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The 0+ states of12C are considered within the framework of the microscopic three-a-cluster model. The
main attention is paid to accurate calculation of the width of the extremely narrow near-threshold 02

+ state
which plays a key role in stellar nucleosynthesis. It is shown that the 02

+-state decays by means of the sequential
mechanism12C→a+8Be→3a. Calculations are performed for a number of effectivea-a potentials which are
chosen to reproduce both energy and width of8Be. The parameters of the additional three-body potential are
chosen to fix both the ground and excited state energies at the experimental values. The dependence of the
width on the parameters of the effectivea-a potential is studied in order to impose restrictions on the
potentials.
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I. INTRODUCTION

The processes with few(three and more) charged particles
in the initial or final state are complicated phenomena which
so far have not been completely understood. The main diffi-
culty stems from the necessity to describe the continuum
wave function of three(or more) charged particles(three-
body continuum). Reliable description of the continuum
three-body wave function is of importance for a number of
problems in nuclear physics and nuclear astrophysics. As the
first example one should mention the famous nuclear
reaction—formation of the12C nucleus in the triple-a low-
energy collisions. This reaction is of key importance for stel-
lar nucleosynthesis[1,2] as a unique possibility for helium
burning that allows further synthesis of heavier elements.
Other interesting examples of the three-body nuclear pro-
cesses are double-proton radioactivity, which has been a sub-
ject of thorough experimental and theoretical investigations
during the last years(more details can be found in the recent
reviews[3,4]), and decay of the long-lived 1+ state of the12C
nucleus[5]. For the problems of this kind, even qualitative
understanding of the reaction mechanism is crucial. In this
respect, Coulomb-correlated penetration of outgoing par-
ticles through a multidimensional potential barrier has been
considered in Ref.[6], thus describing qualitative features of
multicluster decay of atomic nuclei.

Of key importance for description of the triple-a reaction
are both the near-threshold three-body resonance(02

+ state of
12C) predicted in Ref.[2] as the only explanation for observ-
able abundance of elements in the universe and the low-
energya-a resonance(the ground state of8Be). Due to ex-
istence of these resonances, sufficiently fast helium burning
in stars was explained by the sequential mechanism 3a
→ 8Be+a→ 12Cs02

+d→ 12C+g of the reaction. Indeed, the
predicted 02

+ state of the12C nucleus was observed in the
experiments[7,8] and was studied in the later works; in par-
ticular, the decay mechanism was a subject of investigation
in Ref. [9]. The experimental studies must be supplemented

by microscopic calculations to provide unambiguous deter-
mination of the decay mechanism and resonance widthG
,8 eV, extremely small on the nuclear scale.

Besides the resonance triple-a reaction, it is of interest to
consider in astrophysical applications, as pointed out in Ref.
[10], the nonresonance reaction 3a→ 12C which takes place
at low temperatures and high densities. Helium burning at
such conditions is possible in accretion on white dwarfs and
neutron stars. The nonresonance reaction was considered in a
number of papers[11–14] based on the model assumptions;
however, a consistent treatment of the three-body dynamics
is lacking. In this respect, note that at ultra-low energies any
approximation can lead to an error of a few orders of mag-
nitude in the calculated reaction rate.

Besides astrophysical applications, studies of the three-a
scattering provide important information about the effective
a-a interaction which is of interest for thea-cluster calcula-
tions. As thea-particle is the most tightly bound nucleus,
many low-energy nuclear properties can be successfully cal-
culated within the framework of thea-cluster model
[15–20]. Generally, the three-body calculations allow one to
reduce the uncertainty in the two-body potential which can
be hardly determined only from the two-body data. One of
the principal opportunities for unambiguous determination of
the a-a effective potential is to set the calculated width of
the 02

+ three-body resonance to its experimental value. In
addition, one should mention that recently the near-threshold
a-cluster states have attracted a special attention in connec-
tion with a-particle condensation in low-density nuclear mat-
ter [21,22].

In this paper, properties of the 0+ states of12C are con-
sidered using the 3a-cluster model with the main emphasis
on the calculation of the width of the near-threshold 02

+ state.
Calculations are performed for a number of effectivea-a
potentials which are chosen to reproduce with a good accu-
racy both the energy and the width of thea-a resonance
(ground state of8Be). Furthermore, due to the strong expo-
nential dependence of the resonance width on the resonance
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energy, calculation of the width makes sense only if the reso-
nance position is fixed. For the 3-a resonance under consid-
eration, this requirement is satisfied by adjusting the param-
eters of the additional three-body potential which must be
introduced to describe the effect ofa-particle distortions
near the triple-collision point. More precisely, the three-body
potential is chosen to fix both the ground and excited state
energies at the experimental values. Following Ref.[23], the
method of calculation is based on the expansion of the total
wave function in terms of the eigenfunctions on a hyper-
sphere(at a fixed hyper-radius), which allows solving both
the eigenvalue problem for the ground state and the scatter-
ing problem for the excited resonance state. The eigenfunc-
tions on a hypersphere are calculated by using the variational
method with a flexible set of trial functions which describe
properly the three-body wave function both at large and
small interparticle distances.

The present three-body calculation of the near-threshold
resonance is the first necessary step in the unified treatment
of the low-energy triple-a reaction. Both the method and the
numerical procedure can be used to calculate the reaction
rate at lower energies where the resonance mechanism turns
to the nonresonance one.

II. METHOD

The present paper is aimed at microscopic description of
the low-energy scattering of threea-particles whose features
are to a great extent determined by the two- and three-body
resonances. In this respect, the principal problem is reliable
calculation of characteristics of the extremely narrow near-
threshold resonance(02

+-state of12C). The a-cluster model
that is used allows for taking account of the most important
features of the wave function, i.e., the three-a-cluster and
two-cluster a+ 8Be components. All the effects connected
with both the internal structure ofa-particles and the identity
of nucleons are incorporated in the effectivea-a potential.
Besides, the additional three-body potential of a simple
Gaussian form as in papers[16,17] is introduced to describe
the effects beyond the three-cluster approximation. Thus, the
model allows description of both the ground and the excited
0+ states of12C. Considering the challenging problem of re-
liable calculation of the 02

+ resonance width, the effective
two-body potential should satisfy the restriction that the po-
sition and width of8Be are fixed at the experimental values.
In a similar way, the three-body potential will be chosen to
obtain experimental energies for both ground and excited
states of12C.

For the low-energy scattering in question, one should con-
sider only the 0+ states(the total angular momentumL=0).
The units"=m=e=1 are used throughout the paper unless
other is specified. The Schrödinger equation for three
a-particles reads

S− Dxi
− Dyi

+ o
j=1

3

Vsxjd + V3srd − EDC = 0, s1d

where the scaled Jacobi coordinates arexi =r j −r k, yi =s2r i

−r j −r kd /Î3 andr i is the position vector of theith particle. In

the following it is convenient to use the hyperspherical co-
ordinates 0ør,`, 0øai øp, and 0øui øp defined as

xi = r cos
ai

2
, yi = r sin

ai

2
, cosui =

sxiyid
xiyi

. s2d

In the Schrödinger equation(1) the effective two-body po-
tential Vsxd is a sum of the short-range and Coulomb inter-
actions

Vsxd = Vssxd +
4

x
, s3d

where the short-rangea-a potential

Vssxd = Vre
−mr

2x2
− Vae

−ma
2x2

s4d

is obtained by modification of the Ali-Bodmer potentials
[24]. The three-body potential

V3srd = V0e
−sr/bd2 s5d

is chosen as the same function of the hyper-radiusr as used
in Refs.[16,17].

A. Eigenfunctions on the hypersphere

In terms of the hyperspherical variables the Schrödinger
equation(1) for L=0 reads

F−
1

r5

]

]r
Sr5 ]

]r
D −

4

r2D* + o
j=1

3

VSr cos
a j

2
D + V3srd − EGC

= 0, s6d

where

D* =
1

sin2 ai
F ]

]ai
Ssin2 ai

]

]ai
D +

1

sinui

]

]ui
Ssinui

]

]ui
DG

s7d

is the grand angular momentum operator up to a constant
factor. In order to solve both the eigenvalue and scattering
problems for Eq.(6) the total wave function is expanded in a
series

C = r−5/2o
n

fnsrdFnsa,u,rd s8d

on a discrete set of eigenfunctionsFn of the following equa-
tion on the hypersphere:

FD* −
r2

4 o
j=1

3

VSr cos
a j

2
D + lnsrdGFnsa,u,rd = 0, s9d

as proposed in Ref.[23]. At eachr the indexn=1,2,3, . . .
enumerates the eigenvaluesln in ascending order and the
eigenfunctionsFnsa ,u ,rd are normalized by the conditions
kFnuFml=dnm where the notationk·u ·l means the integration
over the invariant volume on the hyperspheredV
=sin2aidaid cosui. Due to identity ofa-particles both the
total wave functionC and the eigenfunctionsFnsa ,u ,rd are
symmetric under any permutation of particlesi, j , and k.
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Given the expansion(8) of the total wave function, the
Schrödinger equation(6) is reduced to the system of hyper-
radial equations(HREs),

F ]2

]r2 −
1

r2S4lnsrd +
15

4
D + V3srd + EG fnsrd

+ o
m
SQnmsrd

]

]r
+

]

]r
Qnmsrd − PnmsrdD fmsrd = 0,

s10d

where

Qmnsrd =KFmU ] Fn

]r
L , s11d

Pmnsrd =K ] Fm

]r
U ] Fn

]r
L . s12d

The coefficientslnsrd, Qnmsrd, and Pnmsrd of HRE (10)
are calculated using the variational method for solution of
the eigenvalue problem(9). The variational basis consists of
N trial functionsxi with the same symmetry under permuta-
tions of particles as the eigenfunctionsFnsa ,u ,rd. In view
of an essentially different structure of the eigenfunctions
Fnsa ,u ,rd at different values ofr, it is necessary to use a
flexible basis of trial functions which allows one to describe
the two- and three-cluster structure of the wave function in
the asymptotic region.

First of all, the basis contains a set of the symmetric hy-
perspherical harmonics(SHH) Hnm which are the eigenfunc-
tions of the operatorD* , i.e.,

fD* + KsK + 2dgHnm= 0, s13d

whereK=2n+3m, the non-negative numbersn and m enu-
merate SHH, and 2K is the order of SHH. For explicit con-
struction of SHH it is convenient to use another set of the
hyperspherical variables 0øjøp /2, −pøwi øp [25,26],
defined by

sinj = sinai sinui ,

cosj coswi = cosai , s14d

cosj sinwi = sinai cosui .

In these variables

Hnmsj,wd , cos3m jPn
s0,3mdscos 2jdT3mscoswd

, ds3/2dm,s3/2dm
n+s3/2dm s2jdcos 3mw, s15d

where Pn
sa,bdsxd and Tnsxd are the Jacobi and Chebyshev

polynomials anddmk
j sbd is the Wigner function. The variable

j is invariant under permutations of particles and, therefore,
is independent of the indexi enumerating the Jacobi vari-
ables. On the other hand,wi changes towi ±2p /3 under the
cyclic permutations asuwi −w ju=2p /3 andwi →−wi under the
permutation of particlesj and k. As follows from Eq.(15)
and the above properties of the variablesj andwi, SHH are
completely symmetric under any permutation.

In the numerical calculations, the basis of trial functions
contains a set of all SHHxisa ,ud=Hnimi

sj ,wd with those
indices ni and mi for which K does not exceed the max-
imum valueKmax, i.e., Ki =2ni +3mi øKmax. One can count
that the total number of such SHH for which 2ni +3mi øK
equals KsK+6d /12+1 for K being a multiple of 6 and
sfK /6g+1dsK−3fK /6gd otherwise. Herefxg stands for the
entire part ofx. Usage of SHH in the basis of trial functions
provides an excellent description of the eigenfunctions at
small r, where the kinetic energy term dominates, and quite
a good description at intermediater, where the cluster ef-
fects still do not dominate. However, the two-cluster compo-
nent of the wave function corresponding to the configuration
a+ 8Be can be hardly described by a set of SHH due to rather
slow convergence that hinders the calculation at sufficiently
larger.

In order to describe the two-cluster configuration, the ba-
sis of trial functions should also include ther-dependent
symmetric combinations

xisa,ud = o
j=1

3

fiSr cos
a j

2
D s16d

of the two-body functionsfisxd which are chosen to describe
the wave function of the two-bodya-a resonance. More pre-
cisely, a set offisxd includes a few Gaussian functions

fisxd = exps− bi x2d s17d

which allows the two-body wave function to be described,
with properly chosen parametersbi, within the range of the
nuclear potentialVssrd. In addition, the function

fsxd = x1/4 exps− 4Îxs1 + axdd s18d

is used to describe the two-body wave function in the under-
barrier region. This latter function is of the asymptotic form
of the Coulomb wave function which is optionally cut off by
the parametera at large distances.

Although the eigenvalueslnsrd are directly determined in
the variational calculation, the coupling termsQnmsrd and
Pnmsrd can hardly be determined by means of definitions
(11) and(12), which is hindered due to the necessity of cal-
culating the derivatives]Fn/]r. For this reason,Qnmsrd are
calculated by using the exact expression

Qmnsrd =
3

4
sln − lmd−1KFmU q

cosa
+ 2rVsSr cos

a

2
D

+ r2]Vssr cosa/2d
]r

UFnL , s19d

which is derived by differentiating the eigenvalue equation
(7) with respect tor and projecting the result on the function
Fm. Furthermore,Pnmsrd are calculated by using the exact
sum ruleP=−Q2 for the matricesP and Q, which leads to
the approximation

Pmnsrd = o
l=1

N

QmlsrdQnlsrd s20d

on the limited basis ofN trial functions.
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B. Boundary conditions and characteristics of12C states

Properties of the ground 01
+ state and the excited 02

+ reso-
nance are determined by solving the eigenvalue problem(at
E,0) and scattering problem(at E.0) for HRE (10), re-
spectively. Denote the hyper-radial functions asfn

s1dsrd for
the ground state andfn

sEdsrd for the scattering problem at
energyE. According to (8), all these functions satisfy the
zero boundary conditions atr=0. The square integrable so-
lution of HRE (10) satisfying the condition

o
n
E
0

`

uf n
s1dsrdu2dr = 1 s21d

unambiguously determines the energyEg.s. and the wave
function of the ground 01

+ state.
The positionEr and widthG of the near-threshold 02

+ reso-
nance are calculated by solving HRE(10) with the
asymptotic boundary conditions corresponding to the ingo-
ing wave in the first channel, i.e.,f 1

sEdsrd is a sum of the
ingoing and outgoing waves in the effective potential
U1srd=s1/r2df4l1srd+ 15

4
g+P11srd. More precisely, the

asymptotic boundary conditions are imposed near the turning
point rt of the first-channel effective potential defined by the
condition U1srtd=E. As expected, calculations reveal(see
also Fig. 1) that atr,rt the effective potentialU1srd is to a
good approximation expressed as

U1srd < E2a +
q̃

r
, s22d

where E2a is the energy of the two-body resonance(the
ground state of8Be) and the Coulomb parameterq̃=16/Î3.
In fact, r.h.s. of Eq.(22) is the energy of the two-cluster
systema+ 8Be at a large fixed hyper-radiusr. For the scat-
tering at energy above the two-body resonancesE.E2ad, in
view of expression(22), the first channel hyper-radial func-
tion can be written as

f1
sEdsrd , F0sh,krd + tandEG0sh,krd s23d

in the range of hyper-radius valuesr,rt. Here the wave
number in the first channel isk=ÎE−E2a, F0sh ,krd and
G0sh ,krd are the Coulomb functions with the parameterh
=8/sÎ3kd, anddE is the scattering phase shift. Due to strong
repulsive potentialsUnsrd for nù2 the outgoing waves in
the upper channels are negligible at small energiesE
ø1 MeV. This allows the zero boundary conditions

f n
sEdsrd = 0 s24d

to be imposed at some value of the hyper-radiusr.rt for all
nù2. The resonance positionEr and widthG as well as the
nonresonant phase shiftdbg are defined by fitting the calcu-
lated near-resonance phase shiftdE to the Wigner depen-
dence on energy

cotsdE − dbgd =
2

G
sE − Erd. s25d

In the following description of the 02
+ state it is suitable to

treat the ultra-narrow resonance as a true bound state with
the wave functionf n

s2dsrd, f n
sErdsrd corresponding to the

scattering solution at the resonance energyEr and normal-
ized on the finite interval 0ørørt by the condition

o
n
E
0

rt

uf n
s2dsrdu2dr = 1. s26d

It is of interest to determine also the root-mean-square(rms)
radii

Rsid =
1

Nt
o
k

Nt

kCsidusr k − Rcmd2uCsidl s27d

of the groundsi =1d and excitedsi =2d states and the mono-
pole transition matrix element

M12 = o
k

Np

kCs1dusr k − Rcmd2uCs2dl. s28d

A sum is taken overNt nucleons in(27) and overNp protons
in (28) and Rc.m. is the center-of-mass position vector. Fol-
lowing the definitions(27) and (28), in the three-a-particle
model one obtains the expressions

Rsid = ÎRa
2 + 1

6r̄i
2, s29d

M12 = o
n
E
0

rt

f n
s2dsrdf n

s1dsrdr2dr, s30d

whereRa=1.47 fm is the rms radius of thea-particle and the
rms value of the hyper-radiusr̄i

2 for the ith state in the three-
body model is defined by

r̄i
2 = o

n
E
0

`

uf n
sidsrdu2r2dr. s31d

FIG. 1. Three lowest effective potentialsUnsrd. Shown are also
the asymptotic two-cluster dependenceU1srd<E2a+ q̃/r (thin
dashed line) and the energy of the 02

+ stateE=0.3795 MeV(thin
horizontal line).
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III. NUMERICAL RESULTS

Calculations have been performed with foura−a poten-
tials which are obtained by modification of potentials(a) and
(d) from Ref. [24]. The parameters of the potentials have
been chosen to reproduce the experimental value of thea
−a resonances8Bed energyE2a=91.89 keV whereas reso-
nance widths have been allowed to vary within the experi-
mental uncertainty ±1.7 eV. The parameters of the potentials
and the correspondinga−a resonance widthsg are pre-
sented in Table I. Only the strengthsVr andVa of the repul-
sive and attractive parts are varied for potentials 1–3, while
the parametersmr andma are modified for “harder” potential
4. This choice of the potentials makes it possible to study the
dependence of the three-body characteristics on the shape of
the two-body potential.

The energies of the ground and excited statesEg.s. andEr,
width of the excited stateG, rms radii Rsid, and monopole
transition matrix elementM12 for the three-a system are cal-
culated, as discussed in the preceding section, by numerical
solution of HRE (10) with boundary conditions(23) and
(24). For the eigenvalue problem, numerical integration in
the interval 0,rø25 fm provides the relative accuracy not
worse than 10−6 for the calculated binding energy. For the
scattering problem, numerical integration is carried out in the
interval 0ørørmax so thatrmax,50 fm is chosen beyond
the turning pointrt<45 fm for the first-channel effective
potentialU1srd. Choice of the parameters of the numerical
integration does not affect the final results, i.e., the accuracy
of the calculatedEg.s., Er, G, Rsid, M12 depends merely on the
accuracy of the numerical calculation forlnsrd, Pmnsrd, and
Qmnsrd. In every calculation, i.e., for each two-body potential
and each number of HREN1, the parametersV0 andb of the
three-body potentialV3srd are chosen to fix the calculatedEr

and Eg.s. at the experimental valuesEr =0.3795 MeV and
Eg.s.=−7.2747 MeV.

For the calculation of the HRE coefficientslnsrd, Pmnsrd,
and Qmnsrd by the variational method, two different sets of
trial functions were used in the intervalrø20 fm and in the
asymptotic regionr.20 fm. At rø20 fm the basis of trial
functions contains 147 SHH, which corresponds toKmax
=39. Recall that convergence with a number of SHH be-
comes very slow with increasing hyper-radius. For this rea-
son, atr.20 fm the basis of trial functions contains 108
SHH sKmax=33d and four trial functions which describe the
cluster configurationa+ 8Be, namely, three functions of the
form (17) and one function of the form(18). The

r-independent parametersbi in functions (17) were deter-
mined by minimizing the first eigenvaluel1srd. The calcu-
latedlnsrd, Pmnsrd, andQmnsrd practically do not depend on
the basis of trial functions nearr=20 fm, which allows
matching the results of calculation with two different basises.
The three lowest effective potentialsUnsrd=1/r2f4lnsrd
+ 15

4
g+Pnnsrd sn=1−3d for two-body potential 3 are depicted

for illustration in Fig. 1.
The detailed information on the three-body system can be

obtained by considering the eigenfunctions on a hypersphere
Fnsj ,w ,rd. Due to symmetry,Fnsj ,w ,rd are periodic func-
tions of the variablew with the period 2p /3. As the main
contribution to the total wave function comes from the first
term sn=1d of expansion (8), the first eigenfunction
F1sj ,w ,rd practically determines the structure of the system.
For illustration, three-dimensional plots of the first eigen-
function F1sj ,w ,rd (for two-body potential 3) are shown in
Fig. 2 at three values of the hyper-radiusr=5 fm, r
=15 fm, andr=45 fm that correspond, as seen in Fig. 1, to
the minimum, the maximum, and the turning point ofU1srd
at E=0.3795 MeV. For all values of the hyper-radius,
F1sj ,w ,rd is small at the zero distance between a pair of
a-particles, i.e., at the pointj=0, w=p /3 at the hypersphere,
because of the strong repulsive term in the short-range po-
tential Vs. At sufficiently larger (near the turning point),
F1sj ,w ,rd exhibits a specific structure concentrated in the
region where the two-body potential is attractive, i.e., around
the point j=0, w=p /3. This structure corresponds to the
two-cluster configurationa+ 8Be. For smaller values ofr (as
seen in Fig. 2 atr=15 fm) the two-cluster structure widens;
besides, visible values ofF1sj ,w ,rd appear both at the point
j=p /2, which corresponds to the configuration of the equi-
lateral triangle, and near the pointj=0, w=0 (or j=0, w
=2p /3), which corresponds to the linear configuration. Next,
at smallr near the minimum ofU1srd, the most important is
the triangle configuration with a noticeable weight of the
linear configuration and without any trace of the two-cluster
structure.

The accuracy of the calculation is estimated by observing
the convergence with increasing number of SHH. As a result,
the accuracy of the most significant effective potentialU1srd
turns out to be not worse than 1 eV in the entire interval
0,rø20 fm and is much better for smallerr. In a similar
way, the relative accuracy ofPmnsrd and Qmnsrd is better
than 10−5 in the same interval 0,rø20 fm. As the hyper-
radius increases beyondr=20 fm, the accuracy of the calcu-
lation decreases due to a more complicated structure of the
eigenfunctionsF1sj ,w ,rd. Nevertheless, as shown in Fig. 1,
the effective potentialU1srd is in good agreement with the
asymptotic dependence(22) in the interval 40ørø60, thus
pointing to the sufficiently high accuracy. In particular, for
all the potentials used, a fit ofU1srd to Eq. (22) gives the
values of the Coulomb parameterq̃ which differ from the
expected valueq̃=13.3 MeV·fm by less than 0.14 MeV·fm.
The fitted values ofE2a differ from the experimental energy
of 8Be by less than 0.004 MeV for potentials 1–3 and by
about 0.009 MeV for potential 4.

Note that representation(22) of the effective potential
U1srd in terms of the energy of the two-cluster systema

TABLE I. Parameters of the short-rangea-a potential Vs (4)
and the corresponding widthsg of the a-a resonance(the ground
state of8Be).

Vr sMeVd mr sfm−1d Va sMeVd ma sfm−1d g seVd

1 82.563 1/1.53 26.1 1/2.85 6.80

2 279.206 1/1.53 40 1/2.85 8.53

3 20.012 1/1.53 16.5 1/2.85 5.11

4 197.680 0.7 80 0.475 5.10
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+ 8Be confirms the sequential mechanism of 02
+ state decay

with formation ofa+ 8Be at the first step. Also, this conclu-
sion follows from the genuine two-cluster form of the first-
channel eigenfunctionF1sj ,f ,rd at r<rt. As shown in Fig.
2 at r=45 fm, F1sj ,f ,rd practically coincides with the
symmetric combination of the8Be wave functions. Thus the
total width is determined by the two-cluster decay width.

The calculatedG, Rsid si =1,2d, M12, and the parameters of
the three-body potentialV0 and b are presented in Table II
for four two-body potentials and different numbers of HRE
N1. These results are compared with the experimental values
and calculations[16,17] (the factorÎ2 in the last column
appears due to different definitions ofr in these papers). As
shown in Table II, the convergence in a number of HREs is
sufficiently fast and solution of three HREssN1=3d allows
the resonance width to be determined with the accuracy
about 1 eV. The final accuracy ofG depends mainly on the
accuracy of the variational calculation and can be estimated
as a few eV. The values of the parameterb presented in Table
II are quite reasonable since they are in agreement with the
valuer=2Î2Ra<4.16 fm, which corresponds to triple colli-
sion of three hard spheres with radiiRa.

IV. DISCUSSION AND CONCLUSION

The main result of the present calculation is accurate de-
termination of an extremely narrow widthG of the three-
body resonance(the excited 02

+ state of12C). As shown in
Tables I and II, the widthG of the three-body resonance
depends on the underlying two-bodya-a potential and es-
sentially increases with increasing widthg of the two-body
a-a resonance. In fact, variation ofg within the limits of the

experimental uncertainty gives rise to a change ofG by a
factor 2.6; therefore, the precise value ofg is necessary for
determination ofG. Note that for all the potentials consid-
ered, the calculatedG overestimate the experimental value
Gexp=8.5±1 eV by a factor 1.2–3.1. However, the difference

FIG. 2. The first eigenfunctionF1sj ,w ,rd at differentr.

TABLE II. Characteristics of the 0+ states of threea-particles
for four a-a potentials calculated withN1 HRE. The width of the
excited stateG, the rms radiiRs1d andRs2d, the monopole transition
matrix elementM12, and the parametersV0 andb of the three-body
potential are given. The results of the calculations[16,17] and the
experimental values are given in the last rows.

N1 G
(eV)

Rs1d

(fm)
Rs2d

(fm)
M12

sfm2d
V0

(MeV)
b

(fm)

1 25 2.56 4.1 9.52 −21.998 4.8993

1 2 20 2.55 4.1 9.08 −23.993 4.6608

3 19 2.55 4.0 9.03 −24.048 4.6530

1 37 2.82 4.4 10.3 −29.291 5.1213

2 2 27 2.77 4.2 9.00 −39.124 4.5223

3 26 2.77 4.2 8.85 −39.947 4.4858

1 13 2.25 3.6 8.23 −15.812 4.4506

3 2 11 2.24 3.6 8.15 −16.059 4.3964

3 10 2.24 3.5 8.14 −16.066 4.3942

1 21 2.51 4.1 8.74 −14.548 5.7248

4 2 16 2.49 4.0 8.36 −15.129 5.4595

3 15 2.49 4.0 8.21 −15.285 5.4118

[16] 20 2.36 6.54 −96.8 3.9/Î2

[17] 1300 2.47 8.36 −23.32 3.795·Î2

Exp. 8.5±1.0 2.47 5.7
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of the calculated width for potential 3 and the experimental
value is of order of the theoretical and experimental uncer-
tainties. In addition, comparing the results for potentials 3
and 4, one may conclude that widthG of the three-body
resonance depends on the potential shape(on the parameters
mr andma). It should be emphasized that dependence ofG on
the parameters of thea-a interaction is rather complicated
due to addition of the three-body potentialV3srd which is
chosen to fixEg.s. andEr at the experimental values. Never-
theless, the effect ofV3srd is not overwhelming sinceG is
mainly determined by penetrability of the potential barrier
and all the three-body potentials used in the present calcula-
tion are rapidly decreasing with increasingr in the barrier
region 10 fm,r,45 fm.

Similar dependence ong is revealed for the ground-state
rms radiusRs1d. It is interesting that the calculatedRs1d

=2.55 fm is close to the experimental valueRexp
s1d =2.47 fm

for potential 1, for which the two-body widthg coincides
with the most probable experimental valuegexp=6.8 eV.
Similar to G, the calculatedRs1d essentially depends on the
parametersmr andma. Both the rms radiusRs2d of the exited
states and the monopole transition matrix elementM12 are
weakly dependent on the parameters of the two-body poten-
tial. For all the potentials, the calculated values ofM12 sig-
nificantly overestimate the experimental value 5.7 fm2 that
clearly deserves further investigation.

Comparison with the previous microscopic calculation
[16] shows that the accuracy of the present calculation is
much better than in Ref.[16] whereas the methods of calcu-
lation are similar to each other. Note that thea-a potential in

Ref. [17] was chosen to fix the rms radius of the ground state
at the experimental valueRexp

s1d =2.47 fm. With this potential,
the energy of the three-body resonance is misplaced by
0.47 MeV. This is essentially above the experimental values
and leads to an unreliably large resonance width.

The above discussion allows the conclusion that calcula-
tion of three-body observables can be used to impose restric-
tion on the effective two-bodya-a potential. In the future
one should look for a possibility of reproducing the experi-
mental values by a refined choice of potentials, in particular,
by using more complicated three-body potentials.

In conclusion, the three-a-cluster model is used to calcu-
late the characteristics of the 0+ states in the12C nucleus. In
particular, the width of the extremely narrow threshold 02

+

state is calculated with a good accuracy. The dependence of
the width on the parameters of thea-a potential is studied. It
is proposed to use the calculation of the width for selection
of a-a potentials. It is directly shown in the three-body cal-
culation that the 02

+ state decays by means of the sequential
mechanism s12C→a+ 8Be→3ad. This conclusion is in
agreement with the experiment[9] in which the rate of the
direct decay12C→3a is estimated to be less than 1% of the
total rate. The calculation of the near-threshold 3a-resonance
can be considered as a part of the general study of both
resonant and nonresonant reaction 3a→ 12C at low energy.
The present approach is promising for calculation of the
triple-a reaction rate at low energy below the three-body
resonance. This provides an opportunity for unified treatment
of the crossover from the resonant to the nonresonant mecha-
nism of the reaction.
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