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We study nuclear and neutron matter by combining chiral effective field theory with nonperturbative lattice
methods. In our approach, nucleons and pions are treated as point particles on a lattice. This allows us to probe
larger volumes, lower temperatures, and greater nuclear densities than in lattice QCD. The low-energy inter-
actions of these particles are governed by chiral effective theory, and operator coefficients are determined by
fitting to zero temperature few-body scattering data. The leading dependence on the lattice spacing can be
understood from the renormalization group and absorbed by renormalizing operator coefficients. In this way,
we have a realistic simulation of many-body nuclear phenomena with no free parameters, a systematic expan-
sion, and a clear theoretical connection to QCD. We present results for hot neutron matter at temperatures
20–40 MeV and densities below twice the nuclear matter density.
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I. INTRODUCTION

The nuclear many-body problem has long been recog-
nized as one of the central questions in nuclear physics[1].
The traditional approach to the many-body problem is based
on the assumption that nucleons can be treated as nonrelativ-
istic point particles interacting mainly via two-body poten-
tials. Three-body potentials, relativistic effects, and non-
nucleonic degrees of freedom are assumed to give small
corrections. The many-body problem is studied by solving
the many-body Schrödinger equation. The ground-state prop-
erties of light nuclei and neutron drops have been analyzed
by several groups using variational methods and Green’s
function Monte Carlo[2–7].

These methods have been very successful, but there are
several good reasons for seeking an alternative approach.
One reason is the desire for a theory that is more directly
grounded in QCD. We expect this theory to explain why
two-body forces are dominant, and how the interaction
should be chosen. In addition to that, we would like to have
a framework that allows the calculations to be systematically
improved, and provides an estimate of the errors due to con-
tributions that have been neglected. If we consider the inter-
action of a single nucleon with pions and external fields,
such a framework is provided by chiral perturbation theory.
In a very influential paper, Weinberg proposed to extend ef-
fective field theory methods to the nucleon-nucleon interac-
tion [8]. Over the last several years, effective field theory
methods have been applied successfully to the two- and
three-nucleon system[9,10]. Effective field theory methods
have also been applied to nuclear and neutron matter, but
these calculations rely on a perturbative expansion in powers
of the Fermi momentum[11,12].

Our aim in this work and the goal of the Nuclear Lattice
Collaboration as a whole[13] is to extend effective field
theory methods to the nuclear many-body problem. For this
purpose we investigate the many-body physics of low-energy
nucleons and pions on the lattice. Our starting point is the
same as that of Weinberg. We begin with the most general

local Lagrangian involving pions and low-energy nucleons
consistent with translational invariance, isospin symmetry,
and spontaneously broken chiral symmetry. This yields an
infinite set of possible interaction terms with increasing num-
bers of derivatives and/or nucleon fields. Degrees of freedom
associated with antinucleons, heavier mesons such as ther,
and heavier baryons such as theD, are integrated out. The
contribution of these particles appear as coefficients of local
terms in our pion-nucleon Lagrangian. We also integrate out
nucleons with momenta greater thanpa−1, wherea is the
lattice spacing.

The operator coefficients in our effective Lagrangian are
determined by fitting to experimentally measured few-body
nucleon scattering data at zero temperature. The dependence
on the lattice spacing is described by the renormalization
group and can be absorbed by renormalizing operator coef-
ficients. In this way, we construct a realistic simulation of
many-body nuclear phenomena with no free parameters. In
our discussion we present results for hot neutron matter at
temperatures 20–40 MeV and densities below twice the
nuclear matter density.

The first lattice study of nuclear matter was done by
Brockmann and Frank[14]. They used a momentum lattice
and analyzed the quantum hadrodynamics model of Walecka
[15]. Müller et al. [16] were the first to look at infinite
nuclear and neutron matter on a spatial lattice at finite den-
sity and temperature. They used an effective nucleon-
nucleon interaction on a 43 lattice and found evidence for
saturation in nuclear matter. The approach we pursue is simi-
lar in spirit to that of[16]. The main difference is the inclu-
sion of pion degrees of freedom and our use of chiral effec-
tive field theory with Weinberg power counting. The nuclear
liquid-gas transition has also been studied using classical lat-
tice gas models[17–20].

II. NOTATION

Before describing the physics it will be helpful to first
define the notation that we use throughout our discussion.
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We let nW represent integer-valued lattice vectors on our 3
+1 dimensional space-time lattice. We use a subscripted “s”
such as innWs to represent purely spatial lattice vectors. We
use subscripted indices such asi , j for the two spin compo-

nents of the neutron,↑ and ↓. We let 0̂ be the unit lattice

vector in the time direction and letl̂ s=1̂,2̂,3̂ be the corre-
sponding unit lattice vectors in the spatial directions. A sum-
mation symbol such as

o
ls

s1d

implies a summation over valuesls=1,2,3.
We leta be the lattice spacing in the spatial direction and

L be the length of the spatial lattice in each direction.at is
the lattice spacing in the temporal direction andLt is the
length in the temporal direction. We letat be the ratio be-
tween lattice spacings,

at =
at

a
. s2d

Throughout, we use dimensionless parameters and operators,
which correspond with physical values multiplied by the ap-
propriate power ofa. We use the superscript “phys” such as
in mN

phys to represent quantities with physical units. We use
a,a† to represent annihilation and creation operators for the
neutron, whereasc,c* indicates the corresponding Grass-
mann variables in the path integral representation. We use
the symbol:fsa†,ad: to indicate the normal ordering of op-
erators infsa†,ad. We let mN be the mass of the neutron,m
be the neutron chemical potential, andmp be the mass of the
pion.

Our conventions for Fourier transforms are

f̃skWd =
1

ÎLt L
3o

nW
eikW* ·nW fsnWd, s3d

fsnWd =
1

ÎLt L
3o

kW
e−ikW* ·nW f̃skWd, s4d

where

kW* = S2p

Lt
k0,

2p

L
k1,

2p

L
k2,

2p

L
k3D . s5d

We use periodic boundary conditions in the spatial directions
and periodic/antiperiodic boundary conditions in the tempo-
ral direction for bosons/fermions.

We letDNskWddi j andDpskWd be the free neutron and neutral
pion propagators. For notational convenience, the spin-
conservingdi j in the neutron propagator will from here on be

implicit. The self-energies,SNskWd andSpskWd, are defined by

DN
fullskWd =

DNskWd

1 − SNskWdDNskWd
, s6d

Dp
fullskWd =

DpskWd

1 − SpskWdDpskWd
, s7d

whereDN
fullskWd andDp

fullskWd are the fully interacting propaga-
tors.

III. NONPERTURBATIVE EFFECTIVE FIELD THEORY

Effective field theory provides a systematic method to
compute physical observables order by order in the small
parameterQ/Lx, whereLx is the chiral symmetry breaking
scale andQ=sq,mp , . . .d. Here,q is a small external momen-
tum andmp is the mass of the pion. The simplest processes
are those that involve only pions and external fields. In this
case the effective field theory is perturbative. At any order in
Q there are only a finite number of diagrams that have to be
included. At lowest order these are tree diagrams with the
leading-order interaction. At higher order, diagrams with
more loops or higher-order terms in the interaction have to
be taken into account.

Weinberg showed[8,21] that the simple diagrammatic ex-
pansion for nucleon-nucleon scattering is spoiled by infrared
divergences. He suggested performing an expansion of the
two-particle irreducible kernel(see Fig. 1) and then iterating
the kernel to all orders to produce the scattering Green’s
function (see Fig. 2). It was later pointed out that a possible
difficulty arises because at any order inQ, an infinite number
of diagrams is summed, and it is not clear that all the cutoff
dependence at that order can be absorbed into counterterms
that are present at that order[22]. This problem does indeed
arise if one considers nucleon-nucleon scattering in the1S0
channel[23], but in practice the cutoff dependence appears
to be very weak[24].

In this work we go one step further and consider the
nuclear many-body problem. We expand the terms in our
action order by order,

S= S0 + S1 + S2 + ¯. s8d

At order k in the chiral expansion, we calculate observables
by evaluating the functional integral

FIG. 1. Chiral expansion of the two-particle irreducible
kernel.

FIG. 2. The two-particle irreducible kernel is iterated to all or-
ders to produce the nucleon-nucleon scattering Green’s function.
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kGsN̄,N,pdlk

=
E DNDN̄DpGsN̄,N,pdexpf− S0 − S1 − ¯ − Skg

E DNDN̄Dp expf− S0 − S1 − ¯ − Skg
. s9d

We will refer to this approach as nonperturbative effective
field theory. The interactions at chiral orderk or less are
iterated to arbitrary loop order. The functional integral is
computed nonperturbatively by putting the pion and nucleon
fields on the lattice and using Monte Carlo sampling. Since
the number of diagrams at a given chiral order grows expo-
nentially with the number of nucleons, a nonperturbative
technique such as this is needed for systems with more than
just a few nucleons.

Computing the path integral corresponds to summing an
infinite set of diagrams. As in the case of iterating the two-
particle irreducible kernel to determine the full two-nucleon
Green’s function, it is not clear that the cutoff dependence at
a given order in the low-energy expansion can be absorbed
into a finite number of coefficients in the action. In practice
we will therefore restrict ourselves to lattice cutoffs that sat-
isfy pa−1,Lx. In order to show that the effective field
theory calculation is consistent, we must find a window of
lattice cutoffs such that the many-body calculation is inde-
pendent of the cutoff up to terms that are higher order. We
shall study this question numerically in our results section.

IV. LOWEST ORDER INTERACTIONS

Our momentum cutoff scale ispa−1 and we choose the
lattice spacing so that

mp , pa−1 , Lx. s10d

An irreducible diagram is one that cannot be disconnected by
cutting internal lines that match the set of incoming or out-
going particles. In the Weinberg counting scheme[8,21,25]
we estimate the chiral order of an irreducible diagram by
associating one power ofQ/Lx for each derivative interac-
tion or explicit factor ofmp, four powers for each loop inte-
gral, one inverse power for each nucleon internal line, and
two inverse powers for each pion internal line. Ifn is the
chiral order of an irreducible diagram, it can be shown that

n = 4 −
en

2
+ 2l − 2c + o

vertex i

di . s11d

In Eq. (11), en is the number of external nucleons,l is the
number of loops,c is the number of connected pieces, anddi
for each vertex is

di = #] + # mp +
#n

2
− 2, s12d

where #] is the number of derivatives, #mp is the number of
explicit factors ofmp in the coefficient, and #n is the number
of nucleon fields. It turns out that #mp is always an even
number.

We let N represent the nucleon fields,

N = F proton

neutron
G ^ F↑

↓ G . s13d

We useti to represent Pauli matrices acting in isospin space,
and we usesW to represent Pauli matrices acting in spin space.
Pion fields are notated aspi. We denote the pion decay con-
stant asFp

phys<183 MeV and let

D = 1 +pi
2/Fp

2 . s14d

The lowest-order Lagrange density for low-energy pions and
nucleons is given by terms withdi =0 [26],

Ls0d = −
1

2
D−2fs¹W pid2 − ṗi

2g −
1

2
D−1mp

2pi
2

+ N̄fi]0 − smN − mdgN − D−1Fp
−1gAN̄ftisW ·¹W pigN

− D−1Fp
−2N̄fei jktip jṗkgN −

1

2
CS:N̄NN̄N:

−
1

2
CT:N̄sWN · N̄sWN:. s15d

gA is the nucleon axial coupling andei jk is the Levi-Civita
symbol. The chemical potentialm controls the nucleon den-
sity andm will be set very close tomN. At next order we have
terms withdi =1,

Ls1d =
1

2mN
N̄¹W 2N + . . . . s16d

We will include this kinetic energy term fromLs1d in our
lowest-order Lagrange density so that we get the usual free
nucleon propagator.

In this study we limit ourselves to the interactions of neu-
trons and neutral pions and consider processes with only up
to two pions. As a result we have at lowest order the terms

L = −
1

2
f− ṗ0

2 + s¹W p0d2 + mp
2p0

2g + aj
†Fi]0 +

¹W 2

2mN

− smN − mdGaj +
gA

Fp

ai
†sW i jaj ·¹W p0 − Ca↑

†a↑a↓
†a↓,

s17d

where a,a† are annihilation and creation operators for the
neutron. In the Euclidean formalism, we have the partition
function

Z =E DpDNDN̄exps− SEd =E DpDNDN̄expSE d4xLED ,

s18d

where
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LE = −
1

2
fṗ0

2 + s¹W p0d2 + mp
2p0

2g − aj
†F]0 −

¹W 2

2mN

+ smN − mdGaj +
gA

Fp

ai
†sW i jaj ·¹W p0 − Ca↑

†a↑a↓
†a↓.

s19d

We will use x0 to represent the Euclidean temporal coordi-
nate, rather than switching fromx0 to x4.

V. FREE NEUTRON

In the simplest discretization, the Euclidean lattice action
for free neutrons has the form

S
N̄N

simple
= o

nW,i

fci
*snWdcisnW + 0̂d + s− 1 + smN − mdat

+ 6hdci
*snWdcisnWdg − ho

nW,l̂s,i

fci
*snWdcisnW + l̂ sd

+ ci
*snWdcisnW − l̂ sdg, s20d

where

h =
at

2mN
. s21d

However, we want a discretization that will minimize the
dependence onat so that fewer lattice steps in the temporal
direction can be used, and results for differentat can be
directly compared.

Let us review the conversion from the operator formalism
to path integrals. The free neutron lattice Hamiltonian is

HN̄N = o
nWs,i

FSmN − m +
3

mN
Dai

†snWsdaisnWsdG
−

1

2mN
o

nWs,l̂s,i

fai
†snWsdaisnWs + l̂ sd + ai

†snWsdaisnWs − l̂ sdg.

s22d

We want to convert the partition function for free neutrons,

Z = Trfexps− bHN̄Ndg

= Trfexps− atHN̄Ndexps− atHN̄Nd . . . exps− atHN̄Ndg,

s23d

into the form

Z =E DcDc* expf− SN̄Ng. s24d

Using the identity[27]

expfai
†Xijajg = :expfai

†seX − 1di jajg:, s25d

we can write

exps− atHN̄Nd = :expf− hN̄Nsa†,adg: + Oshd, s26d

where

hN̄Nsa†,ad = o
nWs,i

fs1 − e−fsmN−mdat+6hgdai
†snWsdaisnWsdg

− he−fsmN−mdatg o
nWs,l̂s,i

fai
†snWsdaisnWs + l̂ sd

+ ai
†snWsdaisnWs − l̂ sdg. s27d

Introducing the extrae−fsmN−mdatg factor multiplying h is not
well motivated at this stage, but it insures that the neutron
chemical potential is coupled to an exactly conserved neu-
tron number operator[28,29]. We now use the correspon-
dence[27,30]

Trf: fn−1sa†,ad: . . . :f1sa†,ad < f0sa†,ad:g

=E dcn−1dcn−1
* . . .dc0dc0

*

3expF o
j=0,. . .,n−1

cj
*scj − cj+1dG p

j=0,. . .,n−1
f jscj

* ,cjd,

s28d

with cn=−c0. We can now convert the partition function to
the path integral form in Eq.(24) with

SN̄N = o
nWs,i

fci
*snWdcisnW + 0̂d − e−fsmN−mdat+6hgci

*snWdcisnWdg

− he−smN−mdato
nW,lsi

fci
*snWdcisnW + l̂ sd + ci

*snWdcisnW − l̂ sdg.

s29d

This lattice action has temporal discretization errors ofOshd,
whereas the action in Eq.(20) has errors ofOsatd. Sinceh is
a small parameter, this is an improvement and so the depen-
dence onat has been significantly reduced.

It is conventional to define a new normalization forci,

ci8 = cie
−smN−mdat. s30d

Then

Z = e−2smN−mdbL3E Dc8Dc * expf− SN̄Ng, s31d

where

SN̄N = o
nW,i

fesmN−mdatci
*snWdci8snW + 0̂d − e−6hci

*snWdci8snWdg

− ho
nW,l̂s,i

fci
*snWdci8snW + l̂ sd + ci

*snWdci8snW − l̂ sdg. s32d

We observe that the neutron chemical potential is in fact
coupled to an exactly conserved neutron number operator
since it appears in the same manner as a lattice gauge con-
nection in the temporal direction. Comparing the two actions
(20) and(32), we can summarize the difference as follows. If
we write
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S
N̄N

simple
= o

nW,i

fci
*snWdcisnW + 0̂dg + o

nW,i

fs− 1 + smN − mdat + Xd

3ci
*snWdcisnWdg − ho

nW,l̂s,i

fci
*snWdcisnW + l̂ sd

+ ci
*snWdcisnW − l̂ sdg, s33d

where

X = 6h, s34d

then

SN̄N = o
nW,i

fesmN−mdatci
*snWdci8snW + 0̂dg − o

nW,i

fci
*snWde−Xci8snWdg

− ho
nW,l̂s,i

fci
*snWdci8snW + l̂ sd + ci

*snWdci8snW − l̂ sdg. s35d

In momentum space we have

SN̄N = o
kW,i

c̃i
*s− kWdc̃i8skWdFe−ik*0+smN−mdat − e−6h

− 2ho
l̂s

cossk* ls
dG . s36d

We now have the free neutron correlation function on the
lattice,

E Dc8Dc * ci8snWdci
*s0dexpf− SN̄Ng

E Dc8Dc * expf− SN̄Ng
=

1

LtL
3o

kW
e−ikW* ·nWDNskWd,

s37d

(no sum overi) where the free neutron propagator is

DNskWd =
1

e−ik*0+smN−mdat − e−6h − 2ho l̂s
cossk* ls

d
. s38d

VI. NEUTRON CORRELATION FUNCTIONS

At a nonzero time step there are some subtleties going
from the correlation functions in the operator formalism to
correlation functions in the path integral formalism. We have

Z = Trfexps− atHd . . . exps− atHdexps− atHdg

= Trf: fLt−1sa†,ad: ¯ :f1sa†,ad < f0sa†,ad:g, s39d

where the total number of time steps isLt and each of thef j’s
are the same,

: f jsa†,ad: = exps− atHd + Oshd. s40d

Suppose we wish to calculate

TrfuLt−1sadvLt−1sa†d:fLt−1: ¯ u1sadv1sa†d:f1:u0sadv0sa†d:f0:g.

s41d

This can be rewritten as

Trf:vLt−1sa†dfLt−1uLt−2sad: ¯ :v1sa†df1u0sad < v0sa†d

3f0uLt−1sad:g. s42d

In the path integral formalism this is equivalent to

E DcDc* Fsc,c * dexpf− Sg, s43d

where

Fsc,c * d = vLt−1scLt−1
* duLt−2scLt−1d ¯ v0sc0

*duLt−1sc0d.

s44d

We note thatv j is a function ofcj, whereasuj is a function of
cj+1.

VII. FREE NEUTRAL PION

The lattice action for a free neutral pion is

Spp = FSmp
2

2
+ 3Dat + at

−1Go
nW

psnWdpsnWd

− o
nW,l̂

felpsnWdpsnW + l̂dg, s45d

where

se0,e1,e2,e3d = sat
−1,at,at,atd. s46d

In momentum space the action is

Spp = o
nW

ps− kWdpskWdFSmp
2

2
+ 3Dat + at

−1 − o
l̂

el cossk* ldG ,

s47d

and so

E DppsnWdps0dexpf− Sppg

E Dp expf− Sppg
=

1

LtL
3o

kW
e−ikW* ·nWDpskWd,

s48d

where the free neutral pion propagator is

DpskWd =
1

2FSmp
2

2
+ 3Dat + at

−1 − o l̂
el cossk* ldG . s49d

In this first exploratory study we are not concerned with
the issue of exact chiral symmetry on the lattice and there-
fore will neglect the Haar measure. This aspect of exact chi-
ral symmetry will be investigated in a future study along
with the inclusion of charged nucleons and pions.

VIII. NEUTRAL PION-NEUTRON COUPLING

In the continuum, the pion-nucleon coupling makes a con-
tribution to the integrand of the partition function of the form
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expF−
gA

Fp
E d4xD−1N̄ftassW ·¹W padgNG , s50d

where sW =ss1,s2,s3d are Pauli matrices for spin,ta

=st1,t2,t3d are Pauli matrices for isospin,

D = 1 +
pW 2

Fp
2 , s51d

andFp
phys<183 MeV is the pion decay constant,

k0u j5a
m upbspdl = idab

Fp

2
pm. s52d

We keep only the term involving the neutral pion and
neutron,

expF gA

Fp
E d4xsci

*sW i j cj ·¹W p0dG . s53d

The simplest lattice discretization of this interaction term is

expf− SpN̄Ng, s54d

where

S
pN̄N

simple
= −

gAat

2Fp
o
nW

hfc↑
*snWdc↑snWd − c↓

*snWdc↓snWdgD3
±p0snWdj

−
gAat

2Fp
o
nW

hc↑
*snWdc↓snWdfD1

±p0snWd − iD2
±p0snWdgj

−
gAat

2Fp
o
nW

hc↓
*snWdc↑snWdfD1

±p0snWd + iD2
±p0snWdgj.

s55d

and

Dl
±p0snWd = p0snW + l̂d − p0snW − l̂d. s56d

We now use a temporally improved discretization. We can
write the simple lattice action for the free neutron with pion-
neutron coupling as

S
N̄N

simple
+ S

pN̄N

simple
= o

nW,i

ci
*snWdcisnW + 0̂d

+ o
nW,i,j

ci
*snWdhf− 1 + smN − mdatgdi j

+ XijsnWdjcjsnWd − ho
nW,l̂s,i

fci
*snWdcisnW + l̂ sd

+ ci
*snWdcisnW − l̂ sdg, s57d

with XijsnWd given by the matrix

3 6h −
gAat

2Fp

D3
±p0snWd −

gAat

2Fp

sD1
± − iD2

±dp0snWd

−
gAat

2Fp

sD1
± + iD2

±dp0snWd 6h +
gAat

2Fp

D3
±p0snWd 4 .

s58d

Then our temporally improved action is

SN̄N+pN̄N = o
nW,i

esmN−mdatci
*snWdci8snW + 0̂d − o

nW,i,j

ci
*snWd

3se−XsnWddi j cj8snWd − ho
nW,l̂s,i

fci
*snWdci8snW + l̂ sd

+ ci
*snWdci8snW − l̂ sdg. s59d

IX. NEUTRON CONTACT TERM

The neutron contact term has the form

HN̄NN̄N = Co
nW,i

a↑
†snWda↑snWda↓

†snWda↓snWd. s60d

We can rewrite the contribution at lattice sitenW to the parti-
tion function using a discrete Hubbard-Stratonovich transfor-
mation [31]. For Cø0,

expf− Cata↑
†snWda↑snWda↓

†snWda↓snWdg

=
1

2 o
ssnWd=±1

expH− FCat

2
+ lssnWdG

3fa↑
†snWda↑snWd + a↓

†snWda↓snWd − 1gJ , s61d

where

coshl = expS−
Cat

2
D . s62d

Since

el + e−l = 2 expS−
Cat

2
D , s63d

we can write

l = lnFexpS−
Cat

2
D + Îexps− Catd − 1G . s64d

The simplest lattice discretization gives a contribution to ac-
tion,
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−
Cb

2
L3 + Sss+ S

sN̄N

simple
, s65d

where

Sss= − o
nW

lssnWd s66d

and

S
sN̄N

simple
= o

nW
HFCat

2
+ lssnWdGfc↑

*snWdc↑snWd + c↓
*snWdc↓snWdgJ .

s67d

However, this actually gives a result that is inconsistent with
the Hamiltonian operator form in Eq.(61) in limit at→0.
The problem is somewhat subtle and has not been given

much attention in the literature. The point is that operator
ordering atOsl2d cannot be ignored sincel2,Osatd. We
will deal with this in the same way that we constructed the
temporally improved action for the free neutron and the
pion-neutron coupling. We write

S
N̄N

simple
+ S

pN̄N

simple
+ S

sN̄N

simple

= o
nW,i

ci
*snWdcisnW + 0̂d + o

nW,i,j

ci
*snWdhf− 1 + smN − mdatgdi j

+ XijsnWdjcjsnWd − ho
nW,l̂s,i

fci
*snWdcisnW + l̂ sd + ci

*snWdcisnW − l̂ sdg,

s68d

with XijsnWd equal to

36h −
gAat

2Fp

D3
±p0snWd +

Cat

2
+ lssnWd −

gAat

2Fp

sD1
± − iD2

±dp0snWd

−
gAat

2Fp

sD1
± + iD2

±dp0snWd 6h +
gAat

2Fp

D3
±p0snWd +

Cat

2
+ lssnWd 4 , s69d

then

SN̄N+pN̄N+sN̄N = o
nW,i

esmN−mdatci
*snWdci8snW + 0̂d − o

nW,i,j

ci
*snWd

3se−XsnWddi j cj8snWd − ho
nW,l̂s,i

fci
*snWdcisnW + l̂ sd

+ ci
*snWdcisnW − l̂ sdg. s70d

X. ONE-LOOP NEUTRON SELF-ENERGY

In the next few sections we calculate several lattice Feyn-
man diagrams. These calculations will serve as a check that
our nonperturbative simulation is functioning properly in the
small coupling limit gA→0, C→0. It will also give us a
reference point to measure how nonperturbative the interac-
tions are at physical values forgA and C and for various
densities.

At OsgA
2d we have a contribution to the neutron self-

energy due to a neutral pion and neutron intermediate state,

as shown in Fig. 3. If we write the pion-nucleon interaction
term to orderOsgAd in momentum space, we have a contri-
bution to the action of the form

igAate
−6h

Fp
ÎL3Lt

o
kW,pW

fc̃↑
*s− kW − pWdc̃↑8skWd − c̃↓

*s− kW − pWdc̃↓8skWdgp0spWd

3sinsp*3d +
igAate

−6h

Fp
ÎL3Lt

3o
kW,pW

fc̃↑
*s− kW − pWdc̃↓8skWdgp0spWdfsinsp*1d − i sinsp*2dg

+
igAate

−6h

Fp
ÎL3Lt

o
kW,pW

fc̃↓
*s− kW − pWdc̃↑8skWdgp0spWdfsinsp*1d

+ i sinsp*2dg. s71d

Then the diagram in Fig. 3 leads to a contribution to the
self-energy that goes as

FIG. 3. Neutron self-energy due to a neutral pion and neutron
intermediate state.

FIG. 4. Neutron self-energy due to theppN̄N interaction in the
temporally improved action.
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SN
sgA

2dskWd =
gA

2at
2e−12h

Fp
2L3Lt

o
pW

DpspWdDNskW + pWdfsin2sp*1d + sin2sp*2d

+ sin2sp*3dg. s72d

Our temporally improved action has appN̄N interaction
of the form

S= . . .−
gA

2at
2

8Fp
2 e−6h o

nW,l̂s,i

ci
*snWdci8snWdfDls

±p0sndg2, s73d

which gives rise to the diagram in Fig. 4. We get an addi-
tional contribution to the self-energy,

SN
sgA

2dskWd = ¯ +
gA

2at
2

8Fp
2 e−6hX, s74d

where

X =
4

Lt L
3o

pW
DpspWdfsin2sp*1d + sin2sp*2d + sin2sp*3dg.

s75d

At OsCd we have the one-loop diagram shown in Fig. 5. If
the vertex is located at lattice sitenW, we can isolate the rel-
evant lowest-order interaction in the path integral starting
from

1

2 o
ssnWd=±1

esCat/2+lssnWdd expfe−6hse−fCat/2+lssnWdg − 1dsc↑
*snWdc↑8snWd+ c↓

*snWdc↓8snWddg . s76d

Expanding the exponential, we get

1

2 o
ssnWd=±1

efCat/2+lssnWdgH1 + e−6hse−fCat/2+lssnWdg − 1dfc↑
*snWdc↑8snWd+ c↓

*snWdc↓8snWdg
+ e−12hse−fCat/2+lssnWdg − 1d2c↑

*snWdc↑8snWdc↓
*snWdc↓8snWd J . s77d

We find that

1

2 o
ssnWd=±1

efCat/2+lssnWdgse−fCat/2+lssnWdg − 1d = 0 s78d

and

1

2 o
ssnWd=±1

efCat/2+lssnWdgse−fCat/2+lssnWdg − 1d2 = e−Cat − 1.

s79d

So to lowest order, we can write the interaction as

e−12hse−Cat − 1dc↑
*snWdc↑8snWdc↓

*snWdc↓8snWd. s80d

Therefore, the contribution to the self-energy is

SN
sCdskWd = e−12hse−Cat − 1dY, s81d

where

Y =
E Dc8Dc * ci

*s0dci8s0dexpf− SN̄Ng

E Dc8Dc * expf− SN̄Ng
sno sum overid

= −
1

LtL
3o

kW
DNskWd. s82d

This self-energy term is proportional toY, which in turn is
proportional to the neutron density with anOsatd time dis-
cretization correction.

XI. ONE-LOOP PION SELF-ENERGY

At OsgA
2d we have a contribution to the pion self-energy

due to a neutron and neutron-hole intermediate state, as
shown in Fig. 6. The contribution to the self-energy is

Sp
sgA

2dskWd = −
2gA

2at
2e−12h

Fp
2L3Lt

o
pW

DNspWdDNskW + pWd

3fsin2sk*1d + sin2sk*2d + sin2sk*3dg, s83d

Our temporally improved action has a term of the form

FIG. 5. Neutron self-energy due to the contact interaction.
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S= ¯−
gA

2at
2

8Fp
2 e−6h o

nW,l̂s,i

ci
*snWdci8snWdfDls

±p0sndg2. s84d

This leads to the diagram in Fig. 7 and gives an additional
contribution

Sp
sgA

2dskWd = ¯ +
2gA

2at
2

Fp
2 e−6hYfsin2sk*1d + sin2sk*2d + sin2sk*3dg.

s85d

XII. TWO-LOOP AVERAGE ENERGY

We will calculate the shift in the average energy by com-
puting

−
]

]b
lnFZsgA

2,Cd
Zs0,0d G . s86d

The logarithm of the full partition function is the sum of the
connected diagrams. AtOsgA

2d, we get a contribution from
the connected bubble diagram shown in Fig. 8.

The amplitude for this bubble can be obtained in a
straightforward manner from either Eq.(72) and (83):

−
gA

2at
2e−12h

Fp
2L3Lt

o
pW ,kW

DNspWdDNskW + pWdDpskWdfsin2sk*1d + sin2sk*2d

+ sin2sk*3dg. s87d

In our temporally improved action the term

S= . . .−
gA

2at
2

8Fp
2 e−6h o

nW,l̂s,i

ci
*snWdci8snWdfDls

±p0sndg2. s88d

produces the diagram shown in Fig. 9. The amplitude for this
process can be computed from either Eq.(74) or (85) and is

gA
2at

2

Fp
2 e−6hYo

kW
DpskWdfsin2sk*1d + sin2sk*2d + sin2sk*3dg

=
gA

2at
2L3Lt

4Fp
2 e−6hXY. s89d

At OsCd we have the connected bubble diagram shown in
Fig. 10. If the vertex is located at lattice sitenW, the lowest-
order interaction is

e−12hse−Cat − 1dc↑
*snWdc↑8snWdc↓

*snWdc↓8snWd. s90d

Summing over all sites, we find that the connected bubble in
Fig. 10 has the amplitude

L3Lte
−12hse−Cat − 1dY2. s91d

XIII. AVERAGE ENERGY FROM SIMULATIONS

The average energy can be computed by taking
−s] /]bdln Z and then addingmA to the result, whereA is the
average number of nucleons. The partition function is given
by

Zsbd ~ e−2smN−mdbL3
esCb/2dL3E DpDsDc8Dc *

3expf− SN̄N+pN̄N+sN̄N − Spp − Sssg. s92d

It is convenient to define a new partition functionZ8 with
normalization,

Z8sbd =E DpDsDc8Dc * expf− SN̄N+pN̄N+sN̄N − Spp − Sssg.

s93d

Z8 is what we actually compute in the simulation. Then

−
]

]b
ln Z = −

]

]b
ln Z8 + 2smN − mdL3 −

C

2
L3. s94d

FIG. 7. Pion self-energy due to theppNN̄ interaction in the
temporally improved action.

FIG. 8. Two-loop connected bubble diagram atOsgA
2d.

FIG. 9. Two-loop connected bubble due to appN̄N interaction
in the temporally improved action atOsgA

2d.

FIG. 6. Pion self-energy due to neutron-neutron hole intermedi-
ate states.
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After computing −s] /]bdln Z, we subtract out the value
for −s] /]bdln Z at the sameb, but zero neutron density. In
our theory we have not included pion self-interactions.
Therefore, in the absence of neutrons we can calculate
−s] /]bdln Z for free pions exactly. If we later decide to in-
clude pion self-interactions, then a separate simulation with
only pions will be needed for this calculation.

At zero neutron density and free neutral pions, the lattice
path integral gives

Z8 ~ Zpion = hdetfsSppdi jgj−1/2, s95d

wheresSppdi j are the coefficients of the quadratic form in the
pion actionSpp. We find

−
]

]b
lnhfdetssSppdi jdg−1/2j =

1

2

]

]b
o
kW

lnFSmp
2

2
+ 3Dat + at

−1

− o
l̂

el cossk* ldG . s96d

This quantity is the pion contribution to −s] /]bdln Z8. This is
not exactly what one might define as the pion contribution to
the energy, though it is closely related. To calculate the pion
contribution to the energy, one also needs to add

1

2
L3Lt

]

]b
lnsatd =

1

2
L3Ltb

−1, s97d

which arises from an additional factor of

F 1
Îat

GL3Lt

s98d

in the partition function. This factor is due to the conjugate
momenta integrations going from the Hamiltonian formalism
to the path integral formalism,

E dpkqn+1uexpFDT

2

]2

]2q
Guplkpuqnl

~E dpexpF−
DT

2
p2 + ipsqn+1 − qndG

~
1

ÎDT
expF−

1

2DT
sqn+1 − qnd2G . s99d

After we calculate −s] /]bdln Z, we can compute the average
energy per nucleon using

E

A
= −

1

A

]

]b
lnfZ/Zpiong + m. s100d

In the simulationsLt is kept fixed, andat is varied in order to
compute] /]b.

XIV. WEAK COUPLING RESULTS

In this section we check that the results of our numerical
simulations at weak coupling agree with our results from
perturbation theory. For the neutrons we define the temporal
two-point correlation functions,

ka↔
nt

a†l ; Z−1Trhexpf− sb − ntatdHga↑snt,0,0,0d

3exps− ntatHda↑
†s0,0,0,0dj s101d

and spatially separated correlation functions in thex direc-
tion

ka↔
ns

a†l ; Z−1Trfexps− bHda↑s0,ns,0,0da↑
†s0,0,0,0dg.

s102d

The results are exactly the same in they and z directions.
Similarly for the neutral pion, we define the temporal and
spatial correlation functions

kp↔
nt

pl ; Z−1 Trhexpf− sb − ntatdHgpsnt,0,0,0d

3exps− ntatHdps0,0,0,0dj, s103d

kp↔
ns

pl ; Z−1Trfexps− bHdps0,ns,0,0dps0,0,0,0dg.

s104d

At weak coupling we compare the temporal and spatial
correlation functions for the neutron and pion, as well as the
energy per neutron,E/A. We use the parametersa−1

=150 MeV, b=2.0, L=3, Lt=3, mN
phys=939 MeV, and

mp
phys=135 MeV, m=mN−0.1. We first takegA=0 and C

=−0.135. In Tables I(a) and I(b) we show the results for the

FIG. 10. Two-loop connected bubble atOsCd.

TABLE I. (a) kant↔a†l for gA=0,C=−0.135.(b) kans↔a†l for
gA=0,C=−0.135.(c) E/A for gA=0,C=−0.135.

(a) nt 0 1 2

Free 0.7568 0.5027 0.3444

One-loop 0.7453 0.5059 0.3537

Simulation 0.7447(2) 0.5057(3) 0.3537(3)

(b) ns 1

Free −0.03903

One-loop −0.03940

Simulation −0.03936s2d

(c) Free 6.665

Two-loop 6.653

Simulation 6.652(1)
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free neutron correlation functions, the one-loop results using
the self-energy correction given in Eq.(81), and the results
of our Monte Carlo simulation.

In Table I(c) we show the free neutron value for the en-
ergy per neutron, the two-loop corrected value using Eq.
(91), and the result of the simulation.

There is no correction to the free pion correlation function
whengA=0. We see that all the simulation results match the
loop calculations forgA=0 and smallC.

For C=0 and smallgA, there are two sets of diagrams that
we would like to separately compare with simulation results.
The temporally improved neutron action has the form

SN̄N+pN̄N = o
nW,i

esmN−mdatci
*snWdci8snW + 0̂d − o

nW,i,j

ci
*snWd

3se−XsnWddi j cj8snWd − ho
nW,l̂s,i

fci
*snWdcisnW + l̂ sd

+ ci
*snWdcisnW − l̂ sdg, s105d

whereXijsnWd

3 6h −
gAat

2Fp

D3
±p0snWd −

gAat

2Fp

sD1
± − iD2

±dp0snWd

−
gAat

2Fp

sD1
± + iD2

±dp0snWd 6h +
gAat

2Fp

D3
±p0snWd 4 .

s106d

The one-loop corrected neutron correlator gets a contribution
from both Eqs.(72) and (74); the one-loop corrected pion
correlator uses Eqs.(83) and(85); and the one-loop corrected
energy per neutron has terms(87) and(89). The comparisons
with simulation results forgA=0.750, C=0, are shown in
Tables II(a)–II(e) and are labeled by “exp,” which stands for
the exponential form used in the temporally improved action.

We will also remove the temporally improved diagrams
which gave us the contributions(74), (85), and(89). We do
this by replacing the term in the action

− o
nW,i,j

ci
*snWdse−XsnWddi j cj8snWd s107d

by

o
nW,i,j

ci
*snWdMijsnWdcj8snWd, s108d

whereMijsnWd is

exps− 6hd

33 − 1 −
gAat

2Fp

D3
±p0snWd −

gAat

2Fp

sD1
± − iD2

±dp0snWd

−
gAat

2Fp

sD1
± + iD2

±dp0snWd − 1 +
gAat

2Fp

D3
±p0snWd 4 .

s109d

The comparisons with simulation results for this linearized
action are also shown in Tables II(a)–II(e) and are labeled by
“lin.” We see that all simulation results match the loop cal-
culation forC=0 and smallgA

TABLE II. (a) kant↔a†l for gA=0.750,C=0.

nt 0 1 2

Free 0.7568 0.5027 0.3444

One-loop(lin) 0.7586 0.4978 0.3400

Simulation(lin) 0.7585(1) 0.4974(1) 0.3399(1)

One-loop(exp) 0.7496 0.5005 0.3475

Simulation(exp) 0.7494(1) 0.5000(1) 0.3472(1)

TABLE II. (b) kans↔a†l for gA=0.750,C=0

ns 1

Free −0.03 903

One-loop(lin) −0.03 859

Simulation(lin) −0.03 856s1d
One-loop(exp) −0.03 890

Simulation(exp) −0.03 886s1d

TABLE II. (c) kpnt↔pl for gA=0.750,C=0

nt 0 1

Free 0.1764 0.0615

One-loop(lin) 0.1780 0.0644

Simulation(lin) 0.1780(3) 0.0643(3)

One-loop(exp) 0.1810 0.0660

Simulation(exp) 0.1809(2) 0.0659(2)

TABLE II. (d) kpns↔pl for gA=0.750,C=0

ns 1

Free 0.0364

One-loop(lin) 0.0366

Simulation(lin) 0.0364(2)

One-loop(exp) 0.0367

Simulation(exp) 0.0365(2)

TABLE II. (e) E/A for gA=0.750,C=0

Free 6.665

Two-loop (lin) 6.673

Simulation(lin) 6.672(1)

Two-loop (exp) 6.640

Simulation(exp) 6.638(1)
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XV. RENORMALIZATION OF COEFFICIENTS

We now discuss the renormalization of operator coeffi-
cients in our lowest-order effective Lagrangian. At zero tem-
perature andm,mN, the pion self-energy vanishes since
there are no neutron holes. Thus, there is no renormalization
for the pion wave function and mass.

In the Weinberg counting scheme, the neutron self-energy
at zero temperature andm,mN gets a contribution from dia-
grams such as the one shown in Fig. 3. This is the lowest
order diagram and comes at chiral ordern=3. Since we re-
quire cutoff independence, the counterterm diagrams must
also be at ordern=3. Since this is a small correction, we will
ignore wave function and kinetic energy renormalization for
the neutron in the present study. Although the mass counter-
term is also small, we will take some extra care with this one
since we are interested in precise measurements of the en-
ergy per neutron. In the nonrelativistic formalism, the mass
counterterm can be regarded as a shift in the definition of the
chemical potential. Its purpose is to eliminate cutoff depen-
dence in loop diagrams, but we will also use it to absorb
residual effects due to the finite temporal spacing,

at =
at

a
. 0. s110d

We will refer to the mass counterterm asDmN. In the limit of
zero neutron density, the neutrons behave as free particles.
We can, therefore, calculateDmN in that limit. From a theo-
retical point of view it would be nice to measure the average
energy at both zero density and zero temperature. Computa-
tionally, however, it is more practical to make the measure-
ment at nonzero temperature.

At zero temperature andm,mN, the one-loop contribu-

tion to the one-particle irreduciblepN̄N vertex is shown in
Fig. 11. This process is also at chiral ordern=3. Since this is
a small correction, we will also ignore the renormalization of

the pN̄N coefficient and set its value to equal the physically
measured value,

gA < 1.25. s111d

At zero temperature andm,mN, the lowest-order contri-
bution to theNN scattering Green’s function is due to iterat-
ing the lowest-order two-particle irreducible diagrams. The
lowest-order two-particle irreducible diagrams are shown in
Figs. 12 and 13. When there is a bound state, or the scatter-
ing length is very large compared to other relevant scales, the

two-particle irreducible kernel must be iterated and summed
to all orders. The result is that theNN scattering Green’s
function has a cutoff dependence that cannot be regarded as
a small correction. We will therefore need a nonperturbative

calculation of theN̄NN̄N contact interaction counterterm. We
will use the Schrödinger equation on the lattice to deal with
this problem, and we describe the procedure in the next sec-
tion.

XVI. LATTICE SCHRÖDINGER EQUATION
AND PHASE SHIFTS

We adjustC, the coefficient of theN̄NN̄N contact interac-
tion, so that theNN s-wave scattering length matches the
experimental value(see, for example,[32]). In order to cal-
culate the phase shifts, we will solve the lattice Schrödinger
equation for the two-neutron system and observe the
asymptotic form of the scattering wave functions. The first
step will be to construct the potential between two neutrons.

Let u0l be the free noninteracting vacuum. The two-
neutron state with zero total spatial momentum, zero total
intrinsic spin, and spatial separationnWs can be constructed as

unWsl =
1

Î2L3o
m

fa↑
†snWs + mW sda↓

†smW sd − a↓
†snWs + mW sda↑

†smW sdgu0l.

s112d

We let V2N be the lowest-order potential in the Weinberg
counting scheme between two-neutron states with zero total
spatial momentum, zero total intrinsic spin, and spatial sepa-
ration nWs. Using the fact that

FIG. 11. One-loop correction to the one-particle irreducible

pN̄N vertex.

FIG. 12. Two-particle irreducible one pion exchange
diagram.

FIG. 13. Two-particle irreducible contact diagram.
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o
nWs8,nWs9

knWsu:ai9
† snWs9dsi9 j9

ls9 aj9snWs9dai8
† snWs8dsi8 j8

ls8 aj8snWs8d:unWsl

= − 2dls8,ls9
knWsunWsl, s113d

we have

V2NsnWsd =
gA

2

2Fp
2L3o

kWs

e−inWs·k
W
s*ols

sin2sks*dls

mp
2

2
+ 3 −ols

cossks*dls

+ CdnWs,0
.

s114d

After obtainingV2N we can construct a matrix representa-
tion for the Hamiltonian in the two-neutron sector and solve
the time-independent lattice Schrödinger equation. At this
stage, one could implement Lüscher’s formula for the mea-
suring phase shifts in a cubical periodic box[33,34]. How-
ever, in our case we can construct the eigenvectors explicitly
using Lanczos iteration, and so we find it more straightfor-
ward and accurate to read the phase shifts directly from the
asymptotic forms of thes-wave scattering states. Since we
are working in a periodic box, it is important to measure the
phase shifts far away from the center of the potential and all
its translations in the periodic box, as shown in Fig. 14.

Before using this technique for our actual neutron system,
we first test our technique for hard-sphere scattering where
the exact result for thes-wave phase shifts is well known. If
the spheres have radiir /2 (therefore, the centers of the
spheres are separated byr), then thes-wave phase shift has
the form

d0 = − kr, s115d

where k is the momentum. The momentumk for a given
scattering state can be determined from the energy and the
free particle nonrelativistic dispersion relation. In Table III
we show results for thes-wave phase shiftd0 at inverse
lattice spacinga−1=150 MeV, with particle masses set atmN
and a lattice volume of 203. We use several radiir and show

comparisons with the exact continuum result −kr. The results
suggest that our lattice Schrödinger technique seems to be
functioning properly.

We now use the lattice Schrödinger technique to tune the
coupling C to reproduce the large scattering length that is
observed in nature. In Table IV we show the best fit values
for Cphys for several different lattice spacings. We can com-
pare this with the pionless case where the only interaction is
the contact interaction. In this case we need only sum bubble
diagrams, and those give the relationCphys~a. The pionless
calculation on the lattice has been discussed in[35].

XVII. ZONE DETERMINANT METHOD

It can be shown that fermions at inverse temperatureb
with spatial hopping parameterh8 have a localization length
[36] of

l , Îbh8. s116d

This idea was used in[37] to generate an algorithm called
the zone determinant method to speed up the calculation of
determinants using LU decomposition in nuclear lattice
simulations.

The technique is relatively simple to describe. LetM be
the neutron matrix, in general ann3n complex matrix. We
partition the lattice spatially into separate zones such that the
length of each zone is larger than the localization lengthl.
Since most neutron world lines do not cross the zone bound-
aries, they would not be affected if we set the zone boundary
hopping terms to zero. Hence, we anticipate that the deter-
minant of M can be approximated by the product of the
submatrix determinants for each spatial zone.

Let us partition the lattice into spatial zones labeled by
index j . Let hPjj be a complete set of matrix projection op-
erators that project onto the lattice sites within spatial zonej .
We can write

M = o
i,j

PjMPi = M0 + ME, s117d

where

TABLE III. Hard-sphere scattering phase shifts.

r k d0 −kr

4.5 0.117 −0.56 −0.53

5.5 0.147 −0.85 −0.81

6.5 0.179 −1.20 −1.16

FIG. 14. Measurings-wave phase shifts from the asymptotic
form of scattering states in a periodic box of lengthL. The center of
the potential is atx=0 andx=L.

TABLE IV. Cphys for different lattice spacings.

a−1 CphyssMeV−2d

150 MeV −4.0310−5

200 MeV −3.4310−5

250 MeV −3.1310−5

300 MeV −2.9310−5
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M0 = o
i

PiMPi , s118d

ME = o
iÞ j

PjMPi . s119d

If the zones can be sorted into even and odd sets so that

PjMPi = 0 s120d

wheneveri is even andj is odd or vice versa, then we say
that the zone partitioning is bipartite. We now have

detsMd = detsM0ddets1 + M0
−1MEd

= detsM0dexphTrflogs1 + M0
−1MEdgj. s121d

Using an expansion for the logarithm, we have

detsMd = detsM0dexpHo
p=1

`
s− 1dp−1

p
TrfsM0

−1MEdpgJ .

s122d

Let us define

Dm = detsM0dexpHo
p=1

m
s− 1dp−1

p
TrfsM0

−1MEdpgJ .

s123d

Let lksM0
−1MEd be the eigenvalues ofM0

−1ME and R be the
spectral radius,

R= max
k=1,. . .,n

sulksM0
−1MEdud. s124d

It has been shown[38] that for R,1,

udetsMd − Dmu
uDmu

ø cRmecRm
, s125d

where

c = − n logs1 − Rd. s126d

The spectral radiusR determines the convergence of our ex-
pansion.R can be reduced by increasing the size of the spa-
tial zone relative to the localization lengthl. In the special
case where the zone partitioning is bipartite, we note that for
any oddp,

TrfsM0
−1MEdpg = 0. s127d

In that case,

D2m+1 = D2m. s128d

In the simulations presented in this article we use the zone
determinant method to calculate neutron matrix determi-
nants. We use the second-order approximationD2 with zones
of the smallest possible size, a single spatial point([1,1,1,] in
the notation of[37]). An estimate of the approximation error
is discussed along with each measurement in the results sec-
tion.

XVIII. RESULTS

We have generated simulation results fora−1=150 MeV;
at=at /a=1.0; temperaturesTphys=25 and 37.5 MeV; and lat-
tice sizes 33, 44, and 55. Half-filling at this lattice spacing
occurs at

r

rN
= 2.64, s129d

where rN
phys is the normal nuclear density of about 0.17

nucleons per fm3. The calculations were performed using the
zone determinant method using the second-order approxima-
tion D2 with zones consisting of a single spatial point. By
calculating the exact determinants of some generated matrix
configurations, we estimate the systemic error for the zone
expansion to be about,0.1% for Tphys=37.5 MeV and
,0.5% forTphys=25.0 MeV.

We have dealt with the complex action by computing the
phase as an observable,

FIG. 15. Energy per neutron in MeV for temperatures 25 and
37.5 MeV and different lattice volumes. The inverse lattice spacing
is a−1=150 MeV andat=1.0.

FIG. 16. Energy per nucleon in MeV for temperatures 7.5, 15,
25, and 37.5 MeV and lattice volume 43. The inverse lattice spacing
is a−1=150 MeV andat=1.0.
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kOl =
ofng Ofnge−ReSfnge−i Im Sfng

ofng e−ReSfnge−i Im Sfng
. s130d

For the various simulations presented here, we found an av-
erage phase of about

ofng e−ReSfnge−i Im Sfng

ofng e−ReSfng
, 0.95 − 1.00, s131d

and so this did not present a significant computational prob-
lem.

In Fig. 15 we show the energy per neutron as a function of
neutron density. Our results indicate a rather flat function for
the energy per neutron as a function of density. For compari-

son we show in Fig. 16 the energy per neutron for the free
neutron for temperaturesTphys=7.5, 15, 25, and 37.5 MeV.

In Figs. 17 and 18 we compare results for free neutrons on
the lattice and loop calculations for the physical values ofgA
and C. As is easily seen, the loop calculations are not very
close to the nonperturbative simulation results for the densi-
ties shown. This is an indication that we have a strongly
coupled many-body system. This is what we expect, since
the scattering length is much larger than the average separa-
tion between neutrons. This also shows why a nonperturba-
tive calculation is necessary.

The flatness of our energy per neutron curves at these
temperatures are intriguing and hopefully will be checked by
others in the near future. The results of[16] also see a flat-
tening of the energy per neutron curve with increasing tem-
peratures(see Fig. 19). We can also compare with variational
calculations[39] and recent quantum Monte Carlo results
from [2]. They observe a significant flattening of the energy
per neutron curve due to iteractions even at zero temperature
(see Fig. 20).

FIG. 17. Energy per neutron for temperature 37.5 MeV and
comparisons with the free neutron result on the lattice and loop
calculations. The inverse lattice spacing isa−1=150 MeV andat

=1.0.

FIG. 18. Energy per neutron for temperature 25.0 MeV and
comparisons with the free neutron result on the lattice and loop
calculations. The inverse lattice spacing isa−1=150 MeV andat

=1.0.

FIG. 19. (Color online) Energy per neutron vs density for vari-
ous temperatures as reported in[16]. rN

phys is at 0.17 nucleons per
fm3. The low energy per neutron atT=50 MeV is likely due to
lattice cutoff effects.

FIG. 20. Energy per neutron at zero temperature and low den-
sities as reported in[2]. The circles are quantum Monte Carlo re-
sults from [2] and the stars are variational results from[39]. The
dashed line shows one-half the result for a free Fermi gas.
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We implemented a temporally improved action in order to
remove as much as possible of the dependence onat=at /a,
the ratio of the temporal lattice spacing to the spatial lattice
spacing. In Fig. 21 we show the dependence onat for at
=1,0.667,0.5. We see that the dependence onat is minimal.

We now look at how the energy per neutron changes as
the interaction strength is varied. According to Table IV, the
physical values for Cphys at a−1=150 MeV is −4.0
310−5 MeV−2. If we however take the coupling to be 50%,
100%, and 150% of the physical value, we find the results
shown in Fig. 22.

In Figs. 23 and 24 we show density versus chemical po-
tential and comparisons with the free neutron and loop cal-
culations. We can see again that loop calculations are not
close to the simulation results. For fixed chemical potential,
the simulation density is higher than the loop-calculated den-
sity, which is in turn higher than the free neutron density.

If our effective field theory formalism is valid, we should
be able to reproduce the same results for different lattice
spacings. There are, however, practical computational con-
straints ona. The determinant zone expansion for fixed zone

size and expansion order will break down if the lattice spac-
ing is too small. Fora−1=200 MeV, we estimate that the
second-order approximationD2 with zones consisting of a
single spatial point produces errors of size roughly 3%. In
Fig. 25 we compare the energy per neutron as measured for
a−1=150 MeV anda−1=200 MeV at temperature 37.5 MeV.
The results are in rather good agreement. In the future we
hope to use larger zone sizes and do simulations at lattice
spacings up toa−1=300 MeV.

XIX. SUMMARY AND FUTURE DIRECTIONS

We have introduced an approach to the study of nuclear
and neutron matter which combines chiral effective field
theory and lattice methods. Nucleons and pions are treated
on the lattice as point particles and we are able to probe
larger volumes, lower temperatures, and greater nuclear den-
sities than in lattice QCD. The low-energy interactions of
these particles are governed by chiral effective field theory
and operator coefficients are determined by fitting to nucleon
scattering data. The leading dependence on the lattice spac-

FIG. 24. Density vs chemical potential for temperature 25 MeV.
The inverse lattice spacing isa−1=150 MeV andat=1.0.

FIG. 21. Dependence onat for temperature 37.5 MeV. The in-
verse lattice spacing isa−1=150 MeV.

FIG. 22. Dependence onCphys for temperature 37.5 MeV. The
inverse lattice spacing isa−1=150 MeV andat=1.0.

FIG. 23. Density vs chemical potential for temperature
37.5 MeV. The inverse lattice spacing isa−1=150 MeV andat

=1.0.
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ing can be absorbed by the renormalization of operator co-
efficients. In this way, we have a realistic simulation of
many-body nuclear phenomena with no free parameters, a
systematic expansion, and a clear theoretical connection to
QCD. We have presented results for the energy per neutron
for hot neutron matter at temperatures 20–40 MeV and den-
sities below twice the nuclear matter density.

In conjunction with other members of the Nuclear Lattice
Collaboration, we plan several extensions, generalizations,

and improvements upon this work. In the course of produc-
ing data for this article, we have also generated a large
amount of data for the neutral pion, neutron, and pair density
correlation functions. This data will be analyzed and pre-
sented in a forthcoming article. In the near future we also
plan to study the pionless version of the same neutron sys-
tem. There has been a recent mean-field discussion of this
model [40]. Without pions, the phase will be completely
eliminated from the matrix determinant. This is due to the
fact that the matrix is purely real, and in the Hubbard-
Stratonovich formalism the up and down spins appear in a
way that the matrix determinant is the square of a real num-
ber. We also plan to extend our studies to include neutrons,
protons, neutral and charged pions, and make use the recent
progress in implementing exact nonlinear representations of
chiral symmetry on the lattice[41–44].
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