 deformation as well as the
prolate deformation. The next solution has a largeb30 defor-
mation as well asb2. In the angular momentum projection,
we found that the former solution is characterized byKp

=2− and the latter solution byKp=0−.
Previously we reported the existence of two local minima

in the negative parity[4]. After careful examination, we have
found that theKp=0− solution is not a local minimum solu-
tion but decays into theKp=2− solution after very long
imaginary-time iterations(typically 53103 steps withDt
=10−3 MeV−1). Reflecting differentKp value of these two
states, they are almost orthogonal to each other. To examine
the physical reality of theKp=0− solution, we have per-

formed the imaginary-time evolution of this solution with an
extra constraint that the wave function is orthogonal to the
Kp=2− solution. In this procedure, we obtain a converged
solution which is found to be almost the same as the original
Kp=0− quasi-stable solution without the orthogonalization.
Because of these observations and a good correspondence to
the measured spectra as shown below, we consider that the
Kp=0− solution is of physical significance.

Figure 1 shows density distribution of the internal Slater
determinantF in the three planes which include two princi-
pal inertia axes. Figures 1(a) are the SHF calculation, and the
Fig. 1(b) are the PPSHF for positive parity. They correspond
to the ground state. Figures 1(c) and 1(d) are the PPSHF
calculations for negative parity. Figures 1(c) is the lowest
energyKp=2− state, and Fig. 1(d) is theKp=0−. The nuclear
shapes of Figs. 1(b) and 1(d) are characterized by the strong
b30 deformation and are considered to reflect thea-16O clus-
ter structure. The clustering is stronger in the negative parity
solution, which is consistent with the cluster model studies
[6]. The lowest energy negative-parity solution shown in Fig.
1(c) looks prolate although it has a smallb32 deformation.

As for the lowest negative parity state withKp=2−, the
excitation energy before AMP(the energy difference be-
tween the negative- and positive-parity solutions) is
5.47 MeV and that after AMP(the energy difference between

TABLE I. Self-consistent solutions of20Ne are summarized.
The third row(“Energy (MF)” ) shows the results of ordinary SHF
and PPSHF(Kp=0+, Kp=2−, Kp=0−) before AMP. Total energy is
shown for the ground state(SHF andKp=0+), while the excitation
energies with respect to the ground state are shown for the excited
states (Kp=2− and Kp=0−). The fourth raw (“Energy (MF
1AMP)” ) indicates the results for the lowest angular momentum
state after the AMP. The fifth raw(“ELS” ) is the expectation value of
the two-body spin-orbit interaction. Theb2, g, b30, andb32, are the
density deformation of the internal single Slater determinant.

Kp=0+ Kp=2− Kp=0− SHF

Energy(EXP) −160.645 +4.97 +5.78 −160.645

Energy(MF) −168.232 +5.47 +7.96 −167.943

Energy(MF1AMP) −171.333 +4.91 +6.42

ELS −8.517 −15.350 −5.443 −8.775

b2 0535 0.589 0.694 0.728

g 0.0 0.0 0.0 0.0

b30 0.314 0.0 0.576 0.0

b32 0.0 0.178 0.0 0.0

FIG. 1. Density distribution of the internal state in20Ne, in the
xy, yz, andzx planes wherex, y, andz axes represent the principal
inertia axes, for(a) groundKp=0+ state of the SHF calculation,(b)
groundKp=0+ state of PPSHF,(c) excitedKp=2− state of PPSHF,
and (d) excitedKp=0− states of PPSHF, respectively. The side of
each panel is 14.4 fm. The contour lines are plotted for every
0.02 fm−3.
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Jp=0+ and Jp=2− solutions in the parity and angular mo-
mentum projections) is 4.91 MeV. These values are close to
the measured 2− excitation energy of20Ne, 4.97 MeV.

The next negative parity solution withKp=0−, which
shows largeb30 deformation, hasa-16O cluster structure, as
mentioned before. The excitation energy before AMP is
7.96 MeV and that after AMP is 6.42 MeV, which are
slightly higher than the measured excitation energy
5.78 MeV of theJp=1− level. The different character of the
two negative-parity solutions withKp=2− andKp=0− mani-
fests clearly in the spin-orbit energy,ELS, the expectation
value of the two-body spin-orbit force. TheKp=2− solution
has large spin-orbit energy which is supposed to reflect
dominant shell-model-like 5p-1h configuration. The spin-
orbit energy of Kp=0− solution is much smaller, even
smaller than that in the ground state. This is consistent with
the development ofa-16O cluster structure in the negative-
parity states which was seen in the density distribution in
Fig. 1.

In Fig. 2, we show the excitation spectra of20Ne after
AMP. For three rotational bands ofKp=0+, 2−, and 0−, cal-
culated spectra are compared with measurements and with
the results by the AMD(deformed AMD+GCM calculation
with Gogny force) [15]. Since each band is well character-
ized by theK quantum number, we simply show the energies
given byEK

Js±d=hKK
Js±d /nKK

Js±d. Although the band head energies
of 0+, 2−, and 1− are described reasonably well, the calcu-
lated moment of inertia deviates from the measured value.
The calculated moment of inertia is too large for the ground
state band. On the other hand, the calculated moment of
inertia for the negative parity bands is slightly too small,
opposite to the positive parity band. The bandhead energy of
theKp=2− band in the AMD calculation is not as good as the
PPSHF, probably because the present work has a better ac-
count of the single-particle wave functions.

The AMD method gives better description for the high
spin levels, 6+-8+ energy difference. In our calculation, the
AMP is performed from a single intrinsic state, while a
change of nuclear shape is shown as the angular momentum
increases in the AMD calculation[15]. This indicates that, if
we incorporate the cranking in the PPSHF framework, we
might obtain better description for the higher angular mo-
mentum states. The discrepancy in the moment of inertia

looks similar between PPSHF and AMD calculations. At
present, we do not have a definite answer for the origin of
this discrepancy. The pairing correlation ignored in the
present calculation may be a possible answer. Benderet al.
calculated ground state bands of some light nuclei in the
HFBCS+GCM+AMP scheme [16]. Their calculation
slightly underestimates the moment of inertia, opposite to
our result. In the mean-field calculations, it has also been
pointed out that the moment of inertia is sensitive to the
time-odd component which we ignored[17].

In Table II, we show observed and calculated intra-band
BsE2d strengths of theKp=0+ andKp=2− bands of20Ne. For
the sake of comparison, we show results of the rotational
model(Rot.) and the AMD+GCM[15]. Our calculation well
reproduces BsE2d values of the 2− band. For the 0+ band, our
calculation somewhat underestimates the BsE2d values of
low angular momentum states. It should be noted that we do
not introduce any effective charge. For 8+→6+ transition,
our result overestimates theBsE2d value, and is close to the
rotational model. This is because we made AMP calculations
from a single configuration.

We next discuss12C. In the SHF calculations, one usually
obtain spherical ground state for a12C nucleus, although the
rotational spectra is observed experimentally. The spin-orbit
interaction favors spherical structure to gain energy through
p3/2-p1/2 splitting. If one weakens the spin-orbit interaction
slightly, oblate deformation starts to appear in the ground
state. We investigate change of the shape in the ground state
by modifying the strength of the spin-orbit interaction, mul-
tiplying a constant factorxLS to the two-body spin-orbit in-
teraction of the Skyrme force. In Fig. 3, we showb2 andb33
of the positive parity solution as a function ofxLS. The b2
value in the ordinary SHF calculation is shown as well.

We have found that, in the PPSHF calculation, an oblate
shape with substantialb33 deformation(triangle shape) ap-

FIG. 2. Energy spectra of20Ne calculated with the AMP.

TABLE II. Observed and calculated intra-bandBsE2d strengths
of the Kp=0+ andKp=2− bands of20Ne. For the sake of compari-
son, we show results of the rotational model(Rot.) and the AMD
+GCM [15]. The observed values are taken from Ref.[18]. The
values enclosed by curly brackets in the rotational model(rot.) are
adjusted to experimental ones.

Kp=0+ BsE2dobs Rot. AMD+GCM PPSHF

2+→0+ 57±8 (57.0) 70.3 41.6

4+→2+ 71±7 81.4 83.7 59.9

6+→4+ 66±8 89.7 52.7 67.5

8+→6+ 24±8 93.9 21.0 75.1

Kp=2− BsE2dobs Rot. AMD+GCM PPSHF

3−→2− 113±29 101 102.8 97.6

4−→3− 77±16 75 77.8 73.5

4−→2− 34±6 (34) 38.5 32.9

5−→4− ,808 53 84.5 52.6

5−→3− 84±19 53 56.6 53.1

6−→5− 32±13 39 29.9 39.7

6−→4− 55−13
+23 66 64.0 67.0

OHTA, YABANA, AND NAKATSUKASA PHYSICAL REVIEW C 70, 014301(2004)

014301-4



pears if one employs a slightly weak spin-orbit interaction.
This may be regarded as the appearance of the 3a clustering
structure. Theb33 deformation does not appear in the ordi-
nary SHF calculation. In addition, the oblate deformation
starts to appear at largerxLS value in the PPSHF calculation
than in the SHF. In the ordinary SHF calculation, the appear-
ance of the oblate deformation starts abruptly at aboutxLS
=0.75−0.8. Note that, in order to remedy the isotope-shift
problem in Pb isotopes, the spin-orbit potential should be
weakened by about 30 percent from the ordinary one[19].

We have examined AMP for solutions with differentxLS
values, and have found that the ground state rotational band
of 0+,2+,4+ is well described if we employxLS=0.8. At this
value ofxLS, we also made a calculation for negative parity
solution. We show below the results with this strength of the
spin-orbit interaction. The results are summarized for ener-
gies and deformations in Table III, for intrinsic density dis-
tribution in Fig. 4, and for the energy spectra in Fig. 5. Cal-
culatedBsE2:2+→0+d value is 5.14e2 fm4 which should be
compared with the observed value 7.8±0.4e2 fm4 [20].

As seen in Fig. 4(a), the nuclear shape is almost spherical
in the ordinary SHF. At a slightly smallxLS value, oblate
shape appears in the ordinary SHF calculation(Fig. 3). In
spite of the strongb2 and b33 deformation, the spin-orbit
energy is still large in the PPSHF calculation, almost com-
parable to that in the spherical SHF calculation. This indi-
cates that the closedp3/2 configuration has still significant
effects on the ground state.

The negative parity solution shows strongb2 deformation
with triaxiality. It has also strong octupole deformation,
mainly b33 with small mixture ofb31. Reflecting this mixture
in shape, two configurations with differentK quantum num-
bers also coexist in the solution. Figure 4(c) shows that the
3a clustering is much more developed in the negative parity
than in the ground state. The AMP calculation gives reason-
able description for excitation energy. Because ofg deforma-
tion, not only 3− and 4− states but also 1− and 2− states
appear as the side band.

It turns out that the structure of the negative parity solu-
tion in the PPSHF depends strongly on thexLS value. If one

employs the original Skyrme parametrizationsxLS=1.0d, we
obtain Kp=1− solution with b31 deformation. On the other
hand, forxLS values smaller than 0.7, we obtainKp=3− so-
lution with b33 deformation. AtxLS=0.8, these two configu-
rations mix up in the solution. Therefore, two distinct con-
figurations coexist in the negative parity at the excitation
energies of about 10 MeV. In contrast to the20Ne case, two
configurations do not separate but mix up. In such a situa-
tion, treatments beyond the present framework seem to be

FIG. 3. Deformation of12C ground state as a function ofxLS

which is a multiplicative factor for the two-body spin-orbit
interaction.

TABLE III. Calculated results of12C at xLS=0.8. The meaning
of the listed quantities are the same as those in Table I.

Kp=0+ SHF

Negative parity

Energy(EXP) −92.162 −92.162

+9.64

Energy(MF) −94.617 −94.492

+11.15

EnergysMF+AMPd −96.499

+9.69

ELS −13.229 −15.191

−7.550

b2 0.271 0.069

0.638

g 59.95° 60.00°

27.77°

b31 0.0 0.0

0.056

b33 0.327 0.0

0.518

FIG. 4. Density distribution of the internal state in12C at xLS

=0.8 for (a) SHF, (b) PPSHFsKp=0+d, and (c) PPSHF(negative-
parity). See the caption of Fig. 1 for explanation.
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necessary, for example superposing multiple configurations
in the generator coordinate treatment. We leave such an ad-
vanced treatment as a future problem.

In summary, we propose the PPSHF method as a useful
tool to study both excited and ground states simultaneously.

Self-consistent solutions of the excited states can be obtained
in the negative parity, while the positive parity solutions de-
scribe the ground state incorporating certain correlation ef-
fects beyond the simple mean-field treatment. We show the
feasibility of such calculations employing the uniform grid
representation in the 3D Cartesian coordinate and achieving
the three-dimensional angular momentum projection. The
application to twoN=Z nuclei,20Ne and12C, reveals that the
obtained solutions show interesting deformations violating
reflection symmetries and incorporating clustering correla-
tion. We will apply, for the future, the present framework for
the systematic investigation and predictions of light nuclei,
including exotic neutron rich nuclei.
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