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The effect of correlated scalar-isoscalar two-pion exchange(CrTPE) modes is considered in connection with
central and spin-orbit parts of the nucleon-nucleonsNNd force. The two-pion correlation function is coupled
directly to the scalar form factor of the nucleon which we calculate in the large-Nc limit where the nucleon can
be described as a soliton of an effective chiral theory. The results for the centralNN force show a strong
repulsive core at short internucleon distances supplemented by a moderate attraction beyond 1 fm. The long-
range tail of the centralNN potential is driven by the pion-nucleon sigma term and consistent with the effective
s meson exchange. The spin-orbit part of theNN potential is repulsive. The large-Nc scaling behavior of the
scalar-isoscalarNN interaction is addressed. We show that the spin-orbit part isOs1/Nc

2d in strength relative to
the central force resulting in the ratio.1/9 suggested by the 1/Nc expansion forNc=3. The latter is in
agreement with our numerical analysis and with the Kaplan-Manohar large-Nc power counting. Unitarization
of the pp scattering amplitude plays here an important role and improves the tree level results. Analytical
representations of the CrTPENN potential in terms of elementary functions are derived and their chiral content
is discussed.
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I. INTRODUCTION

Understanding the intermediate and short range parts of
the nucleon-nucleon(NN) interaction is still an interesting
problem and much effort is being put into this topic both
from theoretical and from experimental sides. The long-
range part of theNN interaction is well described and repre-
sented by means of the one-pion-exchange(OPE) potential.
For higher momentum transfer or small internucleon dis-
tances theNN dynamics becomes complex and one has to
rely on phenomenological models. In this region thes me-
son[1], for which the empirical evidence remains controver-
sial, effectively represents scalar-isoscalar multipion correla-
tions and generates an intermediate range attraction in
microscopic QCD motivated approaches[2,3] and one-
boson-exchange(OBE) models [4,5]. The latter are most
popular and phenomenologically successful in describing the
nuclear force.

With the recent progress of chiral perturbation theory
sxPTd in meson-meson and meson-baryon sectors the idea to
extend it to the description of theNN interaction appears to
be quite natural. The chiral SULsNfd3SURsNfd symmetry
provides a consistent framework for the construction of the
NN force [6–8]. In xPT theNN potential has already been
calculated in N3LO [9,10] and much work has been done in
applying these ideas to nuclei, too. Supported by empirical
information [11], the xPT calculations are important and
transparent for the peripheralNN partial waves, which are
well understood in terms of OPE and two-pion-exchange
(TPE) processes[8,11,12]. The long-range behavior of the
TPE force and the effect of correlateds-like scalar-isoscalar
pp modes are related problems. The success and dynamical

content of OBE models suggest that meson-meson correla-
tions are important[13,14]. This fact is motivated by disper-
sion theory, where the main effects of higher-order interac-
tions can be accounted for by the inclusion of experimentally
known meson resonances, which bring singularities of the
amplitude close to the physical region. In the dispersion-
theoretical framework, thes can be explained by correlated
two-pion exchange with a broad spectral distribution around
.4Mp which ultimately leads to the isoscalar central attrac-
tion between two nucleons.

In baryonxPT thepp correlations are taken into account
at tree level and the relation to the genuines exchange is
lost. For example, in heavy baryonxPT the exchange of two
uncorrelated pions, formulated using chiral symmetry con-
straints and includingD isobars, explains the tail of the
scalar-isoscalarNN potential without any need for a true sca-
lar meson[15]. Additional consideration of tree levelpp
correlations leads to the surprising result, that these terms are
very small and—even more—lead to a weak repulsion[15].
Note, that in the effective theory without explicitD degrees
of freedom the chiral invariantNN interaction terms are ac-
companied in subleading order by low-energy constants
(LECs) c1, c3, andc4 [16]. In particular, the isoscalar central
potential is dominated byc1 andc3 [8,11] proportional to the
pion-nucleon sigma term and nucleon axial-polarizability, re-
spectively. The LECc3 can be approximately saturated by
the D resonance. But the dimension-two operatorsci include
also information aboutt-channel meson exchange suggesting
a strong influence oft-channel singularities. The latter was
studied in Refs.[17,18] (see also Ref.[16]) where it was
shown that the exchange of a scalar meson with mass and
coupling constant similar tos allows to explainc1 and, in-
terestingly, also part ofc3. Finally, c4 mentioned above is
dominated by isovectorpp correlations fromr meson ex-
change[17]. Since we concentrate in this paper ons-wave
CrTPE, i.e.,s-meson channel, in the following we will dis-
cuss matters predominantly connected withc1.
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As is well known the tree level contact interaction does
not account for the entirepp dynamics, and possibly one has
to go beyond the tree level approximation to restore the re-
lation to the s meson. Recently, nonperturbative methods
describingpp scattering were developed[19–24]. One of
them was proposed in Ref.[25], where based on the Bethe-
Salpeter description of thepp scattering process the re-
summation of the infinite series of pion loops was suggested.
This method which only uses the lowest order chiral La-
grangian as input and implements an exact unitarity, leads to
a dynamical pole in thepp amplitude with a position around
M − iG /2.450−i221 MeV. Naturally, it is identified with
the s meson. Considering the role played by the unitarypp
correlations(or dynamicals state) in the NN interaction
problem, it was found[26] that the resulting scalar-isoscalar
centralNN potential shows a strong repulsion at internucleon
distances less than,1 fm and a moderate attraction at
r .1 fm. This feature of unitarypp scalar-isoscalar correla-
tions differs from the conventional Yukawa-likes exchange,
Vssrd
,−exps−msrd / r, which always results in an attraction. Inter-
estingly, in phenomenologicalNN interaction models like
Paris[27], Argonne V18[28], Nijmegen[29] and CD-Bonn
[30] the isospin independent scalar components are rather
similar for NN separations beyond 0.5 fm[31]. But the radial
dependencies differ considerably at short distances, ranging
from attractive for Nijmegen and CD-Bonn(by construction)
to repulsive for the more phenomenological V18 and Paris
potentials. It also was argued that the appearance of a strong
repulsion in the scalar-isoscalar channel cannot be inter-
preted in terms of meson exchange[31], a remarkable feature
which only was known from the Skyrme model[32] and
now from Ref. [26]. It is instructive, that in the Skyrme
model the use of the simplest product ansatz results in a
repulsive central force[33], and the missing intermediate
range attraction can be produced only if one goes beyond the
product approximation[34] or additionally considers the cor-
related two-pion exchange(CrTPE) in the scalar-isoscalar
channel[35].

In this work the role played by the CrTPE in theNN
interaction is reconsidered for the construction of the scalar-
isoscalar central and spin-orbitNN potentials. Considering
the tree level and unitary two-pion correlations in theNN
interaction problem, we couple thepp correlation function
to the scalar form factor of the nucleon in a model-
independent way. The latter is calculated in the limit of a
large number of colors(large-Nc limit ) using the chiral
quark-soliton modelsxQSMd [36,37] where the nucleon can
be described as a soliton of an effective chiral theory. This
way our results support the structure of the scalar-isoscalar
centralNN force observed in the unitarizedxPT [26] and in
the Skyrme model[34]. We find a strong repulsion at short
distances and a moderate attraction atr .1 fm—even with
the tree levelpp interaction. The tail of the central CrTPE
potential is driven by the the pion-nucleonspNd sigma term
and is consistent with the effectives exchange in OBE mod-
els. By this, the effectivesNN coupling constant can be re-
lated to thepN sigma term. We also show that the above
feature of the centralNN force is general. It mainly relies on
the particular functional form of the scalar form factor of the

nucleon and is not the effect of unitarization. Another point
of interest in this work is the generation of the scalar-
isoscalar spin-orbitsLSd force. Our results for this part of the
NN potential show a repulsion—a feature which differs from
phenomenologicals exchange resulting in an attractive LS
interaction.

The large-Nc behavior of CrTPE forces is considered and
consistency with large-Nc QCD analyses and the large-Nc
behavior of scalar-isoscalar components of phenomenologi-
cal NN interaction models is shown. Both, the central and
spin-orbit parts satisfy large-Nc QCD counting rules. We find
that the relative strength of spin-orbit and central interactions
scales according to.1/9 in remarkable agreement with the
Kaplan-Manohar large-Nc spin-flavor power counting[38].
Additionally, analytical representations of central and LS po-
tentials in terms of elementary functions are derived and
their chiral content is discussed. We show that the chiral
symmetry breaking part of the interaction is small and that
terms nonvanishing in the chiral limit are dominant and fully
drive all essential features of the CrTPE force in the scalar-
isoscalar channel.

The paper is organized as follows. In Secs. II and III we
discuss the construction of the CrTPE scalar-isoscalarNN
force. We emphasize the importance of the scalar form factor
of the nucleon and give its phenomenological description in
Sec. IV. The large-Nc scaling and consistency are addressed
in Sec. V. Finally, the analytical results and discussion are
presented in Sec. VI.

II. TWO-PION CORRELATION FUNCTION

We start our considerations of the scalar-isoscalar CrTPE
NN interaction from the standard definition of the tree level
pp correlation function and its large-Nc behavior. To lowest
order in the derivative expansion the mesonic Lagrangian
Lp

s2d is given by the SUs3d nonlinears model

Lp
s2d =

fp
2

4
Trf]mU†]mUg + B fp

2

2
TrfMsU + U†dg s1d

and contains the most general low-energy interactions of the
pseudoscalar meson octet. In Eq.(1) the leading symmetry-
breaking term is linear in the quark massesM and is char-
acterized by B=−kqq̄l / fp

2. The pion-decay constantfp

=93 MeV and the scalar condensatekqq̄l are the relevant
parameters. In the SUs2d limit the nonlinear fieldU entering
Eq. (1) is given by the standard matrix form:

Usxd = expfiFsxd/fpg,

F ; tp s2d

wheret are the SUs2d Pauli matrices andp is the isovector
pion field. For thepapb→pcpd scattering process, defined
by the Cartesian isospin indicesa,…, the use of the standard
xPT procedure in expanding theLp

s2d to orderOsp4d results
in the tree level contact interaction

− iVpp
ab→cd = dabdcdAssd + dacdbdAstd + daddbcAsud, s3d

where
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Assd =
i

fp
2 Ss− Mp

2 −
1

3 o
i=a,b,c,d

LiD + Osq4d, s4d

and Li =ki
2−Mp

2 are the off-shell part of the invariantpp
amplitude. The Mandelstam variables are related bys+ t+u
=ka

2+kb
2+kc

2+kd
2. At this order of the pion field expansion the

isoscalarS-wave pp partial amplitudesL=0d is obtained
from the standard decomposition

Vpp
L,I=0 =

1

2

1

sÎ2daE
−1

1

d cosu PLscosudVpp
I=0sud, s5d

where PLscosud are the Legendre polynomials andsÎ2da

accounts for the statistical factor occurring in states with
identical particles:a=2 for pp→pp. The tree level scalar-
isoscalarpp scattering amplitude is

Vpp
L=I=0 = −

1

fp
2 Ss−

Mp
2

2
−

1

3o
i

LiD . s6d

In the limit of a large number of colorsNc of QCD, the
scaling behavior of Eq.(6) can be obtained from large-Nc
xPT [39]. The conventional large-Nc counting rules require
that the pion mass isMp,Os1d and the decay constant is
fp,OsÎNcd. As a result thepp amplitude scales according
to

Vpp , Os1/Ncd s7d

and large-Nc QCD becomes a theory of weakly interacting
pions. Note that the unitarization of thepp correlation func-
tion (scattering amplitude) Vpp

L=I=0, Eq. (6), is a lengthy pro-
cedure. Here, we only mention some recent analyses which
employ dispersion relations[21], Padé approximants[22],
solution of Roy[23], and Bethe-Salpeter[24,25] equations.
Unitary pp scattering amplitudes as provided by most of
these methods contain a dynamical pole[20] which is iden-
tified with thes meson.

III. TWO-PION EXCHANGE KERNEL AND SCALAR
FORM FACTOR

With Eq. (6) we come to the definition of the CrTPE
potential in the scalar-isoscalar channel-describing the on-
shell NN scattering process, Nsp1,s1dNsp2,s2d
→Nsp3,s3dNsp4,s4d, wherepi and si are the four momenta
and spins of interacting nucleons, respectively. As well
known, in the generic case of TPE the chiral symmetry con-
straints work best and allow to relate the TPE process con-
taining two intermediate pions, with Cartesian isospin indi-
cesa andb to the off-mass shellpN scattering amplitude in
a model-independent way[8,10,40]. The latter is defined by
the Green function[41]:

GpN = i E E d4x d4y kp8,s8uT̂PasxdPbsydup,sleisk8x−kyd

=
Gp

k2 − Mp
2

Gp

k82 − Mp
2 TpN

ab sp8,k8,p,kd. s8d

Here Gp accounts for the coupling of the pion field to the

pseudoscalar quark densitiesk0uPas0dupbl=dabGp, Pasxd
= ic̄sxdg5tacsxd andp8,psk8 ,kd are the momenta of outgoing
and incoming nucleons(pions). For thepN scattering ampli-
tude TpN

ab the standard decomposition involves four Lorentz
invariant functionsD± ,B±:

TpN
ab = dab FpN

+ + 1
2fta,tbgF pN

− , s9d

FpN
± = ūspN8 ,s8dfD± + ismnkm8knB

±guspN,sd. s10d

We are interested in the chiral content of the TPE potential in
the scalar-isoscalar channel where the introduction of the tree
level contactpp interaction results in aNN scattering am-
plitude with two connected pion loops

− iVNN = iS3

2
D E E d4k

s2pd4

d4k̃

s2pd4sVpp
L=I=0d

3F fFpN
+ gs1d

sk2 − Mp
2dsk82 − Mp

2dG
3 F fFpN

+ gs2d

sk̃2 − Mp
2dsk̃82 − Mp

2d
G s11d

whereksk̃d and k8sk̃8d=ksk̃d+p8−p are the momenta of the
exchanged pions,psp8d are relativeNN momenta in the ini-
tial (final) state, and the superscripts refer to nucleons(1) and
(2), respectively.FpN

+ is the isospin symmetric part of thepN
amplitude, Eq.(9), and the scalar-isoscalar tree level contact
interactionVpp

L=I=0 is given by Eq.(6). The diagrammatic rep-
resentation of Eq.(11) is shown in Fig. 1.

The above expression, Eq.(11) has well known difficul-
ties. It involves the off-mass-shellpp interaction which is
not unique and depends on the choice of the interpolating
pion field[parametrization of the SUs2d matrix U] [15,43]. If
the initial and final pions are all on the mass shell, i.e.,Li
=0 in Eq.(6), thepp scattering amplitude is independent of
a change of field variables in agreement with the equivalence
theorem[44]. In other words Eq.(6) gives a unique result
independent of the parametrization ofU only for the on-shell
matrix elements. To avoid these ambiguities it was stated in
Ref. [15] that one has to include a subset of diagrams to find
cancellations of the off-shellpp isoscalar amplitude. This

FIG. 1. The coupling of the scalar-isoscalarpp correlation
functionVpp

L=I=0 (filled box) to the isospin symmetric partFpN
+ (filled

disk) of the pN scattering amplitude.
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statement was rigorously verified in Ref.[26], where it was
shown that the additional consideration of a subset of chiral
diagrams results in exact cancellations of the off-shell part of
the pp amplitude and the on-shell residue can be factorized
out from the loop integrals of Eq.(11). By this and using
notations of Ref.[42] the NN amplitude in the general case
of L= I =0 pp exchange takes the form

VNNstd = 6fGN
+stdgs1dfGN

+stdgs2dṼpp
L=I=0std, s12d

whereṼpp
L=I=0 is the on-mass shell part of Eq.(6) with s→ t

=sp8−pd2=−q2 in theNN c.m. frame. In Eq.(12) the “vertex
functions” fGN

+stdg are defined by

− ifGN
+stdgsid = −

1

2
E d4k

s2pd4

fFpN
+ gsid

sk2 − Mp
2dsk82 − Mp

2d
s13d

and can be interpreted in the heavy and relativistic baryon
xPT as one-pion-loop contributions to the scalar form factor
of the nucleonsstd [15,45]:

fGN
+stdgsid =

1

3

sstd
Mp

2 fūugsid. s14d

At t=0 the ss0d is referred to as the pion-nucleon sigma-
term, spN. Note, that by construction the factor,1/Mp

2 en-
tering Eq.(14) is a direct reflection of the chiral symmetry
breaking part of thexPT Lagrangian, Eq.(1). The resulting
NN scattering amplitude can be summarized as follows:

VNNstd =
2

3
Ssstd

Mp
2 D2

fūugs1dfūugs2dṼpp
L=I=0std. s15d

The quasipotential reduction of theNN amplitude Eq.(15)
is a standard procedure. The Partovi-Lomon method is the
most popular one and allows us to reduce the Bethe-Salpeter
kernel to the quasipotential containing minimal relativity
[46]. The latter is ready for the iteration in the Lippmann-
Schwinger equation. Here we follow Ref.[26] and wish to
discuss the nonrelativistic potential only. With the normaliza-
tion for Dirac spinors,ūsp,sdusp,sd=1, the nonrelativistic
CrTPE potential is obtained from Eq.(15) simply by keeping
its energy independent parts:

VNNstd =
2

3
Ssstd

Mp
2 D2

Ṽpp
L=I=0stdF1 −

VLS

2MN
2 G . s16d

In square brackets the first term gives the central CrTPE
potentialVCstd, with the structure similar to that derived in
Ref. [15], and the second term provides the additional spin-
orbit part VLSstd with the spin content: VLS= isss1d

+ss2ddsp83pd /2. In coordinate space the central potential is
given by the Fourier transform ofVCstd and the spin-orbit
sLSd part of theNN force is related to the central potential
simply by [46]

VLSsrd = −
1

2MN
2

1

r

] VCsrd
] r

, s17d

where the spin-orbit operatorV̂LS in r space representation
has been omitted. The central part of Eq.(16) has an inter-

esting feature. Its long-range tail or the value of the potential
at t=0 is determined by the pion-nucleon sigma term:
VCs0d=spN

2 /3Mp
2 fp

2. So, the only unknown element which
enters Eq.(16) is the scalar form factor of the nucleon. As
noted in Refs.[42,45] Eq. (14) and therefore also Eqs.(15)
and(16) are general and should be independent of models or
approximation schemes used to calculate the scalar form fac-
tor of the nucleon. In this work, we calculatesstd in the
large-Nc limit in the framework of thexQSM. But before
doing model calculations the stated large-Nc behavior of Eq.
(16) must be understood and consistency with large-NcQCD
analyses must be shown.

IV. LARGE- Nc SCALING AND CONSISTENCY

In this section we explore qualitative features of the
scalar-isoscalar components of the CrTPE force Eq.(16)
which may be understood directly from QCD. In this con-
text, it may be useful to consider the interaction in the limit,
when the number of colors,Nc, of QCD becomes large
[47,48], and to treat 1/Nc as an expansion parameter. Some
features of theNN force can be obtained in this limit in a
model-independent way[38,49,50]. Recently, it was realized
that large-Nc nuclear interactions are spin-flavor SUs4d sym-
metric, with Wigner’s supermultiplet symmetry following as
an accidental symmetry[49]. If we assume, in addition, that
the spin-flavor symmetry properties of theNN interaction are
independent of phases of the many body ground state(at
Nc→` nuclear matter forms a classical crystal, and a phase
transition betweenNc=3 andNc=` is expected[38]), then
the large-Nc scaling behavior of theNN force can be ana-
lyzed in a general way resulting in QCD expectations which
can explain general features of theNN interaction[38,49].

The first treatment of theNN interaction in large-Nc QCD
was done in Ref.[48], where it was argued that the dominant
interaction between two baryons is of order,OsNcd. This
expectation is consistent with nuclear dynamics where the
dominant interaction components are isoscalar-scalar
and -vector interactions

Vs , OsNcd, Vv , OsNcd. s18d

In phenomenological models, the latter can be parametrized
in terms of effectives and v exchanges[31]. The entire
analysis of theNN potential was done in Ref.[38] where it
was found that large-NcQCD implies that the scalar-isoscalar
central and spin-orbit forces scale as

VC , OsNcd, VLS, Os1/Ncd. s19d

Recently, the dynamical interpretation of theNN interaction
for four modern phenomenologically successful models
[27–30] in the large-Nc limit was reported and consistency of
their scalar-isoscalar components with Eq.(19) was found
[31].

In our case, the consistency condition implies that the
large-Nc scaling behavior of Eq.(16) must be consistent with
large-Nc QCD analysis[38], with the large-Nc scaling of
scalar-isoscalar components of all known phenomenologi-
cally successfulNN interaction models[31] and also with
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effective s meson exchange,Vs,OsNcd. The dynamical
quantities which enter the scalar-isoscalar CrTPE force, Eq.
(16), are the scalar form factorsstd, the pion massMp, the
nucleon massMN, and thepp scattering amplitudeVpp

which scales asVpp,Os1/Ncd, Eq. (7). We follow standard
Nc counting rules[39,51] where sstd,OsNcd, Mp,Os1d,
MN,OsNcd, and the nucleon momentaupu , up8u,Os1d.
Counting powers ofNc the central part of the CrTPE poten-
tial, first term in Eq.(16), is VC,OsNcd. Its spin-orbit coun-
terpart VLSstd additionally contains two inverse powers of
nucleon mass,1/MN

2 ,1/Nc
2 resulting in VLS,Os1/Ncd.

By this, the consistency with scaling relations from large-Nc
QCD Eq. (19) is noted. Interestingly, Eq.(19) implies that
the spin-orbit forceVLS is Os1/Nc

2d in strength relative to the
central forceVC [38]

VLS/VC , Os1/Nc
2d. s20d

We refer to Eq.(20) as the Kaplan-Manohar scaling relation
[38]. In the last section it will be shown that Eq.(20) is very
accurate and in remarkable agreement with our results, sig-
naling that, indeed, with the actual number of colorsNc=3
the relative strength of potentials scales likeVLS/VC.1/9.

V. SCALAR FORM FACTOR IN THE LARGE- Nc LIMIT
AND QUARK-SOLITON MODEL

In the large-Nc limit, the QCD is equivalent to an effective
theory of mesons with baryons emerging as solitonic con-
figurations[48]. ThexQSM [36] provides a practical realiza-
tion of the large-Nc picture of the nucleon and is considered
as a chiral relativistic quantum field theory of quarks, anti-
quarks, and Goldstone bosons. It is defined by the partition
function in Euclidian space which is the path integral over
pseudoscalar meson and quark fields[52,53]

Z =E Dc Dc̄DUexpFi E d4xc̄si]” − MqU
g5 − mqdcG ,

s21d

whereU denotes the SUs2d pion field, Eq.(2)

Ug5 = expsig5F/fpd = 1
2sU + U†d + 1

2sU − U†dg5. s22d

In Eq. (21) Mq and mq are dynamical, arising from sponta-
neous breaking of chiral symmetry and current quark masses,
respectively. The action, Eq.(21), was derived from the in-
stanton vacuum model[52], where the cutoff is determined
by the average size of instantonskrl, and the dynamical
quark massMq is momentum dependent. In the large-Nc
limit the chiral bosonic fieldsUg5 can be integrated out by
the saddle point method using a classical background field of
hedgehog shape

psxd = fpr̂Psrd, s23d

which plays the role of a Hartree-type mean field for quarks
forming a soliton-like bound state. Withr = uxu and r̂ =x / r,
the variational procedure reduces to the determination of the
self-consistent soliton profilePsrd, wherePsr →`d=0 and
Ps0d=−p produce a soliton with unit winding number. In

practical calculations the soliton sizeRs=1/Mq is treated as a
free parameter, playing the role of the axial coupling con-
stantgA [36]

lim
r→`

f lim
mp→0

r2Psrdg = − 2Rs
2 = −

3

8p

gA

fp
2 . s24d

Nucleon states of definite spin and isospin are obtained by
quantizing the rotational zero modes of the soliton.

The model expression for the scalar form factor of the
nucleon in thexQSM is quadratically ultraviolet(UV) diver-
gent and requires regularization[54,55]

sstd = mqNcE d3x j0sÎ− tuxudo
n

Dnsxdreg. s25d

HereDnsxd=Fn
*sxdg0Fnsxd is the scalar-quark density in the

nucleon andj0 is the spherical Bessel function. The com-
pleteness of quark Fock statesunl in the external pion field
require thatDn is represented as a sum over occupied(va-
lence) and nonoccupied negative energy Dirac-sea states. So
it is useful to consider the contributions from discrete levels
slevd and from the Dirac-seassead continuum separately.
slevstd is finite and requires the single-particle wave func-
tions uFlevsxdl to be found from the Dirac equation in the
external pion field. The latter can be solved numerically.
sseastd is UV divergent and depends on the regularization
scheme employed to make it finite. To obtainsseastd we fol-
low the method developed in Ref.[37]. In short, the proce-
dure is as follows.

To evaluatesseastd, the model expression for the con-
tinuum contribution is expanded in a series of theU-field
gradients—the interpolation formula method[56]. The series
in ¹U contains UV-divergent and UV-finite parts. As was
shown in Ref.[37] the latter is strongly suppressed with
respect to the UV-divergent term by the instanton packing
fraction or parametric smallness ofMq

2krl2!1, and can be
neglected. The dynamical quark mass is momentum indepen-
dent and its valueMq=350 MeV is taken at zero momentum
transfer from instanton phenomenology[57]. We recall that
the xQSM is defined with some appropriate regularization.
In Ref. [37] the regularization procedure is solved in a model
independent way by observing that the structure of divergen-
cies in ssea are the same as in model expressions for the

vacuum scalar-quark condensatekc̄cl and pion decay con-
stant fp. The latter are fixed by their empirical values. The
“arctan-profile” function which provides an accurate repre-
sentation of the self-consistent profile is used

Psrd = − 2 arctanFRs
2

r2 s1 + Mprde−MprG . s26d

The above steps result in a model expression forsseastd:

sseastd = Mp
2 fp

2E
0

`

d3r j0srÎ− tdF 2j2

1 + j2G , s27d

where j=sRs
2/ r2ds1+Mprde−Mpr. It follows that due to the

partial cancellation of additional contributions from discrete
levels and second order continuum terms in the¹U expan-
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sion, the accuracy of Eq.(27) in the limiting casesseastd
→sstd is Os15%d. The latter corresponds to the extreme
case where that the nucleon scalar quark density is formed
exclusively by the Dirac-sea(pion cloud). With the expected
accuracy Eq.(27) reproduces all features of the scalar form
factor observed in exactxQSM calculations and also inxPT
and compares well to lattice QCD results. Equation(27) re-
sults in pion-nucleon sigma termspN=ss0d.68 MeV,
which is consistent with empirical information[58,59]. The
analytical simplicity of Eq.(27) is a big advantage of this
method. We refer to Ref.[37] for details and use Eq.(27) for
our numerical calculations. In addition, consider the pion
mass expansion of the profile functionPsrd, Eq. (26)

Psr,Mpd = − 2 arctanSRs
2

r2 D + OsMp
2d. s28d

In the xQSM the soft pion limit,Psr ,Mp→0d, is known to
approximate well both the self-consistent profile and Eq.
(26). Following the method of Ref.[37], we find that in this
limit sstd takes an even simpler form

sstd =
4p2

Î2
Mp

2 fp
2Rs

3 j0sRs
Î− t/2de−RsÎ−t/2. s29d

If one would expand Eq.(27) in Taylor series aroundMp

=0, then Eq.(29) corresponds to the leading analytic,Mp
2

contribution to the scalar form factor or to thepN sigma
term,spN, defined by Eq.(27). The quality of this represen-
tation will be discussed later. We only note that, a simple
form of Eq. (29) is very successful, at least for our consid-
erations, because it allows us to express all our final results
for the r-space CrTPE potential in terms of elementary func-
tions. Furthermore, Eq.(29) accounts for all details of the
CrTPE force observed here and compares well with direct
numerical calculation obtained with Eq.(27).

VI. RESULTS AND DISCUSSION

A. The central CrTPE force: tree-level versus unitary pp
scattering amplitude

In the discussion of our results we start from the scalar-
isoscalar centralNN potential in coordinate space, which is
given by the Fourier transform of the first term in Eq.(16).
Our results forVCsrd with the scalar form factorsstd defined
by Eq. (27) and the tree levelpp correlation function, Eq.
(6), are shown in Fig. 2(dashed curve). The central potential
VCsrd shows a short-range repulsive core with a maximum at
the origin,VCsr =0d.600 MeV (see insert of Fig. 2), and is
supplemented by a moderate attraction with a minimum,
VC.−20 meV, at intermediate distancesr .1 fm. This be-
havior is different from the conventional picture provided by
the effectives exchange in OBE models and also from re-
sults obtained in the heavy baryonxPT [15]. In Ref. [15] the

effect of the CrTPE in the scalar-isoscalar channel is very
weak and repulsive. The latter means, that thet dependence
of the vertex functions or functional form of the scalar form
factor is very important for determining the precise strength
and behavior of the potential in all ranges of distances. At the
same time one can find a remarkable agreement between our
results and the analysis of Ref.[26], where the unitarypp
amplitude Eq.(30) has been coupled to the nucleon cloud at
the one pion loop. In Ref.[26] the divergent loop integrals
were regulated by phenomenological vertex form factors.
Being sensitive to the particular choice of the cutoff mass,
the resulting scalar-isoscalar centralNN potential shows a
strong repulsion at internucleon distances less than 1 fm, and
a moderate attraction of −10s−15d MeV, at r .1 fm. To
make our results comparable with that from Ref.[26] we
unitarize thepp scattering amplitude(Fig. 3). It can be done
by the following substitution[25]

Ṽpp
L=I=0 = − F fp

2Ss−
Mp

2

2
D−1

+ GppssdG−1

, s30d

whereGppssd is a dimensionally regularized two-pion loop
function (see, e.g., Ref.[26])

Gppssd =
1

s4pd2F− 1 + ln
Mp

2

m2 + s ln
s + 1

s − 1
G . s31d

Herem=1.1 GeV is the regularization mass fitted to thepp
phase shifts. The value ofs in Eq. (31) is given by s
=Î1−s4Mp

2 /sd. Equation(31) is analytic in space-like and
time-like regions and fors.4Mp

2 it develops an imaginary
part, sinces−1,0 and lnss+1d / ss−1d=lnss+1d / s1−sd
+ ip. For s→ t,0 the log behaves smoothly. Because Eq.
(30) contains a pole in thes-channel aroundMpp− iG /2
.450−i221 MeV, we restore the genuine relation to the

FIG. 2. The central CrTPE potential in coordinate space ob-
tained with tree level(dashed curve) and unitarized(solid curve)
pp scattering amplitude. The dot-dashed and dash-dash-dotted
curves correspond to the soft pion limit withMq=350 and
410 MeV, respectively. The inset shows the entire structure of the
NN potential.

FIG. 3. Unitarization of thepp scattering
amplitude.
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s-meson exchange, which now enters in our formalism as
dynamical resonance in thepp system. The main effect of
the unitarypp scattering amplitude(s meson) in the t chan-
nel is that it makes the repulsion.400 MeV and attraction
.−10 MeV softer(solid curve in Fig. 2). However it does
not change the general features of theNN force already ob-
tained at tree level. Interestingly, the latter effect is opposite
to the role played by the the unitarization in thes channel,
where it leads to an enhancement of the interaction strength
between pions.

Another point is the relation of the effectives meson
exchange of OBE models to the unitary scalar-isoscalar
CrTPE force constructed here. In Ref.[31] the volume inte-
grals were used to extract the strength of scalar-isoscalar
components of phenomenologicalNN models and to relate
them to the effectives exchange. It was shown that if the
mass of thes is taken to beMs=600 MeV then the value of
the sNN coupling constant for these interactions would
range betweengsNN=7.6 (Paris), 9.0 (Argonne V18), 9.8
(Nijmegen), and 11.2(CD-Bonn). It follows from Ref. [26],
that the use of the unitarypp scattering amplitude Eq.(30)
results in an effectivesNN coupling constant which can be
expressed as

gsNN . Î6 Vst = 0dsMs
2 − Mp

2/2d/fp. s32d

Here,Vstd is a vertex function which accounts for the cou-
pling of the pp correlation function to the nucleon pion
cloud, andMs is an empiricals meson mass. Note that the
use of Ms=600 MeV in this case is not entirely correct,
because this value does not represent the actual pole of Eq.
(30). With the quoted value ofVstd at t=0 [26]: Vs0d.0.1
310−2 MeV−1 and thes mass(pole) Ms.450 MeV the re-
sulting coupling isgsNN.5, which has the right order of
magnitude. In our case, note that the vertex functionVstd as
provided by Ref.[26] is equivalent to ourGN

+std=Vstd in Eq.
(12). By this, we rewrite Eq.(32) and relate thesNN cou-
pling constant to thepN sigma termspN

gsNN .Î2

3
spNsMs

2 − Mp
2/2d/sfpMp

2d. s33d

Equation(27) results inspN.68 MeV and our value for the
Vst=0d is given by: V.0.12310−2 MeV−1. With Ms

=450 MeV our result isgsNN.6.1. An artificial increase of
the s mass toMs=600 MeV, used in analysis of Ref.[31],
results ingsNN.11 which is just in the range of values from
phenomenological models[31].

Using the equivalence betweenGN
+std and Vstd we inde-

pendently verify the theoretical consistency of Ref.[26]. In-
deed, withVs0d obtained in Ref.[26] the resultingpN sigma
term is spN.57 MeV and is within the range of empirical
values[58,59]. It means that values of cutoff masses used in
Ref. [26] are reasonable and consistent with our results and
with empirical information. There is also consistency be-
tween the large-Nc behavior of Eq.(33) and large-Nc QCD
expectations, where a scalar-mesonNN coupling constant is
,OsÎNcd [38]. Because the 1/Nc expansion of thepN sigma

term follows the large-Nc behavior of the scalar form factor
spN,OsNcd, the pion decay constantfp,Os1/ÎNcd, Mp

,Os1d, andMs,Os1d [60] we get

gsNN , OsÎNcd, s34d

in agreement with large-Nc counting rules[38].
The noncommutativity of large-Nc and chiral limits is a

well-known phenomenon[61]. The important physics behind
this is the role of theDs1232d isobar. In the large-Nc limit
nucleon andD are degenerate with mass differenceMD

−MN,Os1/Ncd. As a consequence the contribution ofD
states is implicitly included in solitonic configurations and
their effect on scalar-isoscalar quantities is twice that of
nucleon states[37,62]. Note that, therefore the leading
nonanalytic contribution tospN, which is 27gA

2Mp
3 / s64pfp

2d
obtained by expanding Eq.(27), is exactly three times larger
than the corresponding value inxPT including nucleons and
pions only. Being common for generic classes of hedgehog
models[62], this result can be explained by the presence of
the intermediateD states in chiral loops. If one goes beyond
the strict large-Nc limit the effect of finiteN−D mass split-
ting must be taken into account, the magnitudes of the result-
ing corrections are known[62].

B. Saturation of the LEC c1

Here we use constraints imposed by chiral symmetry to
check the consistency of the present approach. Consider the
LEC c1 from xPT which is related to thepN sigma termspN
[16]. The phenomenological interpretation of its value is
based on the strongly coupled scalar-isoscalar meson ex-
change which can completely saturatec1, if [17]

Ms

ÎgsNN

= 180 MeV. s35d

It is interesting to note that the effectives meson in the
Bonn potential[4] with Ms=550 MeV andgsNN

2 / s4pd=7.1
respects this condition resulting inMs /ÎgsNN.179 MeV. In
our case, using the pole of Eq.(30), i.e., Ms=450 MeV, and
gsNN=6.1, Eq.(33), the saturation condition is

Ms

ÎgsNN

. 182 MeV, s36d

which is in agreement with the value demanded from the
scalar meson resonance saturation of the LECc1.

C. Analytical formulae for the central force

The consideration of the central part can be continued in
the soft pion limit wheresstd is given by Eq.(29). In this
case the central CrTPE force in the coordinate space repre-
sentation can be expressed in terms of elementary functions.
First, decompose the tree levelpp correlation function de-

fined by Eq.(6) into two terms,Ṽpp
L=I=0=Ṽpp

s1d +Ṽpp
s2d :

Ṽpp
s1d = − t/fp

2, Ṽpp
s2d = Mp

2/2fp
2 . s37d

By this, the CrTPE force reads as
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VNNstd = VNN
s1d std + VNN

s2d std. s38d

In the soft pion limit, due to the factor 1/Mp
2 entering Eq.

(16), the first termVNN
s1d does not contain any pion mass de-

pendence and does not vanish in the chiral limit(nonvanish-

ing part). The second termVNN
s2d which follows Ṽpp

s2d and con-
tains an additionalMp

2 generates the symmetry breaking part
of the NN force. With Eqs.(29) and (37) the Fourier trans-
form of Eq. (38) can be carried out explicitly and after
lengthy calculations(here we list our final results only) the
central CrTPE force is given in coordinate space by the fol-
lowing expressions:

VC
s1dsrd = S64Î2 p2

3
D fp

2Rs

3 F 80 + 8j̃ + 3j̃2 − 3j̃3

s2 + j̃d2s4 + j̃ + 2Î2j̃d2s4 + j̃ − 2Î2j̃d2
G ,

s39d

VC
s2dsr,j̃ ø 4d =

Mp
2

r
S4 p2

3
D fp

2Rs
4FarctanSÎ j̃

2
D

−
1

2
arctanS2Î2j̃

4 − j̃
DG , s40d

VC
s2dsr,j̃ . 4d =

Mp
2

r
S4p2

3
D fp

2Rs
4FarctanSÎ j̃

2
D

−
1

2Hp − arctanS2Î2j̃

j̃ − 4
DJG , s41d

where j̃=r2/Rs
2 and the superscripts(1) and (2) refer to the

nonvanishing part and the symmetry breaking part, respec-

tively. Note that Eqs.(40) and(41) are defined forj̃ø4 and

j̃.4, respectively.
At small separation scales Eqs.(39) and (40) can be ex-

panded in Taylor series aroundr →0, and up toOsr4d the
leading terms are given by

VC
s1dsrdur→0 =

5Î2p2

3
fp
2Rs −

3p2

Î2

fp
2

Rs
r2 + Osr4d, s42d

VC
s2dsrdur→0 =

Î2p2

3
fp
2Mp

2Rs
3 −

5Î2p2

36
fp
2Mp

2Rsr
2 + Osr4d.

s43d

The strength of the central force is defined by the sum of
Eqs.(42) and (43) at r =0: VCs0d=VC

s1ds0d+VC
s2ds0d

VCsrdur=0 =
5Î2p2

3
S1 +

1

5
Mp

2Rs
2D fp

2Rs. s44d

For asymptotically larger →` [up toOsr−8d] the interaction
is dominated by molecular-likeNN forces

VC
s1dsrdur→` = − 64Î2p2fp

2Rs
7 1

r6 + Osr−8d, s45d

VC
s2dsrdur→` =

8Î2p2

3
Mp

2 fp
2Rs

7 1

r4 −
16Î2p2

3
Mp

2 fp
2Rs

9 1

r6

+ Osr−8d. s46d

As seen from above expressions,VC
s1d andVC

s2d do not van-
ish at small separations and both are repulsive. At asymptoti-
cally larger VC

s1d becomes attractive, signaling that it should
cross the zero. Contrary, the symmetry breaking partVC

s2d,
stays repulsive for all distances and as a result ofVC

s2d /VC
s1d

,Mp
2Rs

2/5!1 it is suppressed relative toVC
s1d. The above

qualitative arguments are supported by full analytical repre-
sentations given by Eqs.(39)–(41). The resulting centralNN
potential is shown in Fig. 4. It is clear from Fig. 4 that the
partVC

s1dsrd, which is nonvanishing in the chiral limit(dashed
curve), is dominant and fully drives the generic behavior of
the central CrTPE force(solid line). The chiral partVC

s2dsrd,
which is vanishing in the chiral limit(dot-dashed curve), is
repulsive for all distances with a strength of about.20 MeV
at r =0. Comparison with numerical results from the previous
section reveals that at intermediate distances(dip region) the
total CrTPE force obtained in the soft pion limit(shown by
the dot-dashed curve in Fig. 2) lies inbetween the tree level
and unitarized curves. At small separation scales(see insert
of Fig. 2) the integral Eq.(27) and analytical Eq.(29) repre-
sentations for the scalar form factor work equally well, and
the analytical and numerical tree level results are very close
to each other.

Up to now, we used the common value of the dynamical
quark massMq=350 MeV motivated by the instanton phe-
nomenology. We have to mention that with this value the
representation ofsstd Eq. (29) overestimates the value of the
pN sigma term obtained with Eq.(27) and the latter can be
reproduced by a small variation ofMq. Note that, in the
xQSM the dynamical quark mass is usually treated as a free
parameter varying in the range 350,Mq,450 MeV. So it is
important to check whether our results are sensitive to the
variation ofMq. Certainly, due to Eq.(44) and the parametric

FIG. 4. The central CrTPE potential in the soft pion limit(solid
curve). The parts nonvanishing and vanishing in the chiral limit are
shown by the dashed and dot-dashed curves, respectively.

M. KASKULOV AND H. CLEMENT PHYSICAL REVIEW C 70, 014002(2004)

014002-8



smallness of the termMp
2Rs

2/5!1 the strength of the repul-
sive core is proportional to,1/Mq. Interestingly, the
strength of the intermediate range attraction actually is insen-
sitive to variations of quark mass. In Fig. 2 we show the
results for Mq.410 MeV (dash-dash-dotted curve) which
reproduces the same value of the sigma termspN as Eq.(27)
with Mq=350 MeV. The dip region is unaffected by these
variations with a small coherent shift towards shorter dis-
tances. The same weak quark mass dependence is found in
numerical calculations. Summarizing, the soft pion limit pro-
vides an accurate representation of the central CrTPE force,
compares well with direct numerical calculations, and ac-
counts for all details of the tree level and unitary forces ob-
tained in the previous section.

D. The spin-orbit CrTPE force

In coordinate space the spin-orbit part of the scalar-
isoscalar CrTPE force is related to the central potential by
Eq. (17). According to the large-Nc analysis given in Sec. IV,
the LS interaction should be much smaller than the central
part because it is suppressed relative toVCstd by ,1/Nc

2. Our
numerical results for the LS potential are shown in Fig. 5.
Indeed, ther-space behavior ofVLSsrd with the tree levelpp
scattering amplitude(dashed curve in Fig. 5) is formally
similar to the central potential(see the insert of Fig. 2). But
contrary to theVCsrd, we find a sizable but much weaker
repulsive core.80 MeV (insert of Fig. 5) and a very small
attraction .0.5 MeV at intermediate distancesr .1.2 fm.
The effect of the unitarization of thepp scattering amplitude
(solid curve in Fig. 5) plays here the same role as for the
central potential and makes the LS force softer, reducing the
strength of the potential by the factor 2. Note, that in OBE
models, the LS interaction induced by effectives exchange
generates an attractive spin-orbit force. In our case the effect
is opposite and leads to a repulsive LS potential in coordi-
nate space. In Ref.[26] the spin-orbit potential was not cal-
culated (though it could be easily done) and hence direct
comparison is not possible. We only note that the results
should be similar because of Eq.(17) and because of the
similar behavior ofVCsrd in both approaches.

At this level the comparison with other models is also
useful. For example, in the standard Skyrme model[32],

which includes the nonlinears model Eq.(1) and a stabiliz-
ing fourth-order term, the “wrong sing” of the isospin inde-
pendent spin-orbit potential is a long standing problem
[63,64]. Several attempts have already been made in this
framework to generate the needed attractive spin-orbit force,
extending the standard Skyrme Lagrangian by including
sixth-order derivative terms. But the final results differ, vary-
ing from repulsive[64] to attractive[65] spin-orbit potential.
Our results support the existence of a repulsive LS interac-
tion in the isoscalar channel.

E. Analytical formulae for the spin-orbit force

Here we show an analytical representation of the spin-
orbit potential in coordinate space in terms of elementary
functions. Using Eqs.(17) and (39), the LS partVLS

s1d, which
is nonvanishing in the chiral limit, reads

VLS
s1dsrd = S64Î2p2

3
D fp

2

RsMN
2

3 F2304 + 576j̃ + 816j̃2 + 100j̃3 + 6j̃4 − 9j̃5

s2 + j̃d3s4 + j̃ + 2Î2j̃d3s4 + j̃ − 2Î2j̃d3
G .

s47d

Its symmetry breaking counterpartVLS
s2d vanishes in the chiral

limit, Mp→0, and is obtained simply from Eqs.(17), (40),
and (41)

VLS
s2dsrd =

1

2MN
2

1

r2VC
s2dsrd

−
Mp

2

r2 S4Î2p2

3
D fp

2Rs
3

MN
2 F 4 − 3j̃

s16 + j̃2ds2 + j̃d
G ,

s48d

where forj̃=r2/RS
2ø4 andj̃.4 theVC

s2dsrd is given by Eqs.
(40) and (41), respectively. The Taylor expansion aroundr
→0 up toOsr4d reads

VLS
s1dsrdur→0 =

3 p2

Î2

fp
2

RsMN
2 −

15Î2p2

8

fp
2

Rs
3MN

2 r2 + Osr4d,

s49d

VLS
s2dsrdur→0 =

5Î2p2

36
fp
2Rs

Mp
2

MN
2 −

3Î2p2

40
fp
2 1

Rs

Mp
2

MN
2 r2 + Osr4d,

s50d

and defines the short-range behavior of the LS force with the
total strength at origin

VLSsrdur→0 =
5Î2 p2

3
S 9

10
+

1

12
Mp

2Rs
2D fp

2

Rs MN
2 . s51d

In the asymptotic region,r →`, the soft two-pion tail of
the LS potential behaves as follows:

VLS
s1dsrdur→` = − 192

Î2p2

MN
2 fp

2Rs
7 1

r8 + Osr−10d, s52d

FIG. 5. The spin-orbit part of the CrTPE potential in coordinate
space. Notations for the curves are the same as in Fig. 2. The inset
shows the entire structure of the LS potential.
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VLS
s2dsrdur→` =

16Î2p2

3
fp
2Rs

7Mp
2

MN
2

1

r6 + Osr−8d. s53d

The result of Eqs.(47) and (48) with the quark massMq
=350 MeV are shown in Fig. 6. The soft pion limit well
reproduces the generic features of the LS force(solid line)
and compares well with our numerical results(dot-dashed
curve in Fig. 5). Contrary to the central force, an even
smaller contribution of the chiral partVLS

s2dsrd (dot-dashed
curve in Fig. 6) with repulsive strength atr =0 of about
.0.11 MeV is noted. The termVLS

s1dsrd nonvanishing in the
chiral limit accurately represents the behavior of the LS po-
tential in all ranges of distances and is actually insensitive to
the variation of quark masses in the intermediate region. The
increase of the quark mass toMq=410 MeV leads to a small
shift of the attractive dip towards shorter distances(dash-
dash-dotted curve in Fig. 5). At short separation scales, Eq.
(51), Mp

2Rs
2/12!1 and the effect of quark mass is linear

,Mq and opposite to the central force where the strength is
driven by,1/Mq.

F. The ratio VLS/VC and large-Nc QCD scaling

According to large-Nc counting rules discussed in Sec. IV
and Eq.(20), one can expect that with the actual number of
colorsNc=3 the ratioVLS/VC should scale according to the
following simple relation:

VLS/VC , Os1/Nc
2d = Os1/9d . 0.11 s54d

Our results support these expectations and Eq.(54) for the
relative strength of scalar-isoscalarNN components,R
=VLSs0d /VCs0d, is in a good agreement with numerical cal-
culations. Withsstd defined by Eq.(27) and with the tree
level pp correlation function the ratio isR.1/7.26.1.14.
The unitarization of thepp scattering amplitude, Eq.(30),
plays here an important role and improves this value toR
.1/9.2.0.11. Considering the latter value as our parameter
free prediction, it is remarkable that such detailed informa-
tion about the relative strength of potential components can
be deduced directly from QCD. Note that the 1/Nc expan-
sion is equivalent to the short-distance expansion[48,66].
This is the reason why Eq.(54) so accurately represents the
short-distance part of the CrTPE force. At the same time, it is

very difficult to argue that the scaling of scalar-isoscalar
nuclear forces, first predicted by Kaplan and Manohar[38],
and the observation which we made here, are not accidental,
because it is very difficult to justify any phenomenological
models at such separation scales where the baryon number is
not well defined[3,67] and where other hard QCD processes
[68] should play some role. We also recall that thexQSM
itself as provided by the action Eq.(21) is valid for the
values of the quark momenta up to the UV cutoffL=1/krl
.600 MeV or r . rL.0.3 fm. In addition, we have to take
into account the limited accuracy of the method used here to
calculatesstd. Considering our findings as an empirical fact,
we note that other models, e.g., Ref.[26,69], should be em-
ployed here to check our statements. To further support the
scaling relation Eq.(54) we show in Fig. 7 ther dependence
of the inverse ratio 1/Rsrd=VCsrd /VLSsrd. Indeed, the ratio
VCsrd /VLSsrd scales according to Eq.(54) forming a plateau
up to distancesr .0.8 fm and fastly decreases beyond. The
plateau covers the region where the action Eq.(21) is already
reliable and the present approach is well justified.

A good agreement with the scaling relation is also found
for the soft pion limit. ForMq=350 and 410 MeV, Eqs.(44)
and (51) result in R.0.12 and.0.16, respectively. The
radial dependencies of the inverse ratios are shown in Fig. 7
by the band, where the upper limit corresponds toMq
=350 MeV and the lower one toMq=410 MeV. Addition-
ally, due to the smallness ofMp

2Rs
2 in Eqs.(44) and(51), the

following relation holds:R.s9/10dsMq
2/MN

2d. Using Eq.
(24) with Rs=1/Mq it can be written alternatively

1/R .
5

6
S gA

4p
DMN

2

fp
2 . s55d

With the empirical value for the axial coupling constant,gA
.1.25, Eq.(55) results inR.0.12 in good agreement with
Eq. (54). The r dependence of 1/R with the soliton sizeRs
related to the axial coupling constantgA, Eq. (24), is shown
in Fig. 7 by the dot-dashed curve.

FIG. 6. The spin-orbit part of the CrTPE potential in the soft
pion limit. Notations for the curves are the same as in Fig. 4.

FIG. 7. The scaling of the central CrTPE forceVCsrd relative to
the spin-orbit potentialVLSsrd. The numerical results are shown
with the tree level(dashed curve) and unitary(solid curve) pp
correlation function. The gray area is the soft pion limit with quark
massesMq=350 (upper limit) to 410 MeV (lower limit). The dot-
dashed curve corresponds to the soft pion limit but withRs related
to thegA. The dashed horizontal line represents the large-Nc QCD
expectation, 1/R=9.
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VII. SUMMARY

In summary, we have considered the effect of correlated
two-pion exchange modes on the central and spin-orbit parts
of the scalar-isoscalarNN interaction. We have coupled the
pp correlation function to the scalar form factor of the
nucleon which we calculated in the large-Nc limit in the
framework ofxQSM. The CrTPE force obtained here con-
firms an unconventional behavior of scalar-isoscalarpp cor-
relations in theNN interaction recently found in unitarized
xPT [26]. For the centralNN potential with both the tree
level and unitarypp correlation functions we find a strong
repulsive core at short ranges and a moderate attraction at
intermediate distances. This result indicates that strong repul-
sive interactions can be generated by the pion-pion dynamics
and scalar-quark densities themselves. The strength of the
intermediate range attraction is insensitive to the variation of
quark masses. The long-range tail of the central CrTPENN
potential is driven by thepN sigma term and consistent with
the effectives meson exchange. In addition, we find a siz-
able and repulsive spin-orbit force which differs from the LS
interaction generated by the effectives meson in OBE mod-
els.

The large-Nc behavior of the CrTPE potential was consid-
ered and consistency with large-Nc QCD expectations was
found. Both the central and LS forces satisfy large-Nc QCD
counting rules. We have shown that the spin-orbit part is
Os1/Nc

2d in strength relative to the central force, resulting in
the ratio.1/9 suggested by the 1/Nc expansion forNc=3.

The latter is in agreement with our numerical analysis and
with the Kaplan-Manohar large-Nc power counting.

Analytical representations for the CrTPE forces in the soft
pion limit in terms of elementary functions were derived and
their chiral content was studied. It was shown that the latter
consists of two terms. The first one is generated by the sym-
metry breaking part of the mesonic Lagrangian and vanishes
in the chiral limit. The second one, which is nonvanishing in
the chiral limit, does not contain any pion mass dependence
and appears as a dominant force which drives all essential
features of the CrTPE—the strong repulsion at short separa-
tions and the moderate attraction at intermediate distances.
We also find that the soft pion limit provides an accurate
representation of the CrTPE and compares well with direct
numerical calculations.

In a forthcoming work the role played by the CrTPE in
the NN interaction will be addressed again and it will be
shown that the behavior found here and in Ref.[26] is an
important ingredient to theNN interaction and appears to be
clearly seen in peripheralNN phase shifts above the inelastic
threshold.
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