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We analyze cross sections for quasielastic inclusive scattering of electrons on nuclei and show that the
observed isolated peaks for relatively lowQ2 are unique for the lightest targets. Focusing, in particular, on D
and 4He, we investigate in two ways to what measure the above peaks can be allocated to nucleon-elastic
processes. We first compute approximate upper limits for the nucleon-inelastic background in the quasielastic
region due to inclusiveD excitation, and find those to be small. Far more precise is a semiphenomenological
approach, where the dominance of nucleon-elastic processes is translated into a set of stringent requirements.
We show that those are very well fulfilled for recent D data, and to a somewhat lesser extent for older D and
4He data. With knowledge ofGE,M

p and information onGE
n, we then extractGM

n and find agreement with values
obtained by alternative methods. We discuss the sensitivity of the extraction method and mention future
applications.
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I. INTRODUCTION

Charge-current distributions of hadrons are basic sources
of information, which may be compared with predictions of
fundamental theories. Examples are static form factors of the
neutron and its structure functions(SF) which depend on
those distributions. Over many years, experimental efforts
have been made to extract those observables with maximal
accuracy. This requires high-quality data, and in parallel, ac-
curate control of nuclear medium effects. In this note we
focus on the magnetic form factor of the neutron.

A standard tool for the study ofGM
n sQ2d has been quasi-

elastic(QE) electron scattering on a D for relatively lowQ2.
We also mention semi-inclusive scattering experiments
Dse,e8NdX, whereN=p or n [1,2], as well as total-inclusive
data on D up toQ2ø4 GeV2 [3]. The varied kinematics in
the latter experiment made it possible to perform a Rosen-
bluth separation and a subsequent isolation of transverse
partsRT of cross sections. Once inelastic background effects
are removed, one is left with a simple expression forRT

NE

~ fsGM
p d2+sGM

n d2g.
Another source of information is the asymmetry in the

inclusive process3HeW seW ,e8dX [4,5], which requires for its
analysis a complete three-body calculation. In most of those
one has neglected final state interactions(FSI) or relativistic
kinematics[5,6]. The present rangeQ2&0.6 GeV2 will soon
be considerably enlarged[7].

In the following we reopen the discussion on the extrac-
tion of GM

n from QE inclusive scattering on D and other
targets. There is no change in the basic understanding of
those reactions. The much improved accuracy is new, for
instance, with which one nowadays computes wave func-
tions for light targets[8]. In parallel, more precise expres-
sions for FSI have been also obtained. The above new input
is here applied to analyze the total-inclusive data for light
nuclei.

We base our analysis on a specific relation between
nuclear and nucleon structure functions. The latter leads to
the definition of the nucleon-elastic(NE) and nucleon-
inelastic(NI) components of the inclusive cross sections for
a composite target, which correspond to processes where a
virtual photon leaves a struckN in its ground state or excites
it.

In our analysis we consider recent D data[9,10], as well
as older ones on4He [11] and D[3]. We first address inelas-
tic contributions in the QE region. We estimate their magni-
tude on a model of inclusiveN-D excitation and show that
those are small compared to the QE total-inclusive cross sec-
tion. Next we formulate in a semiempirical fashion stringent
requirements which have to be fulfilled if total inclusive
cross sections are dominated by their NE components. We
find that those demands are accurately fulfilled for the recent
D [9,10] and to a somewhat lesser extent for the NE34He
data[11]. In the same fashion we reanalyze separated trans-
verse parts of the above-mentioned older D data[3] and in
parallel exploit the simultaneously measured total QE inclu-
sive cross sections, which have not been investigated before
in their own right.

In the above NE parts appear all four static form factors
GE,M

p,n sQ2d. Those for a proton have recently been determined
with improved precision[12–14], while GE

n is reasonably
well known for Q2ø1.6 GeV2 [15]. As a consequence one
can extractGM

n from cross sections, provided those are in-
deed dominated by their NE components.

We show that the thus determinedGM
n are essentially in-

dependent of both, the QE data points chosen for extraction
and of the target nucleus. We discuss the sensitivity of our
results to the quality of the experimental input and mention
forthcoming precise data to which the presented extraction
methods can be applied. Those will help to sharpen the re-
sults obtained below.
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II. QUASIELASTIC INCLUSIVE SCATTERING

A. Generalities

Consider the cross section per nucleon for inclusive scat-
tering over an angleu of unpolarized electrons, with initial
and final beam energiesE andE−n. The same, relative to the
Mott cross section is

KAsx,Q2d ; /
d2sAsE;u,nd/A

dVdn
/sMsE;u,nd

= F2xM

Q2 F2
Asx,Q2d +

2

M
F1

Asx,Q2dtan2su/2dG ,

s2.1d

where F1,2
A sx,Q2d are the nuclear SF which depend on the

modulus of the squared four-momentum transferq2=−Q2=
−suqu2−n2d and on the Bjorken variablex=Q2/2 Mn. With M
the nucleon mass, its range is 0øxøA. In order to calculate
the nuclear SF, we shall exploit a previously postulated rela-
tion between nucleon and nuclear SF[16], which for isospin
I =0 targets reads

Fk
Asx,Q2d =E

x

A dz

z2−k fPN,Asz,Q2do
l

Cklsz,Q2d

3FFl
pSx

z
,Q2D + Fl

nSx

z
,Q2DGY 2. s2.2d

The link between the SFF1,2
A and the nucleon SFF1,2

N=p,n

(assumed to coincide with the free ones) is provided by the
SF fPN,A of a fictitious target composed ofA point nucleons.
It includes the effect of the mixing of the nucleon SF via the
coefficients Ckl, whose expression can be obtained using
standard procedures[17,18]. As usual, we takeC11=1,C12
=C21=0, and retain onlyC22 in the expression above. In
Appendix A we provide details.

Many data analyses have been made withfPN,A, calculated
in the plane wave impulse approximation(PWIA) in terms of
the single-hole spectral function[19]. We favor the Gersch-
Rodriguez-Smith(GRS) theory for fPN,A [20], which has re-
cently been generalized for use in the relativistic regime[21].
One of the reasons of our preference is the convergence of
the GRS series to the exactfPN,A, which is generally faster
than is the case for the impulse series(IS). Moreover, it is
more convenient to use the GRS series for a computation of
FSI, which are present infPN,A [16,21,22].

In the following we shall focus on the immediate neigh-
borhood of the quasielastic-peak(QEP), uxu <1, where
nucleons, as described by Eq.(2.2), are the dominant parton
sources(see, for instance, Ref.[23]).

B. Nucleon-elastic and inelastic components of SF

We first consider in Eq.(2.2) the SFFk
N of nucleons and

separate those in NE and NI parts,Fk
N,NE and Fk

N,NI sN
=p,nd,

which correspond to processg* +N→N or g* +N→ (had-
rons, partons). The NE components contribute only forx
=1, and contain the standard combinations of static electro-
magnetic form factorsGE,M

N sQ2d fh=Q2/ s4M2dg,

F1
N,NEsx,Q2d = 1

4ds1 − xdfsGM
p d2 + sGM

n d2g, s2.3d

F2
N,NEsx,Q2d = ds1 − xd

fsGE
pd2 + sGE

nd2 + hhsGM
p d2 + sGM

n d2jg
2s1 + hd

.

s2.4d

All except GE
n have in the past been assumed to be of the

dipole formGdsQ2d=f1+Q2/0.71g−2, but recent experiments
have detected deviations from 1 of the following quantities
[12–14]:

aN ; GM
N sQ2d/mNGdsQ2d, N = p,n, s2.5d

gsQ2d ;
mpGE

psQ2d
GM

p sQ2d
=

GE
psQ2d

apsQ2dGdsQ2d
, s2.6d

with mN, the static magnetic moment ofN.
In the relevantQ2 range, the deviation ofap from 1 is

moderate: After reaching a maximum of<1.07 at Q2

<2 GeV2,ap decreases and crosses the value 1 forQ2

<5 GeV2 [12,13]. In contrast, the measured deviation ofg
from 1 is far more pronounced[14]

g = 1 for Q2 & 0.3 GeV2,

< f1 − 0.14sQ2 − 0.3dg, for 0.3& Q2 & 5.5 GeV2.

s2.7d

As to the NI components, for sufficiently highQ2 we use
parametrized data onF1

psx,Q2d [24] andF2
psx,Q2d [25] which

are actually averages over structures, reflecting inclusive
resonance excitations. Those stand out for relatively lowQ2,
but get gradually smoothened for growingQ2. For lack of
direct information on the NI parts of the SF for a neutron are
frequently approximated by

Fk
n,NIsx,Q2d < Fk

D,NIsx,Q2d − Fk
p,NIsx,Q2d, k = 1,2,

s2.8d

which is reasonable forx&0.3. Only recently hasF2
nsx,Q2d

for Q2=3.5 GeV2 been extracted with reasonable accuracy
[26].
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The above division of thenucleonSF Fk
N in NE and NI

parts determines through Eq.(2.2) corresponding compo-
nentsKA,NE andKA,NI in the reduced cross section defined in
Eq. (2.1). For example,

KA,NEsx,Q2d = F2xM

Q2 F2
A,NEsx,Q2d

+
2

M
F1

A,NEsx,Q2dtan2su/2dG , s2.9d

and a similar expression definesKA,NI. Explicitly, for I =0
nuclei [27]

F1
A,NEsx,Q2d =

fPN,Asxd
4

fsGM
p d2 + sGM

n d2g

=
fPN,Asxd

4
Gd

2fsapmpd2 + sanmnd2g,

s2.10d

F2
A,NEsx,Q2d =

xfPN,Asxd
2s1 + hd

C22sx,Q2dfsGE
pd2 + sGE

nd2 + hhsGM
p d2

+ sGM
n d2jg

=
xfPN,AsxdGd

2

2s1 + hd
C22sx,Q2dfsgcapd2 + hhsapmpd2

+ sanmnd2jg, s2.11d

gc
2 = g2 + F mnh/ap

1 + 5.6h
G2

. s2.12d

In. Eq. (2.12) we have used the Galster parametrizationGE
n

=smnhGdd / s1+5.6hd2 [28], which approximately accounts
for data forQ2& s1.5−2.0d GeV2 [15].

Using the definitions

usx,Q2d = fPN,Asx,Q2dap
2sQ2dGd

2sQ2d,

vsx,Q2d = fx2/2s1 + hdgC22sx,Q2d, s2.13d

one solves from Eqs.(2.9)–(2.11), for the desiredan,

ansQ2d
apsQ2d

=
2

umnuFMKA,NEsx,Q2d/f2usx,Q2dvsx,Q2dg − gc
2sQ2d/4h

1 + tan2 su/2d/vsx,Q2d
− Smp

2
D2G1/2

. s2.14d

Should transverse componentsRT
A,NE=2F1

A,NE/M be avail-
able, Eq.(2.14) for those reduces to

ansQ2d
apsQ2d

=
1

umnu
F2MRT

A,NEsx,Q2d
usx,Q2d

− smpd2G1/2

. s2.15d

Next we discuss general trends of the NE, NI components as
functions ofx,Q2 in the QE region[22]. The SFfPN,A of a
nucleus, composed of point nucleons, peaks around the QEP
at x<1sn<Q2/2Md, and decreases strongly with increasing
ux−1u. Equations(2.10) and (2.11) then implies similar be-
havior of Fk

A,NE. As regards the variation withQ2, by far the
strongest ones are due to the static form factorsGsQ2d in
Fk

A,NEsx,Q2d, which approximately decrease as<Q−4, while
sM in Eq. (2.1) at constantE,u is independent ofQ2.

The NI parts have entirely different characteristics. Most
pronounced for fixedu is their steady increase withn (de-
creasingx), causing NI parts to dominate the deep inelastic
regionx,1. For increasingQ2, NI components decrease, but
less rapid than do the NE ones. Ultimately NI competes with
NE parts, even on the elastic sidexù1 of the QEP.

The above reasoning predicts that the reduced total cross
sections forQ2ù s1.5−2.0dGeV2 generally vary smoothly
with n. Roughly speaking, around the QEP,n<Q2/2M, NI
components overtake NE, which is reflected in a change of
the logarithm of the slope of cross sections. The above be-
havior has indeed been observed forAù12 [see Fig. 1(a)],
for which incidentally, the normalizedfPN,A hardly depends
on A [22]. In contrast, the nonstandard structure of the light-

est nuclei withAø4 (for instance, reflected in the quantita-
tively different single-N momentum distributions) causes the
normalizedfPN,Asx,Q2d to be much sharper peaked, than is
the case forAù12. Figure 2 illustrates this onfPN,Asx,Q2

=3.0 GeV2d for D, 4He, and Fe(or C, Au), whereas Fig. 3
displays theQ2 dependence offPN,Dsx,Q2d.

From the above one predicts that in medium and low-Q2

cross sections for inclusive scattering on targets withAø4,
the QEP may stand out against a smooth background. With
increasingQ2, those peaks fade into the NI background. Both
features appear confirmed by data[cf. Fig. 1(b)].

We already argued that for decreasingQ2, the NE compo-
nent increases relative to the NI one. Ultimately on reaching
Qc

2<s2.0−2.5dGeV2, below which Eq.(2.2) is no longer re-
liable as a tool for a calculation of NI. Yet, when wishing to
extract information from NE parts of cross sections by their
isolation, one clearly needs to know the relative size of the
NI background.

Another difficulty in the sameQ2 region regards the use
of parametrized, resonance averagedFN, which masks actual
resonance structures. In fact, one may exploit inclusive reso-
nance excitation as a model forFk

A,NI. As is the case for the
NE parts, Eqs.(2.10) and(2.11), we expect that, irrespective
of the relatively lowQ2, Eq. (2.2) will properly produce the
correspondingFk

A,res due to an isolated resonance of moder-
ately small width. In Appendix B we present relevant mate-
rial for N→D. Should the numerical outcome indeed prove
that NI is negligibly small compared to NE, the latter can be
identified with actual data, i.e.,KA,expt<KA,NE.
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III. ANALYSIS

In the following, we shall analyze the following QE
datasets:

(A) Recent D data,E=4.045 GeV,u=15° ,23°[9,10].
(B) 4He data for E=2.02 GeV, u=20° and E

=3.595 GeV,u=16° ,20° [11]. Those may well be the first
QE inclusive scattering data on a nucleus, heavier than D, to

be used as a source forGM
n .

(C) Older D data for more or less constantQ2

=1.75,2.50,3.75 GeV2 [3], which comprise total inclusive
cross sections(2.14) at approximately the samex,Q2 for
various beam energies and scattering angles and Rosenbluth-
separated transverse components. Those containGM

n only in
conjunction withGM

p . Results forRT
A have in Ref.[3] been

presented as effectively originating from data withu=20°,
which implies some binning of bands ofQ2 values.

We start with the NI cross sectionsd2sA,NI, first estimated
from inclusive D production (Appendix B). In Table I we
both enter results for aD with its actual and a zero width.
One notices that the latter produces cross sections about a
factor 2 lower than one with its actual width. This outcome
warns against the use of an excitation amplitude into the tail
of a resonance, far beyond, say, twice the width of the used
Breit-Wigner amplitude(B11).

In addition to the above, we also performed a standard
calculation ofFA,NI for Q2&2.5 GeV2 using parametrized,
resonance averagedFk

N. The results are entered in the seventh
column of Table I and enable a comparison with the
resonance-excitation predictions. We estimate that only the
entry forQ2<2 GeV2 may be indicative of the actual size of
FA,NI.

From the results in Table I is difficult to reach a firm
conclusion regarding the size andQ2 dependence of the NI
backgroundd2sA,N→D around the QEP. Recalling that Eq.
(B12) give an upper limit ford2sA,NI, we tend to conclude
that in the QE region of the considered experiments the com-
puted D excitation contributions are small and presumably

FIG. 1. (a) Data[29] and calculated[22] QEP cross sections for
inclusive scattering ofE=4.045-GeV electrons on Fe throughu
=15° ,23°, and 30°.(b) Same as in(a) for D; data are from Refs.
[9,30].

FIG. 2. Comparison offPN,Asx,Q2=3.0 GeV2d for D, 4He, and
Fe.

FIG. 3. The SFfPN,Dsx,Q2d for Q2=0.972,1.94 GeV2.
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negligible. Nevertheless, the conclusion is not firm, and it is
desirable to look for corroborative evidence, which confirms
NE dominance. Only then can one safely extractGM

n from
Eq. (2.9).

Such support can actually be found in a semiempirical
fashion directly from data, specifically on the elastic sidex
*1,n&Q2/2M of the QEP, and for sufficiently smallQ2, in
addition on its adjacent inelastic sidex&1,n*Q2/2M. In
order to conclude that the data in those regions are essen-
tially uncontaminated NE, and thus directly accessible to the
extraction ofGM

n by means of Eqs.(2.9)–(2.11), the follow-
ing requirements ought to be fulfilled.

(i) In QE regionsxNIsQ2d&x&1.1, with xNIsQ2d the x
values,1d, where the NI part overtakes the NE component,
the cross sections should follow the computed bell-shapedx
dependence offPN,Asx,Q2d, with computed targetA andx,Q2

dependence.
(ii ) ExtractedansQ2d from either Eq.(2.14) or Eq.(2.15)

should not depend on thex values chosen for the extraction.
(iii ) ansQ2d should not depend on the target in which the

neutron is embedded.
With fPN,A the source of the strongest variation withx,

requirements (i) and (ii ) demand that
KA,NEsx,Q2d /usx,Q2dvsx,Q2d in Eq. (2.9) be x independent,
and moreover, that tan2 su /2d /vsx,Q2d!1. The same
nuclear SFfPN,A carries theA dependence, which we recall is

most pronounced forAø4: the ratioKA,NE/ fPN,A in Eq. (2.9)
should beA independent.

The above conditions are quite stringent and lean heavily
on the central role played byfPN,A. Of course, it is always
possible to fit one or two points on the elastic side of the
QEP sx*1d, whether or not the cross sections do contain
some NI part in addition to the NE component. However,
since NI parts grow with decreasingx (increasingn), a fit of
NE based on one or two points cannot possibly hide a NI
component over anextendedinterval xNI&x&1.1.

The above is most expediently tested on QE data which
are represented on a linear scale. Figures 4 and 5 show that
criterion (i) is very well met for recent, high-quality D data
in the elastic neighborhood of the QEP. As a result we could
extract, for a range of selected data points,ansQ2;xkd, and
from those an unbiased averageansQ2d;kansQ2dl and an
error of the mean.

For x decreasing into the inelastic region of the QEP(in-
creasingn), differences emerge between the measured and
computed NE cross sections for fixedansQ2d. Those reflect
the growing importance of NI parts, forx&xNI and increas-
ing with Q2.

The very quality of the fit makes one wonder why, for the
stated averagean, the maxima of the two D cross sections is
off by 3% –5%. We probed sometimes substantially larger
an and the result for those is common to all cases to be
discussed: even a 10% increase inan hardly affects the NE

TABLE I. N→D NI inclusive cross sections for D and4He. Columns 1–4 give target, beam energy and scattering angle,kQ2l andx
position of the resonance for a number of values of the energy lossn, andx around the QEP. Moreover, in columns 5 and 6 we report the
NI cross sections computed with theN→D excitation model described in Appendix B usingGD=0.12 GeV andGD=0, respectively. In
column 7, we report the NI cross section computed with Eq.(2.2) using the parametrized, resonance-averaged, nucleon SFFk

N,NIsx,Q2d.
Finally, in the last column we report the measured(total) inclusive cross sections. All quantities are in powers of GeV; cross sections are in
mb/s/GeV

Target E,u kQ2l ,xD n ,x s1/Add2sA,D;GD s1/Add2sA,D;GD=0 s1/Add2sA,NI s1/Add2sexpt
A,total

D [9,10] 4.045, 15° 0.972, 0.601 0.465, 1.131 0.0193 0.0089 0.0162 0.178

0.495, 1.054 0.0368 0.0130 0.0225 0.263

0.525, 0.985 0.0656 0.0193 0.0627 0.435

0.555, 0.922 0.0827 0.0295 0.1110 0.312

D [9,10] 4.045, 23° 1.94, 0.750 0.975, 1.079 0.00195 0.00096 0.00050 0.0064

1.005, 1.037 0.00325 0.00150 0.00084 0.0108

1.035, 0.997 0.00531 0.00225 0.00138 0.0248

1.065, 0.959 0.00806 0.00363 0.00232 0.0126
4He [11] 2.02, 20° 0.434, 0.402 0.210, 1.125 0.0580 0.0202 0.256 0.973

0.225, 1.035 0.0833 0.0281 0.386 1.173

0.240, 0.962 0.1122 0.0382 0.535 1.200

0.255, 0.898 0.1442 0.0504 0.704 1.270
4He [11] 3.595, 16° 0.872, 0.575 0.420, 1.121 0.0322 0.0165 0.0297 0.183

0.450, 1.037 0.0520 0.0259 0.0488 0.227

0.465, 0.998 0.0629 0.0318 0.0607 0.258

0.480, 0.963 0.0824 0.0399 0.0766 0.227
4He [11] 3.595, 20° 1.266, 0.662 0.615, 1.119 0.008 0.0039 0.0029 0.0293

0.645, 1.056 0.015 0.0086 0.0069 0.0343

0.675, 0.999 0.021 0.0126 0.0105 0.0400

0.705, 0.947 0.029 0.0186 0.0144 0.0425
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wings and only moderately changes the peak area. Those
bridge only a small part of the discrepancy there, while the
error from the mean generally grows. It seems more likely
that what seems to be a tiny misfit at the QEP is actually the
onset of NI at about the samen. In line with expectations,
those are smooth inn.

It is of course desirable to have an error estimate
DansQ2,xkd due to the systematic errors in the cross sections.
In spite of the fact that the latter are only of the order of a
few percent, the resulting averaged error estimates
kDansQ2,xkdl may be large fractions of the average
kansQ2,xkdl. Clearly, the desired error estimates require far
smaller systematic errors on the data than are presently avail-
able. The above failure actually contains information: pro-
vided the data are smooth and have a small error of the
mean, the method of extraction ofansQ2,xkd and its average
is quite sensitive to the central data. This is borne out by the
above D datasets(A).

At this point we make a digression and report on an at-
tempt to fit theu=23° D data, with fPN,D for u=15°, or

alternatively with aQ2 independentfPN,D. The result, the
dashed curve in Fig. 5, manifestly produces a far worse fit
than the drawn line forfPN,A with the Q2 appropriate tou
=23°. The above supports(but does not prove) the assump-
tion that the SFfPN,A in the link (2.2) is Q2 dependent, as its
interpretation as a SF of a nucleus demands. It runs counter
the claim thatfPN,A is Q2 independent, which holds in the
PWIA (see, for instance, Ref.[31]), but not for the GRS
theory used above.

Next we discuss the above-mentioned older4He datasets
[11]. As a comparison of Figs. 4, 5, and Figs. 6–8 show the
quality of the He data is inferior to those for D and conse-
quently one cannot expect a similar precision foran, as ob-
tained from the above D data.

An additional complication is the non-negligible mixing
of nucleon SF inFA, which is primarily determined byC22,
given by Eq.(A14). Although qualitatively understood, any
evaluation amounts, in practice, to an approximation.

(B1) E=2.02 GeV,u=20°: Fig. 6 reports our predictions
for a number ofan. A characteristic pattern for this case and
the others mentioned below is the insensitivity of the cross
section on the elastic side for even 10% changes inan. How-
ever, those do matter around the QEP and beyond. Since the
averageQ2<0.45 GeV2 is very low, one expects NE still to
dominate in some range on the inelastic side of the QEP,
which increases the sample of points. From a total of 9, one
extracts an averagekanl=1.08±0.03. Taking out the irregular
point n=0.240 GeV close to the QEP, the average increases

FIG. 4. Cross section for QE inclusive scattering ofE=4.045-
GeV electrons on D foru=15°. The drawn line is the theoretical NE
cross section foran=1.039.

FIG. 5. The same as in Fig. 4 foru=23°. The drawn line is the
theoretical NE cross section forQ2=1.94 GeV2 andan=1.062. The
dotted line represents the result of a calculation with the SF
fPN,Dsx,Q2=0.972 GeV2d, instead of the same with the valueQ2

=1.94 GeV2, pertinent to this caseu=23°.

FIG. 6. Cross section for QE inclusive scattering ofE=2.02-
GeV electrons on He foru=20°. Data are from Ref.[11]. The lines
are the theoretical NE cross sections for three values ofansQ2d. The
unbiased average value ofansQ2d for this case can be found in
Table II.

A. S. RINAT, M. F. TARAGIN, AND M. VIVIANI PHYSICAL REVIEW C 70, 014003(2004)

014003-6



to 1.10±0.03. Eitheran value is higher than most other ex-
tracted ones for similarQ2. However, a 10% NI contribution
at the QEP and extrapolated behavior about it causes an ap-
preciable decrease ofan. With as yet no accurate NI esti-
mate, one can only point at sensitivity.

(B2) E=3.6 GeV,u=16°: Fig. 7 shows that, as expected,
the NI component grows relative to NE component on the
inelastic side of the QEP. Limiting the sample to nine points
with 0.375 GeVønø0.495 GeV, the average kanl
=1.05±0.02 is obtained.

(B3) E=3.6 GeV,u=20°: the data show substantial noise
around the QEP and in the near-NI region(see Fig. 8). The
QEP is hardly visible for this case. One clearly cannot well
fit both the elastic slope and the QEP region. The average
over eight points with n,0.630 GeV produceskal
=1.06±0.02. The curves reported in Fig. 8 are foran
=1.00,1.06, and 1.12.

We only briefly mention the total cross sections and sepa-
rated transverse D data of Lung[3] [sets(C)]. Part of those
are for medium and part for largerQ2: all reduced data fol-
low the theoretical predictions, but only to about 10% accu-
racy. We note that for allQ2 the data are given only to two
decimals. Therefore, in spite of the approximately fulfilled
requirement(i), insufficient accuracy hampers the drawing of
sharper conclusions.

To the above one may add that the extracted results may
well be affected by the precision of the Rosenbluth separa-
tion (cf. Fig. 55 and Table 22 in[3]). The latter appears to
have been renormalized to one nominalu=20°, which im-
plies some binning. Consequently, in spite of the fact that the
Rosenbluth separatedRT contains a simpler form forGM

n

than does the total cross sections, we consider the latter to be
a competitive and fiducial tool for extraction.

Table II summarizes our results foransQ2d. Column 1
indicates the targets for which total QE inclusive cross sec-
tions have been analyzed, whereas the same for separated
transverse data are denoted byRT. Columns 2–5 contain the
beam energies, the scattering angles, ranges of the consid-
ered Bjorkenx on the elastic side up to and just over the
QEP, and the corresponding ranges ofQ2. The separated
RA

T are all for fixedQ2 at the QE peak and correspond to
renormalized energiesE and fixedu=20° [3]. The sixth col-
umn gives ranges of the point-nucleon nuclear SF, with in
parenthesis values at the QEP. The last column presents the
values of the extractedkansQ2dl, which measure the devia-
tion of GM

n sQ2d /mn from a dipole form factor. As discussed
above, we only give errors of the mean values and do not
include systematic errors in the underlying data.RT

D,NE be-
tween parenthesis in the last column are the results of Lung
[3].

The results in Table II and a few earlier values ofansQ2d
are shown in Fig. 9. The values obtained in the present
analysis are seen to agree amongst themselves and within the
experimental accuracy with information from other sources.

IV. SUMMARY AND CONCLUSIONS

We have analyzed QE inclusive scattering on D and4He.
From the general behavior of NE components, where a
nucleon in the medium absorbs a virtual photon without be-
ing excited, we concluded that one should observe an out-
standing QEP in moderateQ2 cross sections for inclusive

FIG. 8. The same as in Fig. 6 forE=3.595 GeV andu=20°.FIG. 7. The same as in Fig. 6 forE=3.595 GeV andu=16°.
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scattering on the lightest targets. For nonseparated cross sec-
tions, those NE parts contain all four static form factors, as
well as fPN,Asx,Q2d, the computed SF of a nucleus composed
of point nucleons. With knowledge ofGE,M

p and information
on GE

n, the NE component of the cross section is a measure
for ansQ2d=GM

n sQ2d /mnGdsQ2d.
In order to assess to what extent the experimental QE

cross sections are well represented by the uncontaminated
NE component, one has to know the size of the NI back-
ground, relative to NE. We first assumed that the dominant
NI parts are generated by the excitation ofD resonances. In
general their contributions on the elastic side of the QEP are
small. However, those NI estimates for the QE region in the
tail of the Breit-Wigner excitation amplitude are presumably
not sufficiently precise.

In a far more reliable, semiempirical approach, one com-
pares thex dependence of the reduced cross section data in
the immediate region of the QEP with the theoretical predic-
tion, Eqs.(2.9)–(2.11) for a purely NE component. Our re-
sults are the following.

(1) The valuesansQ2;xkd, extracted from the QE part of
recent D data, show little variation withxk and an unbiased
averageansQ2d;kansQ2dl produces excellent fits to the re-
cent D data. As expected, deviations due to NI appear on the
inelastic side of the QEP and grow withn andQ2.

(2) The poorer quality of the He data bars an equally
clean result for the He data. Nevertheless, we could extract
from those reasonablean. The one for the lowestQ2 is a
standard deviation higher than other extracted values.

(3) We reanalyzed Lung’s nonseparated D cross sections
for similar x,Q2, but differentE,u. For increasingQ2, the
relative weight ofGE

n grows, but simultaneously, information
on GE

n becomes increasingly scant. We therefore only ana-
lyzed total cross sections for the lowestQ2

=1.75,2.50 GeV2 of the above experiment.
(4) The same experiment with varied kinematics pro-

videsRT, in principle, the simplest source ofGM
n from inclu-

sive QE scattering. One expects the above source and un-
separated data to produce the sameGM

n . The entries in Table
II bear this out forQ2=1.75 GeV2, while Lung’s value from
RT

NE for Q2=2.5 GeV2 somewhat exceeds our result. How-
ever, for the larger measuredQ2, our analysis seems to show
a stronger downward trend ofansQ2d for growing Q2 than
reported by Lung.

It is clear from our analysis that the extractedansQ2d are
sensitive to the precision of the input. For instance, a 5%
change in cross sections may produce ten times larger rela-
tive changes inansQ2d. The same prevents the allocation of
systematic errors to extractedan.

TABLE II. Extraction of ansQ2d from QE inclusive scattering data on D and4He. Columns 1–4 give the target, the beam energyE, the
scattering angleu, and the range of values of the Bjorkenx variable chosen to perform the extraction ofansQ2d. Column 5 gives the
corresponding range of values forQ2. Column 6 gives the SFfPN,Asx,Q2d for the extreme values ofx in the range considered, and, in
parenthesis, its maximal values reached whenx<1. The last column givesansQ2d with error of the mean over the consideredx range. The
values between parenthesis are Lung’s results without error bars.

Target E (GeV) u x Q2sGeV2d fPN,Asx,Q2d ansQ2d

4He [11] 2.02 20° 1.018–0.745 0.444–0.430 1.18–1.20s1.49d 1.08±0.03

3.595 16° 1.041–0.908 0.887–0.864 1.57–1.92s1.92d 1.05±0.02

3.595 20° 1.126–0.905 1.275–1.250 1.28–2.11s2.16d 1.06±0.02

D [9,10] 4.045 15° 1.131–0.953 0.988–0.972 1.31–3.65s4.30d 1.039±0.035

4.045 23° 1.079–0.978 1.976–1.929 2.44–5.18s5.18d 1.062±0.018

D [3] 5.507 15.2° 1.063–0.978 1.769–1.741 2.89–5.04s5.31d 1.055±0.047

2.407 41.1° 1.081–0.957 1.803–1.721 2.37–4.89s5.32d 1.050±0.017

1.511 90.0° 1.059–0.977 1.812–1.728 3.21–4.79s5.26d 1.057±0.023

RT
D,NE 3.809 20° 1.141–0.962 kQ2l=1.75 1.79–3.38s5.31d 1.004±0.030s1.0523d

D [3] 5.507 19.0° 1.104–1.000 2.561–2.501 1.69–5.65s5.98d 1.032±0.035

2.837 45.0° 1.101–0.991 2.613–2.500 1.69–5.91s5.94d 1.031±0.043

1.968 90.0° 1.064–0.984 2.608–2.474 3.06–5.71s5.90d 1.078±0.055

RT
D,NE 5.016 20° 1.068–0.940 kQ2l=2.50 2.92–4.16s5.94d 0.986±0.030s1.0143d

RT
D,NE 5.016 20° 1.051–0.958 kQ2l=3.25 3.50–6.15s6.43d 0.940±0.028s0.9673d

RT
D,NE 5.016 20° 1.079–1.038 kQ2l=4.00 3.80–6.20s6.50d 0.830±0.040s0.9233d

FIG. 9. an=GM
n /mnGd as a function ofQ2. Entered are previous

results and those obtained in the present work(filled squares, dia-
monds, and triangles).

A. S. RINAT, M. F. TARAGIN, AND M. VIVIANI PHYSICAL REVIEW C 70, 014003(2004)

014003-8



We conclude that mediumQ2 QE inclusive scattering on
light nuclei provide an accurate tool to determineGM

n , with
as single most important source of lack of accuracy, the sys-
tematic errors in the underlying data.

Until recently we were rather pessimistic as to the pros-
pects for new information. It appears however, that new JLab
data on3He have already been taken, D data are forthcom-
ing, while experiments on4He have been approved. Once
analyzed, those data will be directly accessible to the above
analysis and promise to sharpen the predictions in this paper,
in particular, for4He.

In parallel,Dse,e8pd ,Dse,e8nd measurements will extend
reliable information onan over a widerQ2 range[37]. This
will enable us to establish whetherapsQ2d andansQ2d con-
tinue to behave similarly as a function ofQ2.
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APPENDIX A: DISCUSSION OF THE MIXING
COEFFICIENT IN THE GRS THEORY

The sensitivity of the extractedGM
n from inclusive scatter-

ing data, in particular, for lowQ2, calls for scrutiny in the
handling of tools for analysis. A delicate aspect of the theory
used here concerns the mixing coefficients entering Eq.(2.2).
All treatments and applications we know of are based on a
comparison of hadron tensors of the target and of an isolated
nucleon in the PWIA of the full IS[17,18]. Those tensors
contain invariantsp·q and pA·q, with p, and pA, the four-
momenta of the struckN and the target, and are related by
the single-hole spectral functionS of the target

WA,mnspA,pA ·qd =E d4p

s2pd4SspdWN,mnsp,p ·qd. sA1d

Expressing the hadron tensors by use of the invariant SFFk,
one obtains

Fk,0
A sx,Q2d =E d4p

s2pd4Sspd o
,=1,2

Ck,sp,n,uqudF,
Nsx̃,Q2d,

sA2d

with [17,18]

x̃ =
Q2

2Mñ
, ñ = n8 +

p2 − M2

2M
, Mn8 = p0n − pzuqu,

sA3d

wherepz is the component of the three-momentump of the
struck nucleon alongq. The dominant coefficient reads

C22sp,n,uqud =
sn8d2

nñ
SF1 +

Q2

uqun8

pz

M
G2

+
Q2

uqu2F n

n8
G2fp'g2

2M2 D ,

sA4d

wherep'
2 = upu2−pz

2. The mixing coefficientsC11=1 andC21
=0 [17,18], while C12 is negligibly small.

We evaluate thep0 integral in Eq.(A4) making the stan-
dard assumption that the spectator nucleus is on its mass
shell. Energy conservation in the vertexsA,A−1n,Nd then
determinesp0. In the target rest frame

p0 = MA − Îupu2 + fMA−1
n g2 < MA − MA−1

n − upu2/2MA−1
n ,

sA5d

whereMA−1
n is the mass of theA−1 system in then-excited

state andMA the mass of the target in its ground state. In the
following, we will neglect the recoil energy of the spectator
and therefore

p0 < M − E − D, sA6d

whereE the excitation energy of thesA−1d system andD the
smallest separation energy of thesA−1d nucleon system
from the target. One can easily transform the integration over
p0 in an integral overE.

We now specifically turn to GRS theory. First, whereas
fPN,A, the SF of a nucleus composed of point nucleons, has
FSI contributions due to scattering of off-mass shell nucle-
ons, GRS assumesFk

Nsx̃,Q2d to be the SF of an on-shell
nucleon. Consequently, the argument of the nucleon SF be-
comes

x̃ → Q2/2Mn8 = x8, ñ → n8, sA7d

and the mixing coefficient in Eq.(A4) now reads

C22sp,n,uqud =
n8

n
SF1 +

Q2

uqun8

pz

M
G2

+
Q2

uqu2F n

n8
G2fp'g2

2M2 D .

sA8d

We write the GRS SF of a nucleus composed by point nucle-
ons as a lowest order term, supplemented by a FSI term,

fPN,Asx,Q2d = f0
PN,Asx,Q2d + fFSI

PN,Asx,Q2d. sA9d

The lowest orderf0
PN,Asx,Q2d can be derived from Eq.(A2)

using the assumption(A7). Writing Sspd=2pPsupu ,Ed, F2
A in

Eq. (A2) becomes

F2,0
A sx,Q2d < E d3p

s2pd3dE Psupu,EdC22sp,n,uqudF2
Nsx8,Q2d

=E dzF2
NSx

z
,Q2D E d3p

s2pd3

3dE Psupu,EdC22sp,n,uquddSz−
x

x8
D . sA10d

Introducing the Gurvitz scaling variableyG [16],
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z−
x

x8
=

uqu
Mn

Spz +
nE

uqu
− yGszdD, yGszd =

Mn

uqu
S1 − z−

D

M
D ,

sA11d

then,

F2,0
A sx,Q2d < E dzF2

NSx

z
,Q2D

3 FMn

uqu E d3p

s2pd3dE Psupu,EdC22sp,n,uqud

3dSpz +
nE

uqu
− yGszdDG . sA12d

The lowest order partf0
PN,A of the point-nucleon nuclear SF

is defined by the expression given above between square
parenthesis. Note that(except for the factor Mn / uqu
;udyGszd /dzu) it coincides with the expression given in Eq.
(66) of Ref. [21] whenC22=1.

Finally, the functionfPN,A and the coefficientC22 used in
Eq. (2.2) are defined as

fPN,Asz,Q2d =
Mn

uqu FE d3p

s2pd3dE Psupu,EddSpz +
nE

uqu

− yGszdDG + fFSI
PN,Asz,Q2d, sA13d

and

C22sz,Q2dfPN,Asz,Q2d

=
Mn

uqu FE d3p

s2pd3dE Psupu,EdC22sp,n,uqud

3dSpz +
nE

uqu
− yGszdDG + fFSI

PN,Asz,Q2d. sA14d

The expression forfFSI
PN,Asz,Q2d can be found in Refs.[22,32]

and is assumed not to be modified byC.

APPENDIX B: N\D INCLUSIVE CROSS SECTION

In the following we discuss the NI background in the QE
region, as due to inclusive electroexcitation of the lowestD
resonance. Its cross section for a proton is

d2sp,NI → d2sp,D < sMF2
p,D/n, sB1d

F2
p,Dsx,Q2d =

Q2

x
NsGDdGpD

2 sQ2d

3
MDGD/p

fQ2s1/x − 1d − sMD
2 − M2dg2 + fMDGDg2 .

sB2d

Since all data are for forward angles, it suffices to consider
only F2. GpD denotes a transition form factor to be given
below and the numberNsGDd in Eq. (B2) accounts for a
proper normalization of the nearly elastic resonance ampli-
tude.

Total cross section data are frequently expressed in terms
of those for transverse and longitudinal virtual photons(see,
for instance, Ref.[34])

d2s = gtsst + esld, sB3d

e−1sE;n,Q2d = 1 + 2
uqu2

Q2 tan2su/2d, sB4d

with

gtsE;n,Q2d = sMsE;n,Q2d
Q2

4p2auquesE;n,Q2d
, sB5d

<
a

p2

sE − nd2

uquQ2

1

e
sB6d

the flux of virtual photons. For smallu one approximatese
<e−1<1, to be used in Eq.(B6).

As regards the transition form factor in Eq.(B2), we as-
sume it to be of the form[cf. Eqs.(2.10) and(2.11) for NE].

GpDsQ2d = mpDGpDsQ2d,

GpDsQ2d = F 1

1 + Q2/QpD
2 G2

, sB7d

with mpD some effective transition magnetic moment and the
reduced transition form factorGpD of a dipole form. The
parameters in Eq.(B7) are estimated by a comparison of
small u data for reduced cross sections with Eq.(B2),

Sp,D = d2sp,D/gt.

In particular, at the top of the resonance

Sp,D,max< fsMF2
p,D,max/ng/gt

< 8pa
uqu
Q2

M

MDGD

fmpDGpDsQ2dg2e. sB8d

A. S. RINAT, M. F. TARAGIN, AND M. VIVIANI PHYSICAL REVIEW C 70, 014003(2004)

014003-10



From data forQ2=0.5,1.0, and 2.0 GeV2 (Figs. 12–14 in
Ref. [35]), we extractedQpD

2 <2.7 GeV2 and mpD
2 <0.9.

Those values have been used in Eq.(B7) for all relevantQ2.
No such information exists for the neutron. However,

guided by the behavior of the nucleon SF, averaged over
resonances,kF2

pl ,kF2
nl (see, for instance, Ref.[36]), it is rea-

sonable to assume that

sF2
pD + F2

nDd/2 & F2
pD. sB9d

The above suffices to computeF2
AD from Eq. (2.2),

F2
A,Dsx,Q2d =

Q2

x
fmpDGpDsQ2dg2IA,Dsx,Q2;GDd, sB10d

IA,Dsx,Q2;GDd = NsGDdSMDGD

p
DE

x

A

dz

3
zfPN,Asz,Q2dC22sz,Q2d

fQ2sz/x − 1d − sMD
2 − M2dg2 + sMDGDd2 .

sB11d

Finally, the corresponding nuclear QE inclusiveD excitation
cross section reads

d2sA,DsE;u,nd/A
dVdn

& s2MdsMsE;u,nd

3fmpDGpDsQ2dg2IA,Dsx,Q2;GDd sB12d

<
2Mx

Q2 sMsE;u,nd

3fmpDGpDsQ2dg2sx/xDdfPN,Asx/xD,Q2d,

sB13d

xDsQ2d = F1 +
MD

2 − M2

Q2 G−1

, sB14d

with xDsQ2d the value of the Bjorken variable at the reso-
nance peak. Equation(B13) is the zero-width limit of Eq.
(B12), which resembles the NE part, ifMR→M, and thus
xDsQ2d→1. The same limit ofxD is obtained forQ2→`,
corresponding to the resonance position inx=1, ultimately
coinciding with the QEP.

For small, mediumQ2,1 /xD is substantially larger than 1,
i.e., the resonance peak is far from the QE region. In that
case, the QEP regionx<1 corresponds to the tail offPN,A,
far from its maximum valuefPN,Asx<1,Q2d, and conse-
quentlyd2sA,D is expected to be small. For increasing values
of Q2, however, the resonance peak moves closer and closer
to the QEP and the NI contribution to the total cross section
at the QEPcan become there quite sizable.
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