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Fission-fragment mass distribution has been studied for the16O+232Th,209Bi systems over an energy range
of 102.8–78.6 MeV and 81.6–72.6 MeV, respectively, in a laboratory frame. The variance of the mass distri-
butionssm

2 d for the16O+209Bi system varies linearly with center of mass energy, while a significant anomalous
behavior is found for the system16O+232Th. Coupled with our earlier observation for the system19F+232Th
[T. K. Ghoshet al., Phys. Rev. C69, 031603(R) (2004)], we propose that the accurate measurement of mass
distribution is a powerful tool to look for the onset of a nonstatistical reaction mechanism in heavy-ion-induced
fission of deformed heavy nuclei.
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In heavy-ion-induced fission reactions on deformed tar-
gets at near and below Coulomb barrier energies, anomalous
enhancements of the fragment angular anisotropy, with re-
spect to the statistical saddle-point model(SSPM) [1] predic-
tions, have been observed[2–4]. However, with spherical
targets, the angular distributions follow the SSPM predic-
tions. As an example, in reaction16O+232Th (deformed tar-
get), an anomalous increase in fragment anisotropy was ob-
served[4–7], but in 16O+209Bi (spherical target), no such
anomalous increase in fragment angular anisotropy was ob-
served[8]. Hinde et al. [9] postulated a nuclear orientation-
dependent quasifission reaction to explain the enhancement
in fragment anisotropy. It was assumed that, up to a critical
angle between the projectile trajectory and the symmetry
axis of the deformed target, the dinuclear system preferen-
tially moves over a mass asymmetric conditional saddle

point, leading to a narrower K distribution. Thus, a larger
fragment anisotropy can be obtained, compared to that pre-
dicted by SSPM[1]. With a decrease in energy, the quasifis-
sion increasingly dominates in near and below barrier ener-
gies. In the above model, no quasifission mechanism was
expected for a spherical projectile-target combination.

Apart from the enhancement of fragment angular aniso-
tropy, the probable effects of the assumed quasifission would
be asymmetry or a significant increase in the width of the
fission-fragment mass distributions[10,11]. Strong support
for this assumption came from our recent observation of a
sudden increase of the variance of the mass distributionssm

2 d
of fission fragments at near and below barrier energies in the
19F+232Th system[12]. The variance,sm

2 , of the mass distri-
bution was found to be a strong signal for the onset of a
completely different mechanism other than statistical fusion
fission (FF).

It is well established that in16O+232Th, anomalous behav-
ior of the fragment anisotropy at near and below Coulomb

FIG. 1. Distributions of complimentary fission fragments in
su ,fd for the system16O+232Th at Ec.m.=77.3 MeV. Rectangle
ABCD indicates the gate used to select the FF events for mass
determination.

FIG. 2. Distributions of complimentary fission fragments in
su ,fd for the system16O+209Bi at Ec.m.=76.2 MeV.
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barrier energies follows the trend, as observed in19F+232Th
[5]. In contrast, the fragment anisotropy in16O+209Bi fol-
lows the SSPM predictions quite well[8,13]. In this commu-
nication, we report the result of the measurement of the

widths of the mass distributions in16O+232Th, compared
with those from16O+209Bi, to examine if the variance of the
mass distribution can be used as a reliable probe for the onset
of a nonstatistical equilibrium in deformed targets and pro-
jectile systems in near and below Coulomb barrier energies.

The experiment was carried out using a pulsed beam of
16O from the 15UD Pelletron at the Nuclear Science Centre
(NSC), in New Delhi, India. The pulse width was about
0.9 ns, with a pulse separation of 250 ns. The targets were
self-supporting 232Th foil of thickness 1.8 mg/cm2 and
500 mg/cm2 thick self-supported209Bi. The target was
aligned at an angle of 30° to the beam. Complimentary fis-
sion fragments were detected with large areaX-Y position-
sensitive multiwire proportional counters[14,15]. The fission
fragments were separated from elastic and quasielastic chan-
nels using time of flight of particles and the energy-loss sig-
nal in the detectors. Folding angle technique[16] was used to

FIG. 3. Mass distributions for the system16O+232Th at different
projectile energies(c.m.). The Gaussian fits are shown by solid
lines.

FIG. 4. Mass distributions for the system16O+209Bi at different
projectile energies(c.m.). The Gaussian fits are shown by solid
lines.

FIG. 5. (a) Mass variancesm
2 and (b) anisotropyA, as a func-

tion of Ec.m. for the system16O+232Th. (c) Mass variancesm
2 and

(d) anisotropyA, as a function ofEc.m. for the system16O+209Bi. In
(b) and (d) the dashed line represents the SSPM calculation with
correction for prescission neutron emission[6,13]. The Coulomb
barrier is indicated by an arrow.
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differentiate between FF and transfer-fission(TF) events.
The experimental arrangements, data acquisition, and data
analysis techniques were identical to those in Refs.[12,15].

Fission fragments were separated from elastics and
quasielastics particles by correlations of arrival times and
energy loss of particles in two detectors. Following the
method as adopted in Ref.[12], we could reduce the con-
tamination of elastic and quasielastic to fission channels be-
low 1%. It is to be noted that16O+232Th reaction also had
considerable cross sections for TF events similar to those
observed in19F+232Th reaction[12]. The fission fragments
for fusion-fission events were determined from the distribu-
tion of polar and azimuthal angles. The events within the
rectangle “ABCD,” as shown in Fig. 1, were due to FF in the
polar sud and azimuthalsfd correlations. However, in16O
+209Bi, the TF channel contributes less than 1%, as could be
observed in Fig. 2, where very few events lie outside of the
rectangle marked abcd in correlatedu-f distributions of
fragments.

Masses of the fragments were determined from precise
measurements of flight paths and flight time difference of the
complementary fission fragments event wise[12]. The mass
distributions at different center-of-mass(c.m.) energies are
shown in Fig. 3 for16O+232Th, and in Fig. 4 for16O+209Bi.
It can be observed that mass distributions are well fitted with
Gaussian, even at the lowest energies. As in the case of19F
+232Th [12], we failed to observe any significant departure
from a single Gaussian fit in either of the reactions, and
possible admixture of asymmetric mass distributions were
ruled out.

Figure 5(a) shows the variation of the square of the vari-
ances of the fitted Gaussian,sm

2 , to the experimental masses
as a function of the c.m. energy in16O+232Th. We observed
a very similar trend of the variation ofsm

2 with decreasing
energy, as was observed for the19F+232Th system. In16O
+232Th, above the fusion barrier,sm

2 decreases smoothly with

the energy, but near the barrier at about 87 MeV,sm
2 starts to

rise and reaches a peak around 81 MeV. At still lower ener-
gies, it again starts to fall smoothly with a decrease in en-
ergy. However, the rise in thesm

2 is about 15%, compared to
as almost 50% rise observed in19F+232Th [12]. It is noted
that the rise insm

2 occurs exactly at the energy in which an
anomalous rise in fragment anisotropy had been observed
[5], as shown in Fig. 5(b). The dashed curve in Fig. 5(b) is
the prediction from SSPM.

The variation ofsm
2 in 16O+209Bi reaction is shown in

Fig. 5(c). The width of the mass distribution is much smaller,
compared to the16O+232Th system, and varies slowly with
energy. Figure 5(d) shows that in16O+209Bi, the variation of
fragment angular anisotropy with energy did not show any
large, anomalous behavior, compared to the SSPM predic-
tions (dashed line).

Observance of the sudden and significant increase in the
width of the mass distribution in16O+232Th and in 19F
+232Th, coupled with the absence of such an effect in16O
+209Bi, clearly establishes that the accurate measurement of
mass distribution is also a powerful tool to look for the onset
of a nonstatistical reaction mechanism in heavy-ion-induced
fission of deformed heavy nuclei. The anomalous increase in
the width of fragment mass distribution and fragment aniso-
tropy in both the16O and19F+232Th systems strongly sup-
port the postulated orientation-dependent quasifission
mechanism in heavy deformed target-projectile systems in
near and sub-barrier energies.
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