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Variation after parity projection calculation with the Skyrme interaction for light nuclei
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A self-consistent calculation with variation after parity projection is proposed to study both ground and
excited states of light nuclei. This procedure provides description of the ground state incorporating some
correlation effects, and self-consistent solutions for the excited states of negative parity. For flexible description
of nuclear shapes, single particle orbitals are represented on a uniform grid in the three-dimensional Cartesian
coordinates. The angular momentum projection is performed after variation to calculate rotational spectra. To
demonstrate the usefulness of the method, results are shown fd¥s#onuclei, 2°Ne and*?C, for which
clustering correlations are known to be important. In #ée nucleus, both cluster-like and shell-model-like
states are described simultaneously in the present framework?Earucleus, the appearance of three-alpha
clustering correlation in the ground state is investigated in relation to the strength of the two-body spin-orbit
interaction.
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Nuclear mean-field calculations have been successful faions with axial and reflection symmetries for most nuclei.
systematic description of nuclear ground state propertieslowever, in the VAPP calculations, the self-consistent solu-
with a few adjustable parametdis]. The mean-field theory tions are found to violate these symmetries. A preliminary
has also been extensively applied to description of excitedeport on the realistic calculations employing the Skyrme
states. For example, collective vibrational as well as singlénteraction has been presented in R¢4s5].
particle-hole excitations are described by the random phase We apply the method to lighti=Z nuclei, *°Ne and*“C.
approximation which is equivalent to a small amplitude limit There are several reasons why we consider the light nuclei.
of the time-dependent mean-field dynamics. Excited stategor light nuclei, the VAP may significantly modify the mean-
may also be described as local-minimum solutions if there idield solutions and lead to the energy gain by the projection.
more than one self-consistent solution in the static calculai the excited states of light nuclei, various cluster structures
tion. In principle, the generator coordinate method is ex-have been found to appear. They have been successfully ana-
pected to provide a unified description for any kind of exci-lyzed with the microscopic cluster models in which the VAP
tations. However, in practice, one need to specify a fewcalculation was carried oi6]. The present approach is use-
important generator coordinates in advance by physical intuful to understand the mechanism for the appearance of the
ition. cluster structures. Finally, there are rapid progresses in the

In this article, we present an attempt to describe botrexperimental research on light unstable nuclei. The present
ground and excited states in the self-consistent approadiiamework will be useful to analyze and predict structures of
with the variation after parity projectiofVAPP). For an  unstable nuclei.
even-even nucleus, the lowest energy positive-parity solution The antisymmetrized molecular dynami@gviD ) method
describes the ground state in which the correlation beyondeveloped by Kanada-En’yo and Horiudf has been uti-
the mean field is incorporated to a certain extent. Selflized to describe clustering phenomena in light stable and
consistent negative-parity solutions should correspond to thenstable nuclei. In the simplest version of AMD, the method
negative-parity excited states. is identical to the VAPP with a restricted Slater determinant

The theory of the variation after projectigh/AP) of the  in which each orbital is a Gaussian wave packet. This may be
symmetry-violating internal state has a long histdg]. regarded as an approximation to our present approach. The
However, practical applications with full variation of single- feasibility of the AMD allows them to perform the variation
particle orbitals are rather few even for projection with re-after angular momentum projectigB]. On the other hand,
spect to the parity. Previously we achieved the VAPP calcuthe present work brings more accurate description of the
lation employing the uniform grid representation in the single particle orbitals, and establishes an intimate link to the
three-dimensiona(3D) Cartesian coordinates in which the Skyrme Hartree-Fock theory.
simple BKN interaction was us€@]. In the ordinary mean- We start with a brief description of the theofg]. We
field calculations, one usually obtains self-consistent soluconsider — an arbitrary  Slater ~ determinant ®

=(1/N)def ¢i(x)}, with x=(F, o), the space and spin coor-
dinates. We apply the parity projection operator for this

*Present address: Institute of Physics, University of TsukubaSlater determinant,CI><i):(1/v’§)(1iP)<I>, where P is the
Tsukuba 305-8571, Japan. space inversion operator. We then consider the energy expec-
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tation value for the states with definite pariyi*), and make 3o 20+ 1 >
a variation with respect to the single particle orbite|s hir = (P |H|(I)MK’>_ 872 dQDjy. (€2)
(PH|H|D®) 3 % (Dle (1 + P)e Bye 7 P 5
W_Z ai{¢ile) — 12 (ilflh) | =0 (@l (1+P)e 1), ®
ij i

.. . . J
and the similar expression for the norm matrix elemaéﬁ.

1) For practice, we achieved the rotation of the single particle
orbitals by successive rotations of a small angle. Following
the Taylor expansion method for time evolution which was
employed in the time-dependent Hartree-Fock calculations
[9], we calculate the rotation of small angler aroundz-axis

Here we imposed two kinds of constraints in the above varia:
tion [3]. The first one with the Lagrange multiplieks is
introduced to orthonormalize single particle orbitajs, The
second with the multiplieR; is to coincide the center-of-mass
of the wave function® with the origin of the coordinate,

>i(¢i|fl#i)y=0. This constraint assures that the parity opera- Nmax (A )k
tion is made with respect to the center-of-mass of the nucleus A= D (i) e (6)
and minimizes the occurrence of the spurious center-of-mass k=0
excitations by the parity projection. where N, is taken to be 4. Typically, each Euler angle is
The variation of Eq.(1) yields the following self- discretized into 200 steps far andy, and into 400 steps for
consistent equation: B. In Eq.(5), the integrations over Euler angles are achieved
R ~ - - with discretization of 20 points forr and y and 400(all)
-7t <‘I’|P|‘1)>{hp¢i - E ¢j<¢j|hp|¢i>} points for 8. It is important to divide rotations of three Euler
] angles into two and one; the rotations of the anglesnd vy
+(E® - E):éi - E € b, ) for the ket state, and the rotation of the angldéor the bra

state, to reduce the computational costs.

We employ the Skyrme interaction in constructing the en-
whereh is the usual Hartree-Fock Hamiltoniahe has the  ergy functional in Eq(1). There is ambiguity in the choice of
same structure as, however, all the densities are replacedthe density of density dependent force for off-diagonal ma-
with the transition densities which are the matrix elements ofrix elements[10], which appear in Eqg1), (2), and(5). In
density operators between the wave functibnand its  this paper, we simply use corresponding transition densities
parity-inverted stat®d. E® is the energy expectation value for them. We will hereafter abbreviate the present scheme as
with respect to the wave functiok®), while E is with re-  the parity-projected Skyrme Hartree-Fo@PSHF method.

spect tod. & is defined by Before showing our results, we mention some problematic
aspects of the Skyrme interaction in the present framework
=3 |5¢j(B_l)ji (3) which we have encountered in the practical calculations.

Since the Skyrme interaction has been so constructed to be
R used for a single Slater determinant state, it is by no means
with Bj=(i|P|¢)). evident whether it may provide a reasonable description in
In the practical calculations, E¢R) is not solved directly. the VAPP calculations. Indeed, we have observed that, if we
Instead, the imaginary-time method is employed in which thenake a variation of single particle orbitals without any re-
left-hand-side of Eq(2) is used as the gradient of the energy striction, we obtain an unphysical solution in which the time-
functional. We discretize the 3D Cartesian coordinates intd€versal symmetry is violated in the ground state. For ex-
uniform square grid and represent the single particle wav@mple, the total binding energy dPNe in the ordinary
functions on the grid points. The grid spacing is taken to beSkyrme Hartree-FockSHF) calculation with SGII force is
0.8 fm, and the grid points inside a sphere of radius 7.2 fnrtbout 170 MeV, while we obtain the binding energy of
are used in the calculations below. 230 MeV with the PPSHF. Since the parametrization of the
After obtaining the self-consistent solutions, we make theSkyrme interaction relevant to the time-odd component has
angular momentum projectiqtAMP) to calculate rotational not been fully tested, we restrict our wave function to be
spectra. The self-consistent solutions in the VAPP are usuall{fme-reversal invariant. Namely, we force nucleons either to
not axially symmetric. Therefore, one must perform threefully occupy or unoccupy a pair of orbitals which are mutu-
dimensional rotation in Euler angle§)=(a,B,y), for the  ally related to each other by the time-reversal operation in
AMP. We define the AMP state as usual, the Slater determinant. This restriction removes most part of
the problems. However, in the positive parity solutions of
I > @ some light nuclei, we still encounter a problem that the den-
[Pk = 872 dODjy (MRQ)|D), (4) sity of the self-consistent solution shows a small but un-
physical oscillation, namely, the density shows staggering in
whereR(Q) is the rotation operator aridy, () is the Wign-  the neighboring grids. This problem can be overcome if we

ers D- functlon We then define relevant matrix elements,further ignore a part of the Skyrme energy functionals in-

hKK, andnKK, The Hamiltonian matrix eleme ( Vi 'isgiven  cluding termsp, |, T [11,12. For a single Slater determinant

by with time-reversal invariance, these time-odd densiﬁ;esi

2J+1
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TABLE |. Self-consistent solutions of’Ne are summarized.
The third row(“Energy (MF)") shows the results of ordinary SHF
and PPSHRK™=0%, K™=2", K™=0") before AMP. Total energy is
shown for the ground stat&HF andK™=0"), while the excitation &
energies with respect to the ground state are shown for the excitec
states (K™=2" and K7=0"). The fourth raw (“Energy (MF
+AMP)”) indicates the results for the lowest angular momentum
state after the AMP. The fifth ra@/E, g") is the expectation value of
the two-body spin-orbit interaction. Thg, v, B30, andBs,, are the
density deformation of the internal single Slater determinant. (b)

=

-

K7™=0" K7=2" K7"=0"  SHF

Energy(EXP) -160.645  +4.97 +5.78 -160.645
Energy(MF) -168.232 +5.47  +7.96 -167.943
Energy(MF+AMP) -171.333  +4.91 +6.42 ©
E s -8.517 -15.350 -5.443 -8.775
B2 0535 0.589 0.694 0.728
y 0.0 0.0 0.0 0.0
B0 0.314 00 0576 0.0 :
B3z 0.0 0.178 0.0 0.0 2 i
0
(d) -2
f, vanishes identically. However, this is not the case for tran- :‘;
sition densities betwees® and Pd. 645002 46
The problems are related to the fact that the superpositior fm

of two Slater determinants by the parity projection may rep- o _ _
resent more varieties of correlation effects than the single G- 1. Density distribution of the internal state #Ne, in the
Slater determinant may do. We leave it an interesting fUtur%(nyér)t/iZa ::gszxfgg';zs;gf:gﬁ;E’bf“;‘tj;:)éﬁhr:‘gﬁsl‘:eggltchj;t’ig?;')pal
roblem to find appropriate Skyrme energy functional to be - . . o
Esed in the PPSH?:pfr;mework.yln the follc?v)\//ing caIcuIations,groundKW:.O Stitf O_f PPSHFc) excitedK”=2 state of PPSHF,
we will employ SGII parameter s¢13]. This force has been and (d) EXCIte.dK =0 states of PPSHF,. respectively. The side of
. A . each panel is 14.4 fm. The contour lines are plotted for every
successful in describing the response properties of nucle 02 fi3
although the absolute binding energies are not reproduced '
accurately. formed the imaginary-time evolution of this solution with an
We first show the results oc®Ne. In Table I, the calcu- extra constraint that the wave function is orthogonal to the
lated results are summarized. The definition of the deformakK™=2" solution. In this procedure, we obtain a converged
tion parameters is in Refl14]. Octupole deformation param- solution which is found to be almost the same as the original
etersBs; and B33 are negligible and not shown. The positive- K™=0" quasi-stable solution without the orthogonalization.
parity solution corresponds to the ground state. In the SHBecause of these observations and a good correspondence to
calculation, this has a prolate shape with reflection symmethe measured spectra as shown below, we consider that the
tries. On the other hand, the PPSHF calculation gives th&™=0" solution is of physical significance.
solution with substantigBsy deformation. The energy in the Figure 1 shows density distribution of the internal Slater
PPSHF calculation gets lower by 0.3 MeV from the ordinarydeterminant in the three planes which include two princi-
SHF calculation. pal inertia axes. Figureqd) are the SHF calculation, and the
There are two solutions in the negative parity. The lowestFig. 1(b) are the PPSHF for positive parity. They correspond
energy solution has a smahs, deformation as well as the to the ground state. Figuregcl and 1d) are the PPSHF
prolate deformation. The next solution has a la@ggdefor-  calculations for negative parity. Figurescl is the lowest
mation as well ag,. In the angular momentum projection, energyK”=2" state, and Fig. ) is theK”™=0". The nuclear
we found that the former solution is characterized Ky  shapes of Figs.(b) and Xd) are characterized by the strong
=2 and the latter solution biK™=0". B30 deformation and are considered to reflect dh&O clus-
Previously we reported the existence of two local minimater structure. The clustering is stronger in the negative parity
in the negative parity4]. After careful examination, we have solution, which is consistent with the cluster model studies
found that theK™=0" solution is not a local minimum solu- [6]. The lowest energy negative-parity solution shown in Fig.
tion but decays into th&K™=2" solution after very long 1(c) looks prolate although it has a sm#l, deformation.
imaginary-time iterationgtypically 5xX 10° steps with At As for the lowest negative parity state wikr=2", the
=102 MeV™1). Reflecting differentK™ value of these two excitation energy before AMRthe energy difference be-
states, they are almost orthogonal to each other. To examirieween the negative- and positive-parity solutipns
the physical reality of theK™=0" solution, we have per- 5.47 MeV and that after AMthe energy difference between
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_ TABLE Il. Observed and calculated intra-baB@E2) strengths
o5 ] of theK™=0" andK™=2" bands of*°Ne. For the sake of compari-
—_ son, we show results of the rotational mogdebt.) and the AMD
20l AMD  Exp ppsHE S — | +GCM [15]. The observed values are taken from Ré@®]. The
= +GCM _ values enclosed by curly brackets in the rotational marl) are
2 15} T —_— T ] adjusted to experimental ones.
g y 7__'«
> 66— —_— P
% ol — 5 — S—.__~ | K7=0* B(EQeps  Rot. AMD+GCM  PPSHF
5 |8t — 4 T 3—— _
w I — i =Tt = 2t 0" 57+8 (57.0 70.3 41.6
g — - 1 4 -2 7147 81.4 83.7 59.9
2t -—._  AwD AMD 6" —4* 66+8 89.7 52.7 67.5
otgr—-—-=— acm EXP PPSHF “GOM EXP PPSHF | 8+:6+ By 93.9 510 751
K'=0" K'=2" K'=0" ~ ) ) '
K7=2" B(E2)ops Rot. AMD+GCM  PPSHF
FIG. 2. Energy spectra d®Ne calculated with the AMP. 3o 113429 101 102.8 976
. . . 47 -3 771 7 77.8 73.5
J7=0" and J™=2" solutions in the parity and angular mo- 4__)2_ 34+66 345 385 329
mentum projectionsis 4.91 MeV. These values are close to __’ B - G ! '
the measured 2excitation energy ofNe, 4.97 MeV. 5 —4 <808 53 84.5 52.6
The next negative parity solution witK™=0", which 5 —3" 84+19 53 56.6 53.1
shows largeB;, deformation, has-10 cluster structure, as 6 —5" 32+13 39 29.9 39.7
mentioned before. The excitation energy before AMP isg-_ 4- 5523 66 64.0 67.0

7.96 MeV and that after AMP is 6.42 MeV, which are
slightly higher than the measured excitation energy

5.78 MeV of theJ™=1" level. The different character of the looks similar between PPSHF and AMD calculations. At
two negative-parity solutions witK”=2" andK”=0" mani-  present, we do not have a definite answer for the origin of
fests clearly in the spin-orbit energf s, the expectation this discrepancy. The pairing correlation ignored in the
value of the two-body spin-orbit force. THE€"=2" solution ~ present calculation may be a possible answer. Beatlat.

has large spin-orbit energy which is supposed to reflecealculated ground state bands of some light nuclei in the
dominant shell-model-like 51h configuration. The spin- HFBCS+GCM+AMP scheme[16]. Their calculation
orbit energy of K™=0" solution is much smaller, even slightly underestimates the moment of inertia, opposite to
smaller than that in the ground state. This is consistent witipur result. In the mean-field calculations, it has also been
the development of-1%0 cluster structure in the negative- pointed out that the moment of inertia is sensitive to the
parity states which was seen in the density distribution intime-odd component which we ignor¢i7].

Fig. 1. In Table I, we show observed and calculated intra-band
In Fig. 2, we show the excitation spectra ®Ne after  B(E2) strengths of thé&™=0" andK™=2" bands of%Ne. For
AMP. For three rotational bands &"=0*, 2, and 0, cal- the sake of comparison, we show results of the rotational

culated spectra are compared with measurements and withodel(Rot,) and the AMD+GCM[15]. Our calculation well
the results by the AMOJdeformed AMD+GCM calculation reproduces BE2) values of the 2band. For the Oband, our
with Gogny force [15]. Since each band is well character- calculation somewhat underestimates th€EB values of
ized by theK quantum number, we simply show the energieslow angular momentum states. It should be noted that we do
given by E.¥'=h) ) /n*). Although the band head energies not introduce any effective charge. Fof-8 6" transition,
of 0%, 27, and I are described reasonably well, the calcu-our result overestimates tlg{E2) value, and is close to the
lated moment of inertia deviates from the measured valuerotational model. This is because we made AMP calculations
The calculated moment of inertia is too large for the groundrom a single configuration.
state band. On the other hand, the calculated moment of We next discus$®C. In the SHF calculations, one usually
inertia for the negative parity bands is slightly too small, obtain spherical ground state for*C nucleus, although the
opposite to the positive parity band. The bandhead energy abtational spectra is observed experimentally. The spin-orbit
theK™=2" band in the AMD calculation is not as good as theinteraction favors spherical structure to gain energy through
PPSHF, probably because the present work has a better gus,-py/» splitting. If one weakens the spin-orbit interaction
count of the single-particle wave functions. slightly, oblate deformation starts to appear in the ground
The AMD method gives better description for the high state. We investigate change of the shape in the ground state
spin levels, 6-8" energy difference. In our calculation, the by modifying the strength of the spin-orbit interaction, mul-
AMP is performed from a single intrinsic state, while a tiplying a constant factog, s to the two-body spin-orbit in-
change of nuclear shape is shown as the angular momentutaraction of the Skyrme force. In Fig. 3, we sh@yand B35
increases in the AMD calculatidil5]. This indicates that, if of the positive parity solution as a function gfs. The B3,
we incorporate the cranking in the PPSHF framework, wevalue in the ordinary SHF calculation is shown as well.
might obtain better description for the higher angular mo- We have found that, in the PPSHF calculation, an oblate
mentum states. The discrepancy in the moment of inertizshape with substantigd;; deformation(triangle shapgap-
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07— - - - ' ' ' ; ; TABLE lIl. Calculated results of’C atx s=0.8. The meaning
of the listed quantities are the same as those in Table I.
06 1
osl K7=0* SHF
'5 Negative parity
g | Energy(EXP) ~92.162 -92.162
£ o3} +9.64
o Energy(MF) -94.617 -94.492
0zr +11.15
o1l Energy(MF+AMP) -96.499
+9.69
0 E s -13.229 -15.191
—-7.550
Bo 0.271 0.069
FIG. 3. Deformation of'?C ground state as a function afg 0.638
yvhlch is a multiplicative factor for the two-body spin-orbit 59.95° 60.00°
interaction.
27.77°
pears if one employs a slightly weak spin-orbit interaction.Bs; 0.0 0.0
This may be regarded as the appearance of thel@stering 0.056
structure. TheB;; deformation does not appear in the ordi- 0.327 0.0

nary SHF calculation. In addition, the oblate deformation
starts to appear at larggyg value in the PPSHF calculation
than in the SHF. In the ordinary SHF calculation, the appear-

ance of the oblate defqrmation starts abruptly at abopyt _employs the original Skyrme parametrizations=1.0), we
:0'75_018' Notg that, in order FO remedy the. |sot0pe-sh|f5btain K7=1" solution with B3; deformation. On the other
problem in Pb isotopes, the spin-orbit potential should bg,,q forx,s values smaller than 0.7, we obtaiF=3" so-
weakened by about 30 percent from the ordinary [r#). lution with B35 deformation. Atx, s=0.8, these two configu-

We have examined AMP for solutions with differexls — raiions mix up in the solution. Therefore, two distinct con-
values, and have found that the ground state rotational ba’\‘%urations coexist in the negative parity at the excitation

of 0", 2", 4" is well described if we em_ponL5=O.8. At this __energies of about 10 MeV. In contrast to tHie case, two
value ofxs, we also made a calculation for negative parity .,nfig rations do not separate but mix up. In such a situa-

solution. We show below the results with this strength of the;i;, treatments beyond the present framework seem to be
spin-orbit interaction. The results are summarized for ener-

gies and deformations in Table Ill, for intrinsic density dis-
tribution in Fig. 4, and for the energy spectra in Fig. 5. Cal-
culatedB(E2: 2" — 0%) value is 5.14e? fm* which should be
compared with the observed value 7.8+@&4m?* [20]. ()
As seen in Fig. @), the nuclear shape is almost spherical
in the ordinary SHF. At a slightly smal{, 5 value, oblate
shape appears in the ordinary SHF calculatibig. 3). In
spite of the strongB, and B33 deformation, the spin-orbit
energy is still large in the PPSHF calculation, almost com-
parable to that in the spherical SHF calculation. This indi- @)
cates that the closeps, configuration has still significant
effects on the ground state.
The negative parity solution shows stroggdeformation
with triaxiality. It has also strong octupole deformation, 6
mainly B35 with small mixture of5;,. Reflecting this mixture g
in shape, two configurations with differedtquantum num- 0
2
4

0.518

bers also coexist in the solution. Figur&c¥shows that the (¢ -
3a clustering is much more developed in the negative parity -
than in the ground state. The AMP calculation gives reason-  ~

able description for excitation energy. Because dieforma- 64202480
tion, not only 3 and 4 states but also land 2 states
appear as the side band. FIG. 4. Density distribution of the internal state 1AC at x, g

It turns out that the structure of the negative parity solu-=0.8 for (a) SHF, (b) PPSHF(K™=0"), and(c) PPSHF(negative-
tion in the PPSHF depends strongly on the value. If one  parity). See the caption of Fig. 1 for explanation.
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Self-consistent solutions of the excited states can be obtained
EXP CAL 5— in the negative parity, while the positive parity solutions de-
] scribe the ground state incorporating certain correlation ef-
4+ 44— fects beyond the simple mean-field treatment. We show the
- —— 4 Y— o- feasibility of such calculations employing the uniform grid
1o} L — g— 3 —— L representation in the 3D Cartesian coordinate and achieving
the three-dimensional angular momentum projection. The
application to twaN=Z nuclei,’°Ne and*°C, reveals that the
—_ T obtained solutions show interesting deformations violating
EXP CAL reflection symmetries and incorporating clustering correla-
e . n __ oddparity lowest tion. We will apply, for the future, the present framework for
T K'=1" K'=3" energystate | the systematic investigation and predictions of light nuclei,
K*=0* including exotic neutron rich nuclei.

Energy (MeV)

FIG. 5. Energy spectra dfC in the AMP. ACKNOWLEDGMENTS
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