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We study nuclear and neutron matter by combining chiral effective field theory with nonperturbative lattice
methods. In our approach, nucleons and pions are treated as point particles on a lattice. This allows us to probe
larger volumes, lower temperatures, and greater nuclear densities than in lattice QCD. The low-energy inter-
actions of these particles are governed by chiral effective theory, and operator coefficients are determined by
fitting to zero temperature few-body scattering data. The leading dependence on the lattice spacing can be
understood from the renormalization group and absorbed by renormalizing operator coefficients. In this way,
we have a realistic simulation of many-body nuclear phenomena with no free parameters, a systematic expan-
sion, and a clear theoretical connection to QCD. We present results for hot neutron matter at temperatures
20-40 MeV and densities below twice the nuclear matter density.
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I. INTRODUCTION local Lagrangian involving pions and low-energy nucleons

The nuclear many-body problem has long been recog(_:onsistent with translational invariance, isospin symmetry,
nized as one of the central questions in nuclear phydits and spontaneously broken chiral symmetry. This yields an
The traditional approach to the many-body problem is baseinfinite set of possible interaction terms with increasing num-
on the assumption that nucleons can be treated as nonrelatiRers of derivatives and/or nucleon fields. Degrees of freedom
istic point particles interacting mainly via two-body poten- associated with antinucleons, heavier mesons such as, the
tials. Three-body potentials, relativistic effects, and non-and heavier baryons such as theare integrated out. The
nucleonic degrees of freedom are assumed to give smagiontribution of these particles appear as coefficients of local
corrections. The many-body problem is studied by solvingterms in our pion-nucleon Lagrangian. We also integrate out
the many-body Schrédinger equation. The ground-state progucleons with momenta greater tham*, wherea is the
erties of light nuclei and neutron drops have been analyzetittice spacing.
by several groups using variational methods and Green’s The operator coefficients in our effective Lagrangian are
function Monte Carlg2-7]. determined by fitting to experimentally measured few-body

These methods have been very successful, but there aneicleon scattering data at zero temperature. The dependence
several good reasons for seeking an alternative approachn the lattice spacing is described by the renormalization
One reason is the desire for a theory that is more directhgroup and can be absorbed by renormalizing operator coef-
grounded in QCD. We expect this theory to explain whyficients. In this way, we construct a realistic simulation of
two-body forces are dominant, and how the interactionmany-body nuclear phenomena with no free parameters. In
should be chosen. In addition to that, we would like to haveour discussion we present results for hot neutron matter at
a framework that allows the calculations to be systematicalljemperatures 20—40 MeV and densities below twice the
improved, and provides an estimate of the errors due to coruclear matter density.
tributions that have been neglected. If we consider the inter- The first lattice study of nuclear matter was done by
action of a single nucleon with pions and external fields,Brockmann and Frankl4]. They used a momentum lattice
such a framework is provided by chiral perturbation theory.and analyzed the quantum hadrodynamics model of Walecka
In a very influential paper, Weinberg proposed to extend ef{15]. Muller et al. [16] were the first to look at infinite
fective field theory methods to the nucleon-nucleon interachuclear and neutron matter on a spatial lattice at finite den-
tion [8]. Over the last several years, effective field theorysity and temperature. They used an effective nucleon-
methods have been applied successfully to the two- antucleon interaction on a®4attice and found evidence for
three-nucleon systerf9,10]. Effective field theory methods saturation in nuclear matter. The approach we pursue is simi-
have also been applied to nuclear and neutron matter, blar in spirit to that of[16]. The main difference is the inclu-
these calculations rely on a perturbative expansion in powersion of pion degrees of freedom and our use of chiral effec-
of the Fermi momentunp11,12. tive field theory with Weinberg power counting. The nuclear

Our aim in this work and the goal of the Nuclear Lattice liquid-gas transition has also been studied using classical lat-
Collaboration as a whol¢13] is to extend effective field tice gas model$l7-2Q.
theory methods to the nuclear many-body problem. For this
purpose we investigate the many-body physics of low-energy
nucleons and pions on the lattice. Our starting point is the Before describing the physics it will be helpful to first
same as that of Weinberg. We begin with the most generalefine the notation that we use throughout our discussion.

II. NOTATION
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We let i represent integer-valued lattice vectors on our 3

+1 dimensional space-time lattice. We use a subscripgéd “

such as i, to represent purely spatial lattice vectors. We = +
use subscripted indices suchiag for the two spin compo-

nents of the neutron} and |. We let 0be the unit lattice

vector in the time direction and ld{=1,2,3 be the corre- FIG. 1. Chiral expansion of the two-particle irreducible
sponding unit lattice vectors in the spatial directions. A SUMy el
mation symbol such as

IE (1) S —_— (7)
° 1-2.(KDA(K)
implies a summation over valués=1,2,3.

We leta be the lattice spacing in the spatial direction and
L be the length of the spatial lattice in each directignis
the lattice spacing in the temporal direction ahdis the
length in the temporal direction. We let be the ratio be-
tween lattice spacings,

whereD/W"(k) andD™(k) are the fully interacting propaga-
tors.

IIl. NONPERTURBATIVE EFFECTIVE FIELD THEORY

Effective field theory provides a systematic method to
& ) compute physical observables order by order in the small
a’ parameteQ/ A, whereA, is the chiral symmetry breaking
scale andQ=(q,m,, ...). Here,q is a small external momen-
Throughout, we use dimensionless parameters and operatotgm andm,, is the mass of the pion. The simplest processes
which correspond with physical values multiplied by the ap-are those that involve only pions and external fields. In this
propriate power of.. We use the superscripphys such as  case the effective field theory is perturbative. At any order in
in mi™*to represent quantities with physical units. We useQ there are only a finite number of diagrams that have to be
a,a' to represent annihilation and creation operators for thencluded. At lowest order these are tree diagrams with the
neutron, whereag,c* indicates the corresponding Grass- leading-order interaction. At higher order, diagrams with
mann variables in the path integral representation. We usgore loops or higher-order terms in the interaction have to
the symbol:f(a',a): to indicate the normal ordering of op- be taken into account.

ay =

erators inf(a',a). We letmy be the mass of the neutrop, Weinberg showe(8,21] that the simple diagrammatic ex-

be the neutron chemical potential, amg be the mass of the pansion for nucleon-nucleon scattering is spoiled by infrared

pion. divergences. He suggested performing an expansion of the
Our conventions for Fourier transforms are two-particle irreducible kerndkee Fig. 1 and then iterating

the kernel to all orders to produce the scattering Green’s

-1 K f function (see Fig. 2 It was later pointed out that a possible
fk) = \m§ ), ) difficulty arises because at any orderQnan infinite number
of diagrams is summed, and it is not clear that all the cutoff
dependence at that order can be absorbed into counterterms
that are present at that ord@?2]. This problem does indeed
arise if one considers nucleon-nucleon scattering in‘the
channel[23], but in practice the cutoff dependence appears
to be very weal24].

In this work we go one step further and consider the
_ nuclear many-body problem. We expand the terms in our
ke = (ZiTkO,ZTqul,Zkaz,szk3). (5) action order by order,

L
S=5+S,+S,+: . (8)
We use periodic boundary conditions in the spatial directions i ) ]
and periodic/antiperiodic boundary conditions in the tempo/\t orderk in the chiral expansion, we calculate observables
ral direction for bosons/fermions. by evaluating the functional integral

We IetDN(IZ)éij andDW(IZ) be the free neutron and neutral

1 e
f(R) = —=>, e & Nf(k), 4
(n) thL% (k) (4)

where

pion propagators. For notational convenience, the spin-
conservingg; in the neutron propagator will from here on be — + +
implicit. The self-energiessy(k) and 2 (k), are defined by
R -
full Dn(k) - : .
Dy (k) = = -, (6) FIG. 2. The two-particle irreducible kernel is iterated to all or-
1 -3n(K)Dp(k) ders to produce the nucleon-nucleon scattering Green’s function.
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<G(N,N,7-r)>k We letN represent the nucleon fields,
— — roton
fDNDNDwG(N,N,w)eXLi—So-Sr =8l N={IO }@[T} (13
- neutron l
= — )
J DNDND7exd- S-S - - = Sd We user, to represent Pauli matrices acting in isospin space,

and we user to represent Pauli matrices acting in spin space.

We will refer to this approach as nonperturbative effectivePion fields are notated ag. We denote the pion decay con-
field theory. The interactions at chiral ordkror less are stant asF"™°~183 MeV and let
iterated to arbitrary loop order. The functional integral is
computed nonperturbatively by putting the pion and nucleon D=1 +7Ti2/FfT, (14
fields on the lattice and using Monte Carlo sampling. Since
the number of diagrams at a given chiral order grows expoThe lowest-order Lagrange density for low-energy pions and
nentially with the number of nucleons, a nonperturbativenucleons is given by terms wit=0 [26],
technique such as this is needed for systems with more than
just a few nucleons. 1 . 1

Computing the path integral corresponds to summing an £ =- ED_Z[(VTH)Z— ]~ ED_lminiz
infinite set of diagrams. As in the case of iterating the two-

particle irreducible kernel to determine the full two-nucleon +N[ido— (My = ) IN =D gaN[ 76 - V. IN
Green’s function, it is not clear that the cutoff dependence at

a given order in the low-energy expansion can be absorbed _ D—lF—zﬁ[E_ rmm N - }C NNNN:

into a finite number of coefficients in the action. In practice U '

we will therefore restrict ourselves to lattice cutoffs that sat- 1

isfy ma™*<<A,. In order to show that the effective field — ZCy:NGN - NoN:. (15)
theory calculation is consistent, we must find a window of 2

lattice cutoffs such that the many-body calculation is inde-

pendent of the cutoff up to terms that are higher order. Wéla is the nucleon axial coupling anej is the Levi-Civita

shall study this question numerically in our results section. Symbol. The chemical potential controls the nucleon den-
sity andu will be set very close tony. At next order we have

terms with§,=1,
IV. LOWEST ORDER INTERACTIONS

1 —.
Our momentum cutoff scale isa™* and we choose the W= ENVZN+ e (16)
lattice spacing so that N
m,<mal<A,. (100  We will include this kinetic energy term fron£™ in our

) ) ) ) ) lowest-order Lagrange density so that we get the usual free
An irreducible diagram is one that cannot be disconnected by,cjeon propagator.

cutting internal lines that match the set of incoming or out- |, this study we limit ourselves to the interactions of neu-

going particles. In the Weinberg counting schef8€1,23  ¢ns and neutral pions and consider processes with only up

we estimate the chiral order of an irreducible diagram by;g tyq pions. As a result we have at lowest order the terms
associating one power @/A , for each derivative interac-

tion or explicit factor ofm_, four powers for each loop inte- 1 o2
gral,'one inverse power for eagh npcleon |n.ternal' line, and - _ Z[= w2+ (Vg2 + meal] + ajT 9+ —
two inverse powers for each pion internal line.ufis the 2 N
chiral order of an irreducible diagram, it can be shown that

-

9a_t- =
e, - (mN - ,LL):| aj + F—aITO'”aJ . V7TO - Ca}-aTaIal,
v=4-2242-2c+ > &. (1) ™

2 vertexi (17)

In Eq. (112), e, is the number of external nucleorisis the

number of loopsg is the number of connected pieces, ahd wherea,a’ are annihilation and creation operators for the
for each vertex is ' neutron. In the Euclidean formalism, we have the partition

function
#n
§EHo+ HM =2, (12 _ _
Z:waDNDNexp(—SE):JDwDNDNexp(f d4x,cE),

where # is the number of derivatives . is the number of

explicit factors ofm_ in the coefficient, and#tis the number (18)
of nucleon fields. It turns out thatn#. is always an even
number. where
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1., = V2 h(@ha) = 2 [(1 - etMmecihal([)a(Ay)]
£E=‘5[775+(V7To)2+m727773]‘a;r[690‘2_mN figi
. ) ~helmewal 3 [af()a(is+1y
+(my—w) |a + F—Aaf&ij a-Vm-Calaala,. figlgi
(19) +a/(Agay(ris=19)]. (27
We will usex, to represent the Euclidean temporal coordi- Introducing the extra M~ al factor multiplying h is not
nate, rather than switching fromg to X,. well motivated at this stage, but it insures that the neutron
chemical potential is coupled to an exactly conserved neu-
V. FREE NEUTRON tron number operatof28,29. We now use the correspon-

. . o . . . dence[27,3
In the simplest discretization, the Euclidean lattice action [ g

for free neutrons has the form TH:f, 4(aha): .. fi(aha) = fo(aha)]
Simple_ > (R)c(Ri+ f)) +(-1+(my-

= lu,)a * *

N T | " t =f dc,-1dc,_; ... dcydc,

+ 6h)CT(ﬁ)C,(ﬁ)]—hE [CT(ﬁ)C,(ﬁ"'i\S) X ex E Cf(C- _C'+l) H f-(C’-(,C'),
Al i=0 n—1J b j:o,...n—lJ P

+¢ (Mg (R-19]. (20) (28)

where with ¢,=—co. We can now convert the partition function to
the path integral form in Eq24) with

&5

= . (21 .
2Mmy Sw =2 [¢ (A)gi(fi+0) — e [Mmardhlet ()¢ (1) ]

However, we want a discretization that will minimize the M
dependence om; so that fewer lattice steps in the temporal _ he (Mywa 7 ) T )
direction can be used, and results for differentcan be he (s 2, [Me(+l9+ 6 Men=Ig]
directly compared.

Let us review the conversion from the operator formalism
to path integrals. The free neutron lattice Hamiltonian is

n,lg

(29)

This lattice action has temporal discretization error©gf),
B 3\ fo whereas the action in E€R0) has errors 0D(«). Sinceh is
Hyn = 2 My—pt m—)a1 (N9)2y(Ng) a small parameter, this is an improvement and so the depen-
st N dence ony, has been significantly reduced.

1 ta Lo . .o It is conventional to define a new normalization fpr
- o 2 [al(A9a(is+ 19 + al(iga (= 19)].
N

Aglgi Ci, = cie"(mN"“)“t. (30)
(22
- ) Then
We want to convert the partition function for free neutrons,
Z=Trlexp(~ BHwN)] 7= g 2m At f Dc'De* expl- S, (3D)
=Tr exp(— asHan) exp(— asHan) - - - exd— aHan) 1,
(23)  Where
into the form Sw= 3 [ () 1+ 0) — e (e ()]
A
Z:J DcDc* exp[— Sl (24 . e e e
‘hz [ci(Mc N+l +c(MNc/(n-19]. (32
Using the identity[27] il
eXd&TXijaj]: :exdaT(ex— Diayl:, (25) We observe that the neutron chemical potential is in fact
) coupled to an exactly conserved neutron number operator
we can write since it appears in the same manner as a lattice gauge con-
exp(— aHwy) = texd - hgy(a’,a)]: + O(h), 26 nection in the temporal direction. Comparing the two actions
A= e A~ hw(@.a)] by (26) (20) and(32), we can summarize the difference as follows. If
where we write
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%mp'ez 2 [C:(ﬁ)Ci(ﬁ*‘ 6)] + E [(=1+(my— wa+X) Tr[:th_l(aT)th-luLt-z(a)i T :Ul(aT)fluO(a) - UO(aT)
fid n ) X foty -1(a):]. (42)
X (Me(M]-h 2 [6 (Mg +1y

In the path integral formalism this is equivalent to

Algi
+c (R)g(A- TS)], (33 f DcDc* F(c,c* )exd- S|, (43
where
where
X=6h, (34 " .
then F(c,c* ) =vp-1(C U -2(CL 1) =+ vo(Co)U ~1(Co) -
(44)
Sw= 2 [€M e () (i +0)] - X [c] (e ¢/ ()] i i i -
N = i i e i We note thav; is a function ofc;, whereasy; is a function of
Cj+1.
~h 2 ¢ (M)e/(f+19 +¢ (M) (- 19]. (35)
Algi VIl. FREE NEUTRAL PION
In momentum space we have The lattice action for a free neutral pion is
- E* _ EE, Iz e—ik*0+(mN—,u)at _ e—6h m2 ~ .
= 2 )'(){ Sro=| | 52+ 3+ ot |2 m ()
: A
X COS(k*'s)} : (36) - X [em(f)m(ii+1)], (45)
| ~
s n,l
We now have the free neutron correlation function on the,nere
lattice,
(€0.€1,62,89) = (", ap, o, ). (46)
f De’De* ¢ (e (0)exH - Sl 1 § ) In momentum space the action is
- ik A
= L_L32 e "Dy(k), 2
J Dc'De* expl- S Tk Spn= 2 (= k>w<k>[(7” + 3) a+at-2 e cos(k*.)] ,
fi 1
(37) (47)
(no sum oveli) where the free neutron propagator is and so
- 1
Dy(k) = . (38 -
(k) erikoHmymay _ go6h _ op 'S coske) (38) f Damm(n)m(0)exd - S, ] i i
Is - _2 e—ik*-ﬁD (k)
LL3S m
f Dmexdg-S,.] Tk
VI. NEUTRON CORRELATION FUNCTIONS
At a nonzero time step there are some subtleties going (48)
from the correlation functions in the operator formalism towhere the free neutral pion propagator is
correlation functions in the path integral formalism. We have 1
Z=Trexp(— otH) ... exd— a;H)exp(— otH)] D(k) = e (49
7 -1\
=Tr:fL4(@a): - fy(@a) = fo@'a):],  (39) 2 ( 2 +3>“t+ o' = 276 coske)
where the total number of time stepd.isand each of thé;'s In this first exploratory study we are not concerned with
are the same, the issue of exact chiral symmetry on the lattice and there-
e fat v fore will neglect the Haar measure. This aspect of exact chi-
fj@',a): = exp(— aH) + O(h). (400 ral symmetry will be investigated in a future study along

Suppose we wish to calculate with the inclusion of charged nucleons and pions.
Tr[uLt—l(a)ULt—l(aT):th—l: ~ Uy(@)vy(ah):fiiug(@ve(@”): fo:l.

(41) . . _
In the continuum, the pion-nucleon coupling makes a con-
This can be rewritten as tribution to the integrand of the partition function of the form

VIIl. NEUTRAL PION-NEUTRON COUPLING
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exp{—% f d*D N[ 7,(6 - V) IN |, (50)

where o=(0y,0,,05) are Pauli matrices for spin;,
=(m, 7, 73) are Pauli matrices for isospin,

>

D=1+—, (51)

and FP"S~ 183 MeV is the pion decay constant,

(0lj&a mp(p)) = |5ab St (52

We keep only the term involving the neutral pion and

neutron,

eXp{%fCﬁX(CT&UCJ 6770):| (53)

The simplest lattice discretization of this interaction term is

eXF[_ S’n’ﬁN]’ (54)

where

vl g’*“tE{[cmcm ¢ (R)c, (M 1AL my()}
gAatE {c;(A)c, (MATmo(R) — iAZ ()]}

gA“tE (€} (A)c; (MAZmo(f) + i AZmo() ]}

(55)

and

A o) = (A +1) = (i = 1). (56)

We now use a temporally improved discretization. We can

PHYSICAL REVIEW C0, 014007(2004
imol imol * Lo
S+ = S 6l (s (i+0
n,i
+ 2 6 (M~ 1+(my = wagd
n,i,j

+ X (e ~h S [c] (Ae(A+1y
Algi

+c (A)GMi-Tg], (57)
with X;;(R) given by the matrix

. -
6h - gA tAg o) - 92? A% \2 A ()
9t " 9t
- oF (AT +iAj)mo(R)  6h+ oF. Azmo(1)
(58)
Then our temporally improved action is
Swean = 2 €M () (+0) - X ¢ ()
A ni.j
X(eX)yc] () ~h 2 [¢ () (+19
Algi
+¢ (Mg (A= 19]. (59)
IX. NEUTRON CONTACT TERM
The neutron contact term has the form
Hiwi = C2 aj(May(Maf(May (). (60)
n,i

We can rewrite the contribution at lattice siigto the parti-
tion function using a discrete Hubbard-Stratonovich transfor-
mation[31]. ForC=<0,

exfl - Caal(May(M)a](Ma, ()]

-2 > exp{— {% +)\s(ﬁ)}

s(A)=+1

x[af(May () +aj(Ma(f) - 1]}, (61)

where
coshi = ex;(— %) . (62)

Since
e”+e‘x=2exp(— %) (63)

we can write

= In[exp(— %) +\exp(- Cay) — 1} ) (64)

write the simple lattice action for the free neutron with pion- The simplest lattice discretization gives a contribution to ac-

neutron coupling as

tion,

014007-6



NUCLEAR LATTICE SIMULATIONS WITH CHIRAL... PHYSICAL REVIEW C 70, 014007(2004)

CB imol much attention in the literature. The point is that operator
_ =3 § ple 65) . 2 L . 2
> Lo+ Set Sy ( ordering atO(\?) cannot be ignored sinck?~ O(a;). We
will deal with this in the same way that we constructed the
where temporally improved action for the free neutron and the

pion-neutron coupling. We write

simple imple imple
S S S

N

== 2 \s(f) (66)

and
impl Ca, => ¢ (Me(i+0) + X ¢ (AN[— 1 +(my - a8,
SZIKTJJ e_ 2 [?t + )\s(ﬁ)] [c}(ﬁ)cT(ﬁ) + cj(ﬁ)cl(ﬁ)] _ i, i
n (67) + X(Mie(M) ~h 2 [¢ (MG +1 +¢ (Mei-19],
nlgi

However, this actually gives a result that is inconsistent with (68)
the Hamiltonian operator form in Eq61) in limit o;— 0.
The problem is somewhat subtle and has not been givewith X;;(i) equal to

Oac Ca gacx A
6h - %Am(ﬁ) + 7t + \s(fi) 2’;‘: ZAL(AT - iAD) mo(R)
9 g ' 9
AL AL
oF, (AT +iAS) mo(F) 6h+ ?Am(ﬁ) + 7 +s()
I
then as shown in Fig. 3. If we write the pion-nucleon interaction
o (M) (ot (2 1 . term to orderO(g,) in momentum space, we have a contri-
St sy = 2 €M HG (A)e] (1 +0) = 2 ¢ () bution to the action of the form
n,i ni,J
X(eXM)c/ () - h > [} ()G (A+19 :
- g a/e o =N » ~ 7 >
Al e LIS [€}(~ k= BIE] (k) € (- k= BE| (k) J7o(P)
F.VLoL, - i
+c (A A-19]. 70
(QEIGRIR) (70 g
Xsin(ps3) + =~ ==
X. ONE-LOOP NEUTRON SELF-ENERGY FaVLoL
In the next few sections we calculate several lattice Feyn- XE [E}(— k- ﬁ)Ei(IZ)]wo(ﬁ)[sin(p*l) —isin(p«)]
man diagrams. These calculations will serve as a check that <5
our nonperturbative simulation is functioning properly in the -
small coupling limitg,—0, C—0. It will also give us a 'gA“ts 2[@( K- BJE, (K mo(B)sin(p-1)
reference point to measure how nonperturbative the interac- FavloLe
tions are at physical values fg, and C and for various
densities. +i Sln(p*z)]- (72)

At O(gf\) we have a contribution to the neutron self-
energy due to a neutral pion and neutron intermediate stat§hen the diagram in Fig. 3 leads to a contribution to the
self-energy that goes as

)

ki

b

%ﬂ?, j

FIG. 3. Neutron self-energy due to a neutral pion and neutron FIG. 4. Neutron self-energy due to therNN interaction in the
intermediate state. temporally improved action.
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@Rk gaare
SNEK) == 5 F2L3L E D (@DN(k*'P)[S'nZ(p*l)+S|n2(p*2)
t
+ smz(p*s)]. (72)

Our temporally improved action hasarNN interaction

of the form

8F2 gr2 ©

n,

S=...- daet '6“2 ¢ (M) (MALm(?,  (73)
ls

which gives rise to the diagram in Fig. 4. We get an addi-

tional contribution to the self-energy,

gA

2, >
3\ (k) = SF; e "X, (74)

where

PHYSICAL REVIEW €0, 014007(2004)

p.J

ki ki

FIG. 5. Neutron self-energy due to the contact interaction.

=0 L32 D (P)[SIMP(p1) + SiM(pey) + SirF(pe3)].
t

(75
At O(C) we have the one-loop diagram shown in Fig. 5. If
the vertex is located at lattice sife we can isolate the rel-

evant lowest-order interaction in the path integral starting
from

l * *
5 E o(Cay/2:4rs(i) exde—eh(e—[cat/zﬂs@]_ 1)(CT(n)C%(ﬁ)+ Cl(ﬁ)cl(ﬁ))]_ (76)
s(N)=+1
Expanding the exponential, we get
1 E oI Cay2as(i] 1+e_6h(e_[ca‘/2wm3_ DLE (ei()+ ¢, (e ()] . (77)
24t e (e CHZAN - 126 (R)e! () ()e] ()

We find that

1 E dCal2ns](g{Cal2nsMl_ 1) =0 (78)

2 =21
and
- 2 e[Cat/2+)\s(ﬁ)](e—[Cat/2+)\s(ﬁ)] 1)2=e_ca‘— 1.
24(i=21
(79
So to lowest order, we can write the interaction as
e (e e~ 1)c (M) (R)c, (M| (). (80)
Therefore, the contribution to the self-energy is
3Ok = (e Cau-1)Y, (81)

where

J De'De* ¢ (0)¢ (0)exi - Su]

Y= (no sum ovel)

ch’Dc* exp[— Sl

1 .
=- —E Dn(k). (82

This self-energy term is proportional %, which in turn is
proportional to the neutron density with @1 «,) time dis-
cretization correction.

XI. ONE-LOOP PION SELF-ENERGY

At O(g3) we have a contribution to the pion self-energy
due to a neutron and neutron-hole intermediate state, as
shown in Fig. 6. The contribution to the self-energy is

2gaare
F2L3L,

X[SirP(key ) + SirP(ksy) + sirf(keg)],  (83)

SO (k) = - >, D(B)DN(K+ )
p

Our temporally improved action has a term of the form

014007-8
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—- . - .

D! D.i

= E+ﬁ,j
k+p, j
FIG. 8. Two-loop connected bubble diagramQ{gi).
FIG. 6. Pion self-energy due to neutron-neutron hole intermedi-

ate states.
gé : —6hYE D_(K)[SiM(Ke1) + Sirf(Kep) + SirP(Kes)]
_ gacf ~6h 2 )
= ,2 G M/ DAl (69 _m Y. (89
e

This leads to the diagram in Fig. 7 and gives an additional

contribution At O(C) we have the connected bubble diagram shown in

Fig. 10. If the vertex is located at lattice sife the lowest-
2(92)(9 29A o sirP) + sird( ” order interaction is
N(k)="--- e °"Y[sinf(ksq) + Sinf(ksy) + Sinf(k«s)
= pz € sk ? ) e P(e % - 1) (e (A)C] (Mc! (). (90)
(85) Summing over all sites, we find that the connected bubble in
Fig. 10 has the amplitude

XIl. TWO-LOOP AVERAGE ENERGY L3Le (e Cu - 1)Y2, (92

We will calculate the shift in the average energy by com-
puting XIll. AVERAGE ENERGY FROM SIMULATIONS

P Z(62,0) The average energy can be computed by taking
-—In ﬁ . (86) —(a/3B)In Z and then adding.A to the result, wherd is the
9B 0.0 average number of nucleons. The partition function is given

The logarithm of the full partition function is the sum of the by

connected diagrams. A(D(gf\), we get a contribution from ) 3 cpL®
the connected bubble diagram shown in Fig. 8. Z(pB) o« e A mAL g(CAI) f DwDsDc'Dc*
The amplitude for this bubble can be obtained in a
straightforward manner from either E¢f2) and(83): X eXd — SunsaNNssN — Srar — Ssdl - (92
2 212 It is convenient to define a new partition functi@ with
_ 9a€
=TEN 2 Dn(B)D(K+ B)D (K)[Sin(Kep) + SirP(key) normalization,
t Q
+ smz(k*g)]. (87) zZ'(p= f D7DsDc'De* expl— Sun+ anntshn = Srr ~ Ssel-
In our temporally improved action the term (93

& Z' is what we actually compute in the simulation. Then
5=~ "> ¢ (e (MIAEm(M].  (88)

8F2e = ' 3_Cps
nlgi —£|nz ——ﬁh’lz +2(mN ,LL)L —EL (94)

produces the diagram shown in Fig. 9. The amplitude for this
process can be computed from either EG) or (85) and is

ki
ﬁ’i '

k— k—
FIG. 7. Pion self-energy due to themNN interaction in the FIG. 9. Two-loop connected bubble due tararNN interaction
temporally improved action. in the temporally improved action ﬂ(gf\).
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TABLE I. (a) (@™«—a) for g4=0,C=-0.135.(b) (a"s—a') for
ga=0,C=-0.135.(c) E/A for ga=0,C=-0.135.

(€] ng 0 1 2
Free 0.7568 0.5027 0.3444
One-loop 0.7453 0.5059 0.3537
Simulation 0.744®@) 0.50573)  0.35373)
FIG. 10. Two-loop connected bubble @{C). ®) Ns .
Free —0.03903
After computing €d/dB)In Z, we subtract out the value One-loop -0.03940
for —(9/B)In Z at the sameB, but zero neutron density. In Simulation ~ -0.0393@)
our theory we have not included pion self-interactions.
Therefore, in the absence of neutrons we can calculate(® Free 6.665
-(d/9B)In Z for free pions exactly. If we later decide to in- Two-loop 6.653
clude pion self-interactions, then a separate simulation with Simulation 6.6521)
only pions will be needed for this calculation.
At zero neutron density and free neutral pions, the lattice
. ) 1
path integral gives E =- ;% IN[Z/Zion] + . (100

Z' = Zpjon=1{de{(S,.); I ™2, (95)

o . . In the simulationd.; is kept fixed, andy, is varied in order to
where(S,,);; are the coefficients of the quadratic form in the computed/ 4.

pion actionS,.. We find

J 19 2 _
- EB In{[del((SW)ij)]‘lfz}z EEBE,(: In[ (%T + 3>at+ o !

XIV. WEAK COUPLING RESULTS

In this section we check that the results of our numerical
simulations at weak coupling agree with our results from
->e cos(kﬂ)] . (96)  perturbation theory. For the neutrons we define the temporal
| two-point correlation functions,

n,

This quantity is the pion contribution td(#/dB)In Z'. This is <a<—t> a"y = Z ' Tr{exd- (8- nayH]a; (n,0,0,0

not exactly what one might define as the pion contribution to

the energy, though it is closely related. To calculate the pion xexp(- nvyH)al(0,0,0,0} (109
contribution 1o the energy, one also needs to add and spatially separated correlation functions in theirec-
1 J 1 tion
2L (@) =L, (97) .
o N (a—a') = Z*Trlexp(- BH)a,(0,n5,0,0a1(0,0,0,0].
which arises from an additional factor of (102)

1 |k The results are exactly the same in thand z directions.

\T;t (98) Similarly for the neutral pion, we define the temporal and
spatial correlation functions

in the partition function. This factor is due to the conjugate

momenta integrations going from the Hamiltonian formalism

to the path integral formalism,

0

(e )y =Z1 Tr{exd - (B - nia)H]7(n,,0,0,0

xexp(— nya;H)7(0,0,0,0}, (103
AT #
f dp<qn+1|exp{7az—] [pX(plan ng
q (7 1) = Z T exp(= BH)m(0,n,,0,0)7(0,0,0,0].
x f dpexp[— %p“ ip(qnﬂ—qn)} (104

At weak coupling we compare the temporal and spatial
w2 exnl - i(q —q)? (99) correlation functions for the neutron and pion, as well as the
\;’E— AT T+l )| - energy per neutronE/A. We use the parametera™
=150 MeV, B=2.0, L=3, L=3, m{™=939 MeV, and
After we calculate €9/ 98)In Z, we can compute the average mEThVS: 135 MeV, u=my—0.1. We first takegy,=0 and C
energy per nucleon using =-0.135. In Tables(k) and [b) we show the results for the

014007-10
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free neutron correlation functions, the one-loop results using

PHYSICAL REVIEW C 70, 014007(2004)

TABLE II. (a) (@™« a) for gx=0.750C=0.

the self-energy correction given in E@1), and the results
of our Monte Carlo simulation.

In Table [c) we show the free neutron value for the en-
ergy per neutron, the two-loop corrected value using Eq.
(91), and the result of the simulation.

N 0 1 2
Free 0.7568 0.5027 0.3444
One-loop(lin) 0.7586 0.4978 0.3400

There is no correction to the free pion correlation function Simulation(lin) 0.758%1) 0.49741)  0.33991)
wheng,=0. We see that all the simulation results match the One-loop(exp) 0.7496 0.5005 0.3475
loop calculations fog,=0 and smallC. Simulation(exp)  0.74941) 0.500G1) 0.34721)

For C=0 and smally,, there are two sets of diagrams that
we would like to separately compare with simulation results.

The temporally improved neutron action has the form TABLE Il. (b) (a"s—a') for ga=0.750C=0
SuneaNN = E e™Hne (A)C/ (A + 0-> ¢ (R) Ng 1
ni,j
~ Free -0.03903
~X()). o () — “(Re (R
X (e )jci () h|2 (e (Mei(+1g) One-loop(lin)  -0.03 859
s Simulation(lin)  —-0.03 8561)
+c (A)c(R—19], (105) One-loop(exp) ~ —-0.03 890
WhereXij(ﬁ) Simulation(exp)  —-0.03 8861)
Iat Ogac At >
6h - o T Asm(n) - 2F. (AT —iAZ) mo(M) TABLE II. (c) (m™c ) for ga=0.750C=0
- %(A’f +iAD)my(F)  Bh+ %Asm(m n 0 1
" 106 Free 0.1764 0.0615
(108 One-loop(lin) 0.1780 0.0644
The one-loop corrected neutron correlator gets a contribution Simulation(lin) 0.178@3) 0.06433)
from both Egs.(72) and (74); the one-loop corrected pion One-loop(exp) 0.1810 0.0660
correlator uses Eq#33) and(85); and the one-loop corrected Simulation(exp) 0.18092) 0.06592)
energy per neutron has terf&’) and(89). The comparisons
with simulation results forg,=0.750,C=0, are shown in
Tables I(a)-lI(e) and are labeled by “exp,” which stands for n _ _
the exponential form used in the temporally improved action. TABLE II. (d) (s> m) for ga=0.750£=0

We will also remove the temporally improved diagrams N 1
which gave us the contributiong4), (85), and(89). We do s
this by replacing the term in the action Eree 0.0364

One-loop(lin) 0.0366
_ * XA A Simulation(lin) 0.03642)
c (n)(e iCi(n 10
gj (M )i () (207 One-loop(exp) 0.0367
Simulation(exp) 0.036%2)
by
c (MM (A)c! (R), 108
r% (MM (M)e] (M) (108 TABLE II. (e) E/A for g4=0.750 C=0
whereM;;() is Free 6.665
Two-loop (lin) 6.673
Simulation(lin) 6.67231)
exp(- 6h) Two-loop (exp) 6.640
Simulation(exp) 6.6381)
9 9a%
-1 —ng moi) =S (Al -iAZ)mo()
X gA gay QA ) ' The comparisons with simulation results for this linearized

(109
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h- h-
> >

FIG. 11. One-loop correction to the one-particle irreducible
7NN vertex. 3> >

XV. RENORMALIZATION OF COEEFICIENTS FIG. 12. Two-particle irreducible one pion exchange
diagram.
We now discuss the renormalization of operator coeffi-
cients in our lowest-order e_ffect|ve Lagrangian. _At Z€ro _tem'two-particle irreducible kernel must be iterated and summed
perature andu<my, the pion self-energy vanishes since i, g orders. The result is that theN scattering Green's

]Eherﬁ aré no neutr?n holes. TZUS' there is no renormalizatiofyction has a cutoff dependence that cannot be regarded as
or the pion wave function and mass. a small correction. We will therefore need a nonperturbative

In the Weinberg counting scheme, the neutron self-ener . — . .
g g g%alculatlon of theNNNN contact interaction counterterm. We

at zero temperature and<my gets a contribution from dia- i the Schrodi i the lattice to deal with
grams such as the one shown in Fig. 3. This is the Iowes‘tﬁ'_ use the schrodinger equation on the fatlice to deal wi

order diagram and comes at chiral order3. Since we re- U is problem, and we describe the procedure in the next sec-
quire cutoff independence, the counterterm diagrams mudion-

also be at order=3. Since this is a small correction, we will XVI. LATTICE SCHRODINGER EQUATION

ignore wave function and kinetic energy renormalization for AND PHASE SHIFTS

the neutron in the present study. Although the mass counter- _

term is also small, we will take some extra care with this one We adjustC, the coefficient of théNNNN contact interac-
since we are interested in precise measurements of the etien, so that theNN swave scattering length matches the
ergy per neutron. In the nonrelativistic formalism, the massxperimental valuésee, for examplg,32]). In order to cal-
counterterm can be regarded as a shift in the definition of theulate the phase shifts, we will solve the lattice Schrédinger
chemical potential. Its purpose is to eliminate cutoff depen-equation for the two-neutron system and observe the
dence in loop diagrams, but we will also use it to absorbasymptotic form of the scattering wave functions. The first

residual effects due to the finite temporal spacing, step will be to construct the potential between two neutrons.
Let |0) be the free noninteracting vacuum. The two-
o= & 0 (110 neutron state with zero total spatial momentum, zero total
' a ' intrinsic spin, and spatial separatidncan be constructed as
We will refer to the mass counterterm Asy. In the limit of ~ 1 SO e trz Lo ot
i : = + - + .
zero neutron density, the neutrons behave as free partlcles.|ns> \52L3% [ai(Rs+ myaj(my) —aj(As + myai(my]0)

We can, therefore, calculatemy in that limit. From a theo-

retical point of view it would be nice to measure the average (112

energy at both zero density and zero temperature. Computgve let V,, be the lowest-order potential in the Weinberg

tionally, however, it is more practical to make the measurecounting scheme between two-neutron states with zero total

ment at nonzero temperature. spatial momentum, zero total intrinsic spin, and spatial sepa-
At zero temperature angt<<my, the one-loop contribu- ration fi,. Using the fact that

tion to the one-particle irreducibleNN vertex is shown in

Fig. 11. This process is also at chiral order3. Since this is

a small correction, we will also ignore the renormalization of

the 7NN coefficient and set its value to equal the physically
measured value,

g~ 1.25. (111

At zero temperature and <my, the lowest-order contri-
bution to theNN scattering Green'’s function is due to iterat-
ing the lowest-order two-particle irreducible diagrams. The
lowest-order two-particle irreducible diagrams are shown in
Figs. 12 and 13. When there is a bound state, or the scatter-
ing length is very large compared to other relevant scales, the FIG. 13. Two-particle irreducible contact diagram.

014007-12



NUCLEAR LATTICE SIMULATIONS WITH CHIRAL... PHYSICAL REVIEW C 70, 014007(2004)

1 T T T TABLE lll. Hard-sphere scattering phase shifts.
r k & —kr
05 4.5 0.117 -0.56 -0.53
. /\ /\ 5.5 0.147 -0.85 -0.81
'U - -—
E o x/\ /\ /\A/\/\/\J\/\/\/\/\ /\ /\x 6.5 0.179 1.20 1.16
i il
sin(lor+5o(k)/x ~ sin(kx SR’ comparisons with the_ exact cq.nt.inuum resdd.t.—The results
05| ] suggest that our lattice Schrodinger technique seems to be
functioning properly.
We now use the lattice Schrodinger technique to tune the
] coupling C to reproduce the large scattering length that is

observed in nature. In Table IV we show the best fit values
for CPYsfor several different lattice spacings. We can com-

FIG. 14. Measuringswave phase shifts from the asymptotic Pare this with the pionless case where the only interaction is
form of scattering states in a periodic box of lengthiThe center of ~ the contact interaction. In this case we need only sum bubble
the potential is ak=0 andx=L. diagrams, and those give the relatiGp, < a. The pionless
calculation on the lattice has been discussefBHhj.

distance in lattice units L

=11 i’ |é (R R
2,,<n3| A, )0" i1 ay, (i $)o7%; 2y ()| XVII. ZONE DETERMINANT METHOD

Ng.Ng
_ . It can be shown that fermions at inverse temperajgire
=28, (ndny 113 it spatial hopping parametéf have a localization length
we have [36] of
- _ | ~\Bn'. 116
e—lns-kS*El sz(ks*)ls \B ( )
Von(fg) = 2F2 L32 2 S + Caﬁs,o. This idea was u_sed if37] to generate an algorithm cal!ed
K —T 43— E cos(k* the zone determinant method to speed up the calculation of
2 S determinants using LU decomposition in nuclear lattice

(114) simulations.
The technique is relatively simple to describe. Mtbe

After obtainingV,y we can construct a matrix representa- the neutron matrix, in general anx n complex matrix. We
tion for the Hamiltonian in the two-neutron sector and solvepartition the lattice spatially into separate zones such that the
the time-independent lattice Schrodinger equation. At thigength of each zone is larger than the localization lerigth
stage, one could implement Llscher’s formula for the measince most neutron world lines do not cross the zone bound-
suring phase shifts in a cubical periodic b33,34. How-  aries, they would not be affected if we set the zone boundary
ever, in our case we can construct the eigenvectors explicitliiopping terms to zero. Hence, we anticipate that the deter-
using Lanczos iteration, and so we find it more straightfor-minant of M can be approximated by the product of the
ward and accurate to read the phase shifts directly from thgubmatrix determinants for each spatial zone.
asymptotic forms of thes-wave scattering states. Since we  Let us partition the lattice into spatial zones labeled by
are working in a periodic box, it is important to measure theindex j. Let{P;} be a complete set of matrix projection op-

phase shifts far away from the center of the potential and alrators that project onto the lattice sites within spatial Zone
its translations in the periodic box, as shown in Fig. 14.  \We can write

Before using this technique for our actual neutron system,
we first test our technique for hard-sphere scattering where M= P;MP; = Mg+ Mg, (117
the exact result for the-wave phase shifts is well known. If ]
the spheres have radii/2 (therefore, the centers of the

spheres are separated by then thes-wave phase shift has where
the form TABLE IV. CPhYsfor different lattice spacings.
8= —kr, (1195
at CPY{MeV2)
wherek is the momentum. The momentuknfor a given
scattering state can be determined from the energy and the 150 MeV -4.0<10°°
free particle nonrelativistic dispersion relation. In Table 1lI 200 MeV -3.4x10°°
we show results for thes-wave phase shifty, at inverse 250 MeV -3.1X 1075
lattice spacingi*=150 MeV, with particle masses setra, 300 MeV —2.9x10°5

and a lattice volume of 20We use several radiiand show
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M= >, PMP;, (118
i

Mg =2, P,MP;. (119
i#]

If the zones can be sorted into even and odd sets so that
PiMP; =0 (120

wheneveri is even and is odd or vice versa, then we say
that the zone partitioning is bipartite. We now have

dei(M) = de(Mg)det(1 + M;*Mp)

= de(Mg)exp{Tr[log(1 +My*™Mp)T}.  (122)
Using an expansion for the logarithm, we have
. (_ 1)p—l -1
detM) = de(Mg)exp) >, Tr{(Mg*Mp)?]
p=1
(122
Let us define
o L
A =de(Mgyexp) >, Tr[(Mg"Mg)?]
p=1
(123

Let \(M5*Mp) be the eigenvalues dil;*Mg andR be the
spectral radius,

R= max (\(Mg'Mg)|). (124)
k=1,...n
It has been showf38] that forR<1,
detfM) - A
|detM) = Anl _ cR"eR", (125
| A
where
c=-nlog(1-R). (126

The spectral radiuR determines the convergence of our ex-

pansion.R can be reduced by increasing the size of the spa-

tial zone relative to the localization lengthIn the special

case where the zone partitioning is bipartite, we note that for é

any oddp,
Tr[(Mg*Mg)P]=0. (127

In that case,

Aomi1 = Aom. (128

In the simulations presented in this article we use the zone

determinant method to calculate neutron matrix determi
nants. We use the second-order approximafigmith zones
of the smallest possible size, a single spatial pdihtl,1] in
the notation off37]). An estimate of the approximation error

PHYSICAL REVIEW €0, 014007(2004)

80 . . - .
L=3, Tphys =37.5MeV —+—
L=4, T"hys =37.5MeV -—x—-
nr L=575"° =37.5 MeV :--%-— -
o~ L=3, 10 = 25.0 MeV &
D L =4, 700" =250 MeV --® -
=2 60 L=5,7°W8 _ 250 MeV o~
g
=50 | . .
E
< R L &
;’: 40 Py B = : &
53]
30 -
20 1 1 1 1
0 0.5 1 15 2
plonPe

FIG. 15. Energy per neutron in MeV for temperatures 25 and
37.5 MeV and different lattice volumes. The inverse lattice spacing
is a1=150 MeV ande;=1.0.

XVIII. RESULTS

We have generated simulation results &t=150 MeV;
o=a;/a=1.0; temperature&*"s=25 and 37.5 MeV; and lat-
tice sizes 8 4% and 3. Half-filling at this lattice spacing
occurs at

P 564,
PN

(129

where pP¥® is the normal nuclear density of about 0.17
nucleons per frh The calculations were performed using the
zone determinant method using the second-order approxima-
tion A, with zones consisting of a single spatial point. By
calculating the exact determinants of some generated matrix
configurations, we estimate the systemic error for the zone
expansion to be about0.1% for TPWs=37.5 MeV and
<0.5% for TPYs=25.0 MeV.

We have dealt with the complex action by computing the
phase as an observable,

80 T T
Free neutron, s

1
=37.5 MeV +
70 Free neutron, Tp:ys =25.0MevV x|
Free neutron, ’;}S =15.0MeV  x
S g0 b Free neutron, 7P¥3=75MeV o |
+
+ +  7F x
g I x X ’
< ¥
240 F yx X T * .
g % * )
< 30 - " * o -
1) x o
= *@K* * o
5, 20 o .
O
10 @ .
1 1 1 1 1 1
h 0 0.2 0.4 0.6 0.8 1 1.2 1.4
plp P

FIG. 16. Energy per nucleon in MeV for temperatures 7.5, 15,

is discussed along with each measurement in the results segs, and 37.5 MeV and lattice volumé.4The inverse lattice spacing

tion.

is a1=150 MeV anda;=1.0.
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70 T T T T 40."'|'"|"'|"*|'--|‘--+---|---
Results —+— B emperature
B Freg neutron x| 35 F o 50 MeV
65 Loop calculation % c o ecnamamm aneGaaaEa0Es x 20 M?v
— x B 3 MeV
3 + 10.0 MeV
§ or X * ] * 5.9 Mesf ]
” X ¥ 7
£ 551 « y i
< ]
S50 F T*x X i ]
z .
g L ]
-EL-U or ¥ E # E: 3 T —E
40 | - : 3
35 | | . . O_'...l...|‘..|...|...|‘..|...|.‘.:
0 0.5 1 15 5 .00 .04 .08 .12 .16 I 20 24 28 .32
olp phys p [fm™?]
N

FIG. 19. (Color online Energy per neutron vs density for vari-
FIG. 17. Energy per neutron for temperature 37.5 MeV andg g temperatures as reported[ir6]. pﬁlhys is at 0.17 nucleons per
comparisons with the free neutron result on the lattice and 100gm3 The low energy per neutron at=50 MeV is likely due to
calculations. The inverse lattice spacingais=150 MeV anda; lattice cutoff effects.

=1.0.
son we show in Fig. 16 the energy per neutron for the free

ReSnl-i Im S[n] neutron for temperatureB"=7.5, 15, 25, and 37.5 MeV.
E[n] Olnle ¢ In Figs. 17 and 18 we compare results for free neutrons on
_ReSn]i Im gn] (130 the lattice and loop calculations for the physical valuegof
m € € andC. As is easily seen, the loop calculations are not very
close to the nonperturbative simulation results for the densi-
For the various simulations presented here, we found an avies shown. This is an indication that we have a strongly
erage phase of about coupled many-body system. This is what we expect, since
the scattering length is much larger than the average separa-
tion between neutrons. This also shows why a nonperturba-
tive calculation is necessary.

O)=

e—Re in]e—i Im 9n]

[n]
E g Redn] ~0.95-1.00, (13D The flatness of our energy per neutron curves at these
[n] temperatures are intriguing and hopefully will be checked by

others in the near future. The results[@B] also see a flat-
and so this did not present a significant computational probtening of the energy per neutron curve with increasing tem-
lem. peraturegsee Fig. 19 We can also compare with variational
In Fig. 15 we show the energy per neutron as a function ofalculations[39] and recent quantum Monte Carlo results
neutron density. Our results indicate a rather flat function fofrom [2]. They observe a significant flattening of the energy
the energy per neutron as a function of density. For compariper neutron curve due to iteractions even at zero temperature

(see Fig. 20
80
I ' Results —+— 15 ' I ' I ' ' '
Free neutron X
70 Loop calculation ¥ L _
S e
2 60| * ] -7
m\/ X o~ ]O . ”r * .
‘5: * % ,// * o
z 50 | X - = | PR ]
S % % N— ’//
$ X ¥ é //*, (o]
;’: 40 I « I)ﬁ i x E * * | 51 *’/ 7]
= ><)K ,*'/
30 | - L *ik, i
20 L 1 L L 0 . L . L . | . | .
0 0.5 1 1.5 2 0 0.02 0.04 0.06 0.08 0.1
. 3
plp P1Ye Density (fm )

FIG. 18. Energy per neutron for temperature 25.0 MeV and FIG. 20. Energy per neutron at zero temperature and low den-
comparisons with the free neutron result on the lattice and loogsities as reported ifi2]. The circles are quantum Monte Carlo re-
calculations. The inverse lattice spacingais'=150 MeV anda; sults from[2] and the stars are variational results fr¢&9]. The
=1.0. dashed line shows one-half the result for a free Fermi gas.
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60

55

4]
o

EPY8/4 - myPYS (MeV)
IS B
o (8, ]

30

FIG. 21. Dependence oy, for temperature 37.5 MeV. The in-
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verse lattice spacing ia™1=150 MeV.

We implemented a temporally improved action in order to
remove as much as possible of the dependence;sg;/a,
the ratio of the temporal lattice spacing to the spatial lattic
spacing. In Fig. 21 we show the dependenceagrior «
=1,0.667,0.5. We see that the dependenceyas minimal.

We now look at how the energy per neutron changes a
the interaction strength is varied. According to Table 1V, the
values for CPWs at a'=150 MeV is
X 10°° MeV~2. If we however take the coupling to be 50%,
100%, and 150% of the physical value, we find the results

physical

shown in Fig. 22.

In Figs. 23 and 24 we show density versus chemical po-
tential and comparisons with the free neutron and loop cal-
culations. We can see again that loop calculations are not
close to the simulation results. For fixed chemical potential
the simulation density is higher than the loop-calculated den
sity, which is in turn higher than the free neutron density.

If our effective field theory formalism is valid, we should
be able to reproduce the same results for different lattic

spacings. There are, however, practical computational corlt - . .
and operator coefficients are determined by fitting to nucleon

straints oma. The determinant zone expansion for fixed zone ) ; :
scattering data. The leading dependence on the lattice spac-
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FIG. 22. Dependence o@P"sfor temperature 37.5 MeV.
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XIX. SUMMARY AND FUTURE DIRECTIONS
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for temperature

size and expansion order will break down if the lattice spac-
ing is too small. Fora™t=200 MeV, we estimate that the
&econd-order approximatioft, with zones consisting of a
single spatial point produces errors of size roughly 3%. In
Fig. 25 we compare the energy per neutron as measured for
a1=150 MeV anda =200 MeV at temperature 37.5 MeV.
The results are in rather good agreement. In the future we
hope to use larger zone sizes and do simulations at lattice
spacings up t@ =300 MeV.

We have introduced an approach to the study of nuclear
Iand neutron matter which combines chiral effective field

theory and lattice methods. Nucleons and pions are treated
on the lattice as point particles and we are able to probe
larger volumes, lower temperatures, and greater nuclear den-
éities than in lattice QCD. The low-energy interactions of

hese particles are governed by chiral effective field theory

' h 5 -2 '
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gphys - 28}85 mg¥-2 [EREVERENE I I ' ' Results +——+—
CPYS _ 5'0.10°% MeV2 -+ o L Free neutron 4
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The inverse lattice spacing &*=150 MeV anda;=1.0.
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FIG. 24. Density vs chemical potential for temperature 25 MeV.
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65 T T 150 MoV 3 T and improvements upon this work. In the course of produc-
0 | 2-1 Z 200 MgVZ£;4 VT ing data for this article, we have also generated a large
amount of data for the neutral pion, neutron, and pair density
% 55 | . correlation functions. This data will be analyzed and pre-
= 50 L | sented in a forthcoming article. In the near future we also
2 T plan to study the pionless version of the same neutron sys-
“Sz 45 + t % LT T S s tem. There has been a recent mean-field discussion of this
. i : & model [40]. Without pions, the phase will be completely
S Aor 71  eliminated from the matrix determinant. This is due to the
5, 35| 4 fact that the matrix is purely real, and in the Hubbard-
Stratonovich formalism the up and down spins appear in a
30 I 7 way that the matrix determinant is the square of a real num-
o5 ! ) ! ! ber. We also plan to extend our studies to include neutrons,
0 0.5 1 15 2 protons, neutral and charged pions, and make use the recent
AL progress in implementing exact nonlinear representations of

chiral symmetry on the lattice41-44.

FIG. 25. Comparison of the energy per neutron resultsafr
=150 and 200 MeV at temperature 37.5 MeV. ACKNOWLEDGMENTS
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