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The O states of'?C are considered within the framework of the microscopic thresdster model. The
main attention is paid to accurate calculation of the width of the extremely narrow near-thre3hetiated
which plays a key role in stellar nucleosynthesis. It is shown thatjretdte decays by means of the sequential
mechanism?C — a+8Be— 3a. Calculations are performed for a number of effectiver potentials which are
chosen to reproduce both energy and widtf?®é&. The parameters of the additional three-body potential are
chosen to fix both the ground and excited state energies at the experimental values. The dependence of the
width on the parameters of the effectivea potential is studied in order to impose restrictions on the
potentials.
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I. INTRODUCTION by microscopic calculations to provide unambiguous deter-
, , mination of the decay mechanism and resonance width
The processes with fethree and morecharged particles g gy, extremely small on the nuclear scale.

in the initial or final state are complicated phenomena which Besides the resonance triphereaction, it is of interest to
so far have not been completely understood. The main difficonsider in astrophysical applications, as pointed out in Ref.
culty stems from the necessity to describe the continuunpi0], the nonresonance reaction-3 *2C which takes place
wave function of thregor more charged particlegthree-  at low temperatures and high densities. Helium burning at
body continuum Reliable description of the continuum such conditions is possible in accretion on white dwarfs and
three-body wave function is of importance for a number ofneutron stars. The nonresonance reaction was considered in a
problems in nuclear physics and nuclear astrophysics. As theumber of paper§l1-14 based on the model assumptions;
first example one should mention the famous nucleahowever, a consistent treatment of the three-body dynamics
reaction—formation of thé”C nucleus in the tripler low- s lacking. In this respect, note that at ultra-low energies any
energy collisions. This reaction is of key importance for stel-approximation can lead to an error of a few orders of mag-
lar nucleosynthesifl,2] as a unique possibility for helium nitude in the calculated reaction rate.
burning that allows further synthesis of heavier elements. Besides astrophysical applications, studies of the three-
Other interesting examples of the three-body nuclear proscattering provide important information about the effective
cesses are double-proton radioactivity, which has been a sul-« interaction which is of interest for the-cluster calcula-
ject of thorough experimental and theoretical investigationsions. As thea-particle is the most tightly bound nucleus,
during the last yeargmore details can be found in the recent many low-energy nuclear properties can be successfully cal-
reviews[3,4]), and decay of the long-lived"ktate of the?C  culated within the framework of thex-cluster model
nucleus[5]. For the problems of this kind, even qualitative [15-20. Generally, the three-body calculations allow one to
understanding of the reaction mechanism is crucial. In thigseduce the uncertainty in the two-body potential which can
respect, Coulomb-correlated penetration of outgoing parbe hardly determined only from the two-body data. One of
ticles through a multidimensional potential barrier has beenhe principal opportunities for unambiguous determination of
considered in Ref6], thus describing qualitative features of the a-« effective potential is to set the calculated width of
multicluster decay of atomic nuclei. the G three-body resonance to its experimental value. In
Of key importance for description of the triptereaction  addition, one should mention that recently the near-threshold
are both the near-threshold three-body resonadistate of  a-cluster states have attracted a special attention in connec-
12C) predicted in Ref[2] as the only explanation for observ- tion with a-particle condensation in low-density nuclear mat-
able abundance of elements in the universe and the lowter[21,22.
energya-a resonancéthe ground state ofBe). Due to ex- In this paper, properties of the' Gtates of*?C are con-
istence of these resonances, sufficiently fast helium burningidered using the @cluster model with the main emphasis
in stars was explained by the sequential mechanism 3 on the calculation of the width of the near-threshojdséate.
—8Be+a— '2C(0) — *C+y of the reaction. Indeed, the Calculations are performed for a number of effectiver
predicted @ state of the'”C nucleus was observed in the potentials which are chosen to reproduce with a good accu-
experimentg7,8] and was studied in the later works; in par- racy both the energy and the width of thea resonance
ticular, the decay mechanism was a subject of investigationground state ofBe). Furthermore, due to the strong expo-
in Ref. [9]. The experimental studies must be supplementedential dependence of the resonance width on the resonance
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energy, calculation of the width makes sense only if the resothe following it is convenient to use the hyperspherical co-
nance position is fixed. For the @+resonance under consid- ordinates B<p <, 0<; <, and 0< ¢, < 7 defined as
eration, this requirement is satisfied by adjusting the param-

eters of the additional three-body potential which must be X =pCoS—, y. =psin=, cosf,= M ()
introduced to describe the effect af-particle distortions XiYi

near the triple-collision point. More precisely, the three-body,
potential is chosen to fix both the ground and excited stat
energies at the experimental values. Following R23], the
method of calculation is based on the expansion of the tot
wave function in terms of the eigenfunctions on a hyper- 4

sphere(at a fixed hyper-radiys which allows solving both V(X) = V() + " 3
the eigenvalue problem for the ground state and the scatter-

ing problem for the excited resonance state. The eigenfunawvhere the short-range-« potential

tions on a hypersphere are calculated by using the variational

In the Schrodinger equatiofl) the effective two-body po-
fential V(x) is a sum of the short-range and Coulomb inter-
aqctions

_ 22 _ 22
method with a flexible set of trial functions which describe Vo(X) = VigH7 = Vet (4)
grrr?glleEmetrg(ear::::rlze(;ik;(zgr{cg:ve function both at large andg pained by modification of the Ali-Bodmer potentials
' . 4]. The three-body potential
The present three-body calculation of the near-threshol(g2 ] yp
resonance is the first necessary step in the unified treatment Vs(p) =Voe—(p/b)2 (5)

of the low-energy triplex reaction. Both the method and the . .
numerical procedure can be used to calculate the reactidh chosen as the same function of the hyper-ragias used
rate at lower energies where the resonance mechanism turtis Refs.[16,17.

to the nonresonance one.

A. Eigenfunctions on the hypersphere

Il. METHOD In terms of the hyperspherical variables the Schrodinger

The present paper is aimed at microscopic description o?quatlon(l) for L=0 reads
the low-energy scattering of threeparticles whose features 9 9 4 3 o
are to a great extent determined by the two- and three-bod 3 (p5—> - —2A* + V(p cos—i) +Vi(p) —E |V
resonances. In this respect, the principal problem is reliablel P dp\ dpl p =1 2
calculation of characteristics of the extremely narrow near- - (6)
threshold resonanc@;-state of'C). The a-cluster model '
that is used allows for taking account of the most importantvhere

features of the wave function, i.e., the threeluster and 1 J J 1 g J
two-cluster a+8Be components. All the effects connected A" = — {—(sinz ai—) +_——<sin ei—)}
with both the internal structure af-particles and the identity Sirf a; | d da;/  SIn 6 96, 96,

of nucleons are incorporated in the effectiwen potential. (7)

Besides, the additional three-body potential of a simple

Gaussian form as in papef6,17 is introduced to describe 'S the grand angular momentum operator up to a const_ant

the effects beyond the three-cluster approximation. Thus, thi&ctor. In order to solve both the eigenvalue and scattering

model allows description of both the ground and the excited®roPlems for Eq(6) the total wave function is expanded in a

0* states of'?C. Considering the challenging problem of re- S€M€S

liable calculation of the D resonance width, the effective _ 52

two-body potential should satisfy the restriction that the po- v=p % fulp) Pn(e, 6, p) 8)

sition and width of®Be are fixed at the experimental values.

In a similar way, the three-body potential will be chosen toon a discrete set of eigenfunctioss, of the following equa-

obtain experimental energies for both ground and excitedion on the hypersphere:

states of'’C. 22 N
For the low-energy scattering in question, one should con- »_ T - -

sider only the 0 states(the total angular momentuin=0). [A 4 ngv(p €085 ) " )\”(p)}@”(a’ 6.0)=0, (9

The unitsi=m=e=1 are used throughout the paper unless ) ]

other is specified. The Schrédinger equation for threedS Proposed in Ref23]. At eachp the indexn=1,2,3,...

a-particles reads enumerates the eigenvalugs in ascending order and the
5 eigenfunctionsb,(«, 8,p) are normalized by the conditions
_ (®| P = 8m Where the notatioK-|-) means the integration

~Ax Ayt E V(X)) +Vs(p) —E ¥ =0, (D) over the invariant volume on the hypersphe)

=sirfa;da;d cosé,. Due to identity of a-particles both the
where therscaled Jacobi coordinates grer—ry, y;=(2r; total wave functiort and the eigenfunction®(«, 8, p) are
—r;—r)/\3 andr; is the position vector of thizh particle. In symmetric under any permutation of particlgsj, and k.
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Given the expansior{8) of the total wave function, the In the numerical calculations, the basis of trial functions
Schradinger equatio(®) is reduced to the system of hyper- contains a set of all SHl-j(i(a,a):Hnimi(g,w) with those
radial equationsHRES), indices n; and m; for which K does not exceed the max-
2 1 15 imum valueK 4, i-€., Ki=2n,+3m, <K . Qne can count
{—2 - —2<4)\n(p) + —) +Vj(p) + Ej|fn(p) that the total number of such SHH for whicim,23m, <K
ap° P 4 equals K(K+6)/12+1 for K being a multiple of 6 and

g 9 ([K/6]+1)(K-3[K/6]) otherwise. Hergx] stands for the
+2 (Qnm(P)ﬁ_ + a_Qnm(P) - an(P)>fm(P) =0, entire part ofx. Usage of SHH in the basis of trial functions
m p P provides an excellent description of the eigenfunctions at
(10 small p, where the kinetic energy term dominates, and quite
a good description at intermediate where the cluster ef-
fects still do not dominate. However, the two-cluster compo-
n> 1) nent of the wave function corresponding to the configuration

where

a+8Be can be hardly described by a set of SHH due to rather
slow convergence that hinders the calculation at sufficiently

Jd
an(P) = <q>m ap

9| od large p.
Pop) ={ —2| —). (12) In order to describe the two-cluster configuration, the ba-
dp | dp sis of trial functions should also include thedependent

The coefficients\(p), Qur(p), and Pyy(p) of HRE (10) ~ Symmetric combinations

are calculated using the variational method for solution of 3 a
the eigenvalue probler{®). The variational basis consists of xila,0)=> &l p cosE (16)
N trial functionsy; with the same symmetry under permuta- =1

tions of particles as the eigenfunctiofig(a, 6,p). In View ot yhe two-body functionss(x) which are chosen to describe

of an essentially different structure of the eigenfunctionsy,q wave function of the two-body-a resonance. More pre-
®y(a, 6,p) at different values op, it is necessary to Use @ (igely a set of(x) includes a few Gaussian functions
flexible basis of trial functions which allows one to describe

the two- and three-cluster structure of the wave function in #(X) = exp(= B X% 17

the asymptotic region. which allows the two-body wave function to be described,

First o_f all, the ba_sis contains a set of the symmetric hy<with properly chosen parametegs within the range of the
perspherical harmonigSHH) Hy, which are the eigenfunc- |, \~jaar potentiaV/(r). In addition, the function

tions of the operatoA”, i.e., .
d(x) = x"* exp(— 4Vx(1 +ax)) (18)

[A"+K(K+2)]H,n=0, (13
. is used to describe the two-body wave function in the under-
whereK=2n+3m, th? non-negative numbersand M enu- — parrier region. This latter function is of the asymptotic form
merate SHH, and_lQ_ls the ord_er of SHH. For explicit con- of the Coulomb wave function which is optionally cut off by
struction of SHH it is convenient to use another set of thethe parametea at large distances.

hyperspherical variables Q¢é</2, -w< @ <m [25,26, Although the eigenvalues,(p) are directly determined in

defined by the variational calculation, the coupling term,(p) and
siné=sing; sin 6, P.n(p) can hardly be determined by means of definitions
(11) and(12), which is hindered due to the necessity of cal-

COS£ COS@; = COSa;, (14)  culating the derivatives®,/dp. For this reasonQ,(p) are

calculated by using the exact expression
COSsé sin ¢; = Sina; COS6;.

In these variables

_3 3 )1 q
an(P)—4()\n )\m) <q)m co

a
+2pVg| pcos_
Sa Y s(P 2)
Hnl € @) ~ cos'™ éPP"(cos 2) T (cOS ) 4 22Vdlp cosal2)

p <I>n> , (19
~ A o m(26)cos 3ng, (15) P

(B) . which is derived by differentiating the eigenvalue equation
where P,""(x) and Ty(x) are the Jacobi and Chebyshev ) \yii respect tgp and projecting the result on the function

polynomials and,(8) is the Wigner function. The variable ¢, ' Fyrthermore P, (p) are calculated by using the exact
¢ is invariant under permutations of particles and, thereforeg ruleP=-Q?2 for the matricesP and Q, which leads to
is independent of the indexenumerating the Jacobi vari- he approximation

ables. On the other hang; changes tap;£27/3 under the

. . N
cyclic permutations alsp; — ¢;|=27/3 andg; — —¢; under the _
permutation of particles and k. As follows from Eq.(15) Pmn(p) = E Qmi(p)Qni(p) (20)
and the above properties of the variabfeand ¢;, SHH are -
completely symmetric under any permutation. on the limited basis oN trial functions.
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FIG. 1. Three lowest effective potentidlk,(p). Shown are also
the asymptotic two-cluster dependent(p)=E,,+q/p (thin
dashed ling and the energy of the;OstateE=0.3795 MeV (thin
horizontal ling.

B. Boundary conditions and characteristics of'°C states

Properties of the ground;Gstate and the excited; @eso-
nance are determined by solving the eigenvalue prolgm
E<0) and scattering problertat E>0) for HRE (10), re-
spectively. Denote the hyper-radial functions fé']é(p) for

the ground state antl(nE)(p) for the scattering problem at
energy E. According to(8), all these functions satisfy the
zero boundary conditions at=0. The square integrable so-
lution of HRE (10) satisfying the condition

> J If P(p)2dp=1 (22)
n 0

unambiguously determines the energBys and the wave
function of the ground Dstate.

The positionE, and widthI" of the near-threshold;reso-
nance are calculated by solving HRELO) with the

asymptotic boundary conditions corresponding to the ingo-

ing wave in the first channel, i.ef,(lE)(p) is a sum of the

ingoing and outgoing waves in the effective potential

Ul(p):(llpz)[4)\1(p)+175]+P11(p). More precisely, the

asymptotic boundary conditions are imposed near the turnin
point p, of the first-channel effective potential defined by the

condition U;(p;)=E. As expected, calculations reve@ee
also Fig. 1 that atp~ p, the effective potential,(p) is to a
good approximation expressed as

Us(p) = Epy + g (22)

where E,, is the energy of the two-body resonangée
ground state ofBe) and the Coulomb paramet§r16/43.
In fact, r.h.s. of Eq.(22) is the energy of the two-cluster
systema+8Be at a large fixed hyper-radiys For the scat-
tering at energy above the two-body resonattes E,,), in
view of expression(22), the first channel hyper-radial func-
tion can be written as

PHYSICAL REVIEW C 70, 014006(2004)

£ (p) ~ Fo(m,kp) + tan 8:Go(7,kp) (23)

in the range of hyper-radius valugs- p,. Here the wave
number in the first channel ik=VE-E,,, Fo(7,kp) and
Go(7n,kp) are the Coulomb functions with the parameigr
=8/(y3k), and O is the scattering phase shift. Due to strong
repulsive potentialdJ,(p) for n=2 the outgoing waves in
the upper channels are negligible at small enerdies
=<1 MeV. This allows the zero boundary conditions

fP(p)=0 (24)

to be imposed at some value of the hyper-ragitisp; for all
n=2. The resonance positidey and widthI" as well as the
nonresonant phase shiff, are defined by fitting the calcu-
lated near-resonance phase sliift to the Wigner depen-
dence on energy
2
COt( O — Bpg) = F(E -E). (25)

In the following description of the Dstate it is suitable to
treat the ultra-narrow resonance as a true bound state with
the wave functionf ?(p)~f &)(p) corresponding to the

scattering solution at the resonance enefgyand normal-
ized on the finite interval & p=< p, by the condition

Pt
> f |t 2(p)Pdp=1. (26)
n 0

It is of interest to determine also the root-mean-squares)
radii

1

RY =22 (W Ol(ric= Ron) W) 27

t k
of the ground(i=1) and excitedi=2) states and the mono-
pole transition matrix element

N

My, = Ep (FD|(r = Rem?W@). (28)
k

A 'sum is taken oveN; nucleons in27) and ovem, protons

in (28) andR. , is the center-of-mass position vector. Fol-
wing the definitiong(27) and (28), in the threea-particle

model one obtains the expressions

RV = RS+ &p7, (29)
Pt
M= f f2(p)f M(p)p*dp, (30)
n
0

whereR,=1.47 fm is the rms radius of the-particle and the
rms value of the hyper-radilﬁ for theith state in the three-
body model is defined by

= J |t O(p)Pp?dp. (31
n 0
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TABLE |. Parameters of the short-range« potential Vg (4) p-independent paramete; in functions (17) were deter-
and the corresponding widthg of the a-a resonancéthe ground  mined by minimizing the first eigenvalue (p). The calcu-
state of®Be). lated\n(p), Pmn(p), andQpmn(p) practically do not depend on
the basis of trial functions neags=20 fm, which allows
Ve (MeV)  w (fm™) Vi (MeV)  uq (fm™) v (eV) matching the results of calculation with two different basises.
The three lowest effective potentiaLén(p):1/p2[4)\n(p)

1 82.563 1/1.53 26.1 1/2.85 6.80 +1745]+ Pan(p) (n=1-3) for two-body potential 3 are depicted

2 279.206 1/1.53 40 1/2.85 8.53 for illustration in Fig. 1.

3 20012 1/153 16.5 /285 511 The detailed information on the three-body system can be
4 197.680 0.7 80 0.475 5.10  obtained by considering the eigenfunctions on a hypersphere

®,(&,0,p). Due to symmetryd, (£, ¢,p) are periodic func-
tions of the variablep with the period 2r/3. As the main
. NUMERICAL RESULTS contribution to the total wave function comes from the first
term (n=1) of expansion (8), the first eigenfunction
Calculations have been performed with faur « poten-  ®,(&, ¢, p) practically determines the structure of the system.
tials which are obtained by modification of potentiedgand  For illustration, three-dimensional plots of the first eigen-
(d) from Ref. [24]. The parameters of the potentials havefunction ®,(¢, ¢,p) (for two-body potential Bare shown in
been chosen to reproduce the experimental value ofathe Fig. 2 at three values of the hyper-radiys=5 fm, p
-a resonancg®Be) energyE,,=91.89 keV whereas reso- =15 fm, andp=45 fm that correspond, as seen in Fig. 1, to
nance widths have been allowed to vary within the experithe minimum, the maximum, and the turning pointlbf(p)
mental uncertainty +1.7 eV. The parameters of the potentialat E=0.3795 MeV. For all values of the hyper-radius,
and the corresponding—a resonance widthsy are pre- ®.(&,¢,p) is small at the zero distance between a pair of
sented in Table I. Only the strengtk's andV, of the repul-  a-patrticles, i.e., at the poirit=0, ¢=7/3 at the hypersphere,
sive and attractive parts are varied for potentials 1-3, whildecause of the strong repulsive term in the short-range po-
the parameterg, and u, are modified for “harder” potential tential Vs. At sufficiently largep (near the turning point
4. This choice of the potentials makes it possible to study theb,(&, ¢,p) exhibits a specific structure concentrated in the
dependence of the three-body characteristics on the shape i@fgion where the two-body potential is attractive, i.e., around
the two-body potential. the point £=0, ¢=m/3. This structure corresponds to the
The energies of the ground and excited stéigsandE,,  two-cluster configuratiom+®Be. For smaller values of (as
width of the excited statd’, rms radiiR"”, and monopole seen in Fig. 2 ap=15 fm) the two-cluster structure widens;
transition matrix elemeri¥,, for the threee system are cal- besides, visible values d,(¢, ¢, p) appear both at the point
culated, as discussed in the preceding section, by numericak 7/2, which corresponds to the configuration of the equi-
solution of HRE (10) with boundary conditiong23) and Ilateral triangle, and near the poigt0, ¢=0 (or £=0, ¢
(24). For the eigenvalue problem, numerical integration in=27/3), which corresponds to the linear configuration. Next,
the interval 0<p=<25 fm provides the relative accuracy not at smallp near the minimum obJ;(p), the most important is
worse than 10 for the calculated binding energy. For the the triangle configuration with a noticeable weight of the
scattering problem, numerical integration is carried out in th@inear configuration and without any trace of the two-cluster
interval 0=< p =< pyax SO thatp,.,~50 fm is chosen beyond structure.
the turning pointp,~45 fm for the first-channel effective  The accuracy of the calculation is estimated by observing
potential Uy(p). Choice of the parameters of the numerical the convergence with increasing number of SHH. As a result,
integration does not affect the final results, i.e., the accuracshe accuracy of the most significant effective poteritialp)
of the calculated g, E,, I', R", M, depends merely on the turns out to be not worse than 1 eV in the entire interval
accuracy of the numerical calculation #95(p), Pmi(p), and  0< p=<20 fm and is much better for smaller In a similar
Qmn(p). In every calculation, i.e., for each two-body potential way, the relative accuracy d®,,(p) and Qu(p) is better
and each number of HRE,, the parameter§, andb of the  than 10° in the same interval € p<20 fm. As the hyper-
three-body potentia¥/;(p) are chosen to fix the calculatél  radius increases beyomd: 20 fm, the accuracy of the calcu-
and Ey ¢ at the experimental valueg =0.3795 MeV and lation decreases due to a more complicated structure of the
Eqs=—7.2747 MeV. eigenfunctionsb;(&, ¢, p). Nevertheless, as shown in Fig. 1,
For the calculation of the HRE coefficients(p), Pmi(p),  the effective potentialU,(p) is in good agreement with the
and Qn(p) by the variational method, two different sets of asymptotic dependeng@?) in the interval 46< p<60, thus
trial functions were used in the intervak 20 fm and in the  pointing to the sufficiently high accuracy. In particular, for
asymptotic regiorp>20 fm. At p<20 fm the basis of trial all the potentials used, a fit df;(p) to Eq. (22) gives the
functions contains 147 SHH, which correspondsKg@., values of the Coulomb parametgrwhich differ from the
=39. Recall that convergence with a number of SHH beexpected valug=13.3 MeV-fm by less than 0.14 MeV -fm.
comes very slow with increasing hyper-radius. For this reaThe fitted values oE,, differ from the experimental energy
son, atp>20 fm the basis of trial functions contains 108 of 8Be by less than 0.004 MeV for potentials 1-3 and by
SHH (Kna=33) and four trial functions which describe the about 0.009 MeV for potential 4.
cluster configurationv+2Be, namely, three functions of the Note that representatio®2) of the effective potential
form (17) and one function of the form(18). The U,(p) in terms of the energy of the two-cluster system
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FIG. 2. The first eigenfunctio®(¢, ¢, p) at differentp.

+8Be confirms the sequential mechanism gfdlate decay experimental uncertainty gives rise to a changd dby a
with formation of a+®Be at the first step. Also, this conclu- factor 2.6; therefore, the precise value pfs necessary for
sion follows from the genuine two-cluster form of the first- determination ofl’. Note that for all the potentials consid-
channel eigenfunctio®4(¢, ¢,p) atp=p;. As shown in Fig.  ered, the calculatedl overestimate the experimental value
2 at p=45fm, ®,(¢,¢,p) practically coincides with the [I'e,=8.5+1 eV by a factor 1.2-3.1. However, the difference
symmetric combination of théBe wave functions. Thus the

. . . . TABLE II. Ch teristi f the Ostat f th -particl
total width is determined by the two-cluster decay width. aracterisics o1 e . siaes o] threerparnces

e for four a-a potentials calculated witN; HRE. The width of the
(i) (j= 1
The calculated’, R" (i=1,2), My, and the parameters of o, .iioq statd”, the rms radiiR®Y andR®?, the monopole transition

the three-body potentialy andb are presented in Table Il - matix elementv,,, and the parametett, andb of the three-body
for four two-body potentials and different numbers of HRE potential are given. The results of the calculati¢is,17 and the
N;. These results are compared Wittlthe experimental valuesperimental values are given in the last rows.

and calculationg16,17 (the factory2 in the last column
appears due to different definitions pfin these papejsAs N, r RY R® My, Vo b

shown in Table Il, the convergence in a number of HRES is V) (fm) @m) (fm? (MeV) (fm)
sufficiently fast and solution of three HREKl;=3) allows

the resonance width to be determined with the accuracy 1 25 256 41 952 -21.998 4.8993
about 1 eV. The final accuracy &f depends mainly onthe 1 2 20 255 41 9.08 -23.993 4.6608
accuracy of the variational calculation and can be estimated 3 19 255 4.0 9.03 -24.048 4.6530
as a few eV. The values of the paramdigresented in Table 1 37 2.82 4.4 103 -29.291 5.1213
[l are quite reasonable since they are in agreement with the, - 27 277 42 900 -39.124 4.5223
valuep=2y2R,~4.16 fm, which corresponds to triple colli- 3 26 277 42 885 -39947 4.4858
sion of three hard spheres with ra&i,. 1 13 995 36 823 -15812 4.4506
3 2 11 224 3.6 8.15 -16.059 4.3964
IV. DISCUSSION AND CONCLUSION 3 10 224 35 8.14 -16.066 4.3942
The main result of the present calculation is accurate de- 1 21 251 41 874 -14548 5.7248
termination of an extremely narrow width of the three- 4 2 16 249 40 836 -15129 5459
body resonancéthe excited § state of'’C). As shown in 3 15 249 40 821 -15285 5.4118
Tables | and I, the widthl" of the three-body resonance [16] 20 2.36 6.54 -96.8 3.9p
depends on the underlying two-body« potential and es-  [17] 1300 2.47 836 -23.32 3.7982
sentially increases with increasing widshof the two-body g, 85+1.0 247 57

a-a resonance. In fact, variation ofwithin the limits of the
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of the calculated width for potential 3 and the experimentalRef.[17] was chosen to fix the rms radius of the ground state
value is of order of the theoretical and experimental uncerat the experimental valug() =2.47 fm. With this potential,
tainties. In addition, comparing the results for potentials 3the energy of the three-body resonance is misplaced by
and 4, one may conclude that widih of the three-body 0.47 MeV. This is essentially above the experimental values
resonance depends on the potential siapethe parameters and leads to an unreliably large resonance width.
ur @anduy). It should be emphasized that dependencE oh The above discussion allows the conclusion that calcula-
the parameters of the-« interaction is rather complicated tion of three-body observables can be used to impose restric-
due to addition of the three-body potentM(p) which is  tion on the effective two-bodyr-« potential. In the future
chosen to fixgy s andE, at the experimental values. Never- one should look for a possibility of reproducing the experi-
theless, the effect 0¥5(p) is not overwhelming sincé’ is  mental values by a refined choice of potentials, in particular,
mainly determined by penetrability of the potential barrierby using more complicated three-body potentials.
and all the three-body potentials used in the present calcula- In conclusion, the three-cluster model is used to calcu-
tion are rapidly decreasing with increasipgin the barrier late the characteristics of thé 8tates in thé?C nucleus. In
region 10 fm< p<45 fm. particular, the width of the extremely narrow threshold O
Similar dependence o is revealed for the ground-state state is calculated with a good accuracy. The dependence of
rms radiusRY. It is interesting that the calculateR® the width on the parameters of thea potential is studied. It
=2.55 fm is close to the experimental val%lx)pzz.ﬂ fm  is proposed to use the calculation of the width for selection
for potential 1, for which the two-body width coincides  of a-a potentials. It is directly shown in the three-body cal-
with the most probable experimental valug,,=6.8 eV. culation that the Dstate decays by means of the sequential
Similar to T, the calculatedRY essentially depends on the mechanism (?C— a+8Be—3«). This conclusion is in
parameterg., and u,. Both the rms radiu®® of the exited agreement with the experimefl] in which the rate of the
states and the monopole transition matrix elendns are  direct decay'’C — 3« is estimated to be less than 1% of the
weakly dependent on the parameters of the two-body potertotal rate. The calculation of the near-threshotdr@sonance
tial. For all the potentials, the calculated valuesMf, sig- can be considered as a part of the general study of both
nificantly overestimate the experimental value 5.7 fimat  resonant and nonresonant reactian-3*°C at low energy.
clearly deserves further investigation. The present approach is promising for calculation of the
Comparison with the previous microscopic calculationtriple-a reaction rate at low energy below the three-body
[16] shows that the accuracy of the present calculation isesonance. This provides an opportunity for unified treatment
much better than in Refl16] whereas the methods of calcu- of the crossover from the resonant to the nonresonant mecha-
lation are similar to each other. Note that trex potential in  nism of the reaction.
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