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We study dynamic polarization potentials for a halo nucleus6He scattered by a12C target in the eikonal
approximation. We use a realistic, six-nucleon wave function of6He to include both the halo-neutron and the
core-nucleon excitations on an equal footing. We discuss the energy dependence of the polarization potential in
relation to that of the nucleon-target optical potential. The imaginary part of the polarization potential changes
a sign(negative to positive with increasing energy) around the incident energy of 200 MeV/nucleon, which
gives different contributions, depending on the energy, to the elastic differential cross section as well as the
reaction cross section.
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A halo nucleus is characterized by one or two weakly
bound neutrons surrounding a core nucleus. The halo part
extends to large distances beyond the radius of the core. This
unusual structure offers a variety of new phenomena of keen
interest. One of the important consequences is that the halo
neutrons can easily be excited to continuum states. This im-
plies that, in the scattering of the halo nucleus, virtual and/or
actual excitations to the continuum states occur with high
probability and as its result produces a strong effect on the
optical potential for the halo nucleus. The deviation of a
nucleus-nucleus optical potential from its folded potential,
with the exchange due to the antisymmetrization between the
nuclei being neglected, is called a dynamic polarization po-
tential (DPP) [1]. The necessity of the DPP is in fact well
known for weakly bound projectiles like6Li and 7Li [2,3].
What is challenging is that the continuum states play a pri-
mary role as only a few or no bound excited states exist for
the halo nucleus. The importance of the DPP has long been
recognized in other fields such as atomic physics, where the
dipole excitation to discrete states plays a key role to pro-
duce a long-range potential. Some progress on the dipole
polarizability for halo nuclei has recently been made[4,5],
but no systematic analysis for the DPP due to the nuclear
force has been done yet.

The recent elastic differential cross section data of6He
+12C at 38.3 MeV/nucleon[6] has clearly shown the impor-
tance of the DPP. The DPP for6Li and 7Li scatterings were
successfully accounted for by continuum-discretized
coupled-channels(CDCC) calculations[3], in which the ex-
citation energy of the continuum state was relatively low. For
the DPP of a halo nucleus, however, the excitation energy
must be extended further, and moreover even the excitation
of the core part may produce a sizable contribution to the
DPP as the beam energy is usually around a few hundred
MeV/nucleon. In fact we have analyzed the6He+12C elastic
scattering data in the eikonal approximation using a nucleon-
12C optical potential as a basic input[7], and obtained a
satisfactory fit[8] to the experiment by anab initio calcula-
tion which employs a realistic6He wave function generated
from a variational Monte Carlo method[9].

The purpose of this study is to assess the relative impor-
tance of the halo-neutron and core-nucleon excitations due to

the nuclear force in the elastic scattering at medium energies
of 50–800 MeV/nucleon, to investigate their effects on the
elastic scattering differential cross section and the reaction
cross section, and to clarify the characteristics of the DPP in
relation to the underlying nucleon-target potential. To
achieve this goal, we can exploit the predictive power of the
ab initio calculation which is free from energy-dependent,
adjustable parameters. We expect that we can determine the
range of validity of a CDCC calculation which assumes a
rigid core. As a prototype of the analysis we consider the
6He+12C case because of the following reasons:6He is a
well-known halo nucleus, the scattering data are available at
40 MeV/nucleon, the sophisticated wave functions which
take into account various correlations such as short-range
and tensor correlations are available for both6He and4He
[9], and in addition a globalp-12C optical potential[10] is
available as a function of energy.

Let c0 be the(translation-invariant) intrinsic wave func-
tion of the projectile’s ground state. The projectile’s wave
function after colliding with the target is given in the eikonal
approximation by

eio j xNTsb+sjdc0, s1d

whereb is the impact parameter perpendicular to the beam
szd direction andsj is the projection onto thexy plane of the
nucleon coordinate relative to the projectile’s center-of-mass.
In Eq. (1) xNT is the phase-shift function calculated from the
nucleon-target optical potentialVNT:

xNTsbd = −
1

"v
E

−`

`

dz VNTsb + zẑd, s2d

wherev is the incident velocity of the projectile-target rela-
tive motion. The elastic scattering can be described in terms
of the phase-shift functionxsbd:

eixsbd = kc0ueio j xNTsb+sjduc0l. s3d

This phase shift contains the effect of couplings to various
inelastic channels including the continuum states. On the
contrary, the phase shift,xfsbd, corresponding to the folded
potential, is given byxfsbd=kc0uo j xNTsb+sjduc0l and con-

PHYSICAL REVIEW C 70, 011603(R) (2004)

RAPID COMMUNICATIONS

0556-2813/2004/70(1)/011603(4)/$22.50 ©2004 The American Physical Society70 011603-1



tains no coupling effect. Thus the phase shift responsible for
the DPP,xDPP, is defined byxDPP=x−xf. A relationship be-
tween these various phase shifts and the corresponding po-
tentials is the same as Eq.(2), and it is straightforward to
invert the phase-shift function to obtain the potential[11].
This simple method appears to be suitable for our purpose as
the inversion is consistent in the eikonal approximation. See,
for example, Ref.[12] for other sophisticated inversion
methods.

The matrix element of Eq.(3) contains a multidimen-
sional integration over all the internal coordinates of the pro-
jectile nucleus. Being a formidable task, a real application of
the formula has so far been severely limited in spite of the
fact that the eikonal approximation is valid and acceptable at
intermediate and high energies[13–15]. However, it is now
possible to evaluate the phase-shift function accurately[16]
even for sophisticated wave functions by Monte Carlo inte-
gration.

The DPP of6He contains the contributions of excitation
and breakup processes of both the core and halo nucleons. As
the core part of6He is considered approximately the same as
4He [17], we may decompose the DPP phase-shift into two
parts:

xDPPs6He,bd = xDPPs4He,bd + xDPPs2n,bd. s4d

The center of mass of the4He core actually fluctuates around
that of 6He, so its impact parameter is not necessarily equal
to b but has some distribution around it. Here we simply
assume thatxDPPs4He,bd is given by xs4He,bd−xfs4He,bd
from the 4He wave function.xDPPs2nd is defined by the dif-
ference,xDPPs6Hed−xDPPs4Hed. The decomposition is thus
model-dependent but appears reasonable for a qualitative es-
timate of each contribution. The full phase shift for6He is
thus written as a sum of the folding term and the two DPP
terms

xs6He,bd = xfs6He,bd + xDPPs4He,bd + xDPPs2n,bd. s5d

As VNT we use the central part of the global optical potential
[10] unless otherwise stated, ignoring the difference between
p-12C andn-12C interactions. This potential is determined by
the Dirac phenomenology and gives a good fit top+ 12C
elastic scattering data. The incident energyper nucleon, E,
considered in the present study covers 50, 100, 200, 400, and
800 MeV. The real part ofVNT changes its sign: It is attrac-
tive below 300 MeV with its depth decreasing as the energy
increases, and becomes repulsive in its interior region above
300 MeV. The real part of the volume integralJ
=edrVNTsrd /A (in units of MeV fm3) changes from −328 to
43 asE changes from 50 to 800 MeV. On the contrary, the
imaginary part is always absorptive(negative) with its depth
increasing as the energy increases. Reflecting that a pion
production threshold for a nucleon incident on a nucleus is
around 250 MeV, the depth of the imaginary potential be-
comes very large above that energy: The imaginary part ofJ
changes only a little around −116 up toE=200 MeV but
jumps to −242 and −374 at 400 and 800 MeV, respectively.
It is noted that the energy-dependence ofp-40Ca and
p-208Pb optical potentials[10] is similar to that ofp-12C
except for 200 MeV.

To see a qualitative feature of the DPP, we recall that the
leading term of the DPP is given by[14]

xDPPsbd <
i

2
kc0uFo

j

xNTsb + sjd − xfsbdG2
uc0l. s6d

Thus xDPP is proportional to si /2dsV0+ iW0d2=−V0W0

+si /2dsV0
2−W0

2d if VNT is assumed to be of form
sV0+ iW0dfsrd. This simple argument suggests that the real
(imaginary) part of the DPP has the same sign asV0W0
sW0

2−V0
2d. We will confirm later that this rule proves right.

We do not use the above approximation but calculate the
phase-shift function accurately in this paper.

We first discuss the reaction cross section,sR
=edb s1−ueixsbdu2d, of 6He by decomposing the “reaction

probability,” 1−ueixs6Hedu2, into four terms:

1 − ueixs6Hedu2 = s1 − Pfd + Pfs1 − ueixDPPs2ndu2d

+ Pfs1 − ueixDPPs4Hedu2d

− Pfs1 − ueixDPPs2ndu2ds1 − ueixDPPs4Hedu2d,

s7d

where Pf = ueixfs
6Hedu2 is the survival probability of the inci-

dent flux against the absorption of the folded potential. The
reaction cross section calculated from the first term is called
an optical-limit valuesf. The above decomposition is made
to emphasize the relative importance of the two DPP terms.
Figure 1 shows the second and third terms, multiplied by
2pb. The contribution of each term tosR is listed in Table I,
which confirms that, aside from the leadingsf term, the
2n-DPP term is a main contributor tosR but the other terms
play a minor role. A remarkable point is that the 2n-DPP
term gives a positive contribution tosR at lower energies but
a negative contribution at higher energies. That is, the
optical-limit approximationunderestimatesthe reaction cross
section below E=200 MeV but overestimatesit above
200 MeV. The overestimation by the optical-limit approxi-
mation has been emphasized by several authors[19–21], but
our statement here is more general. This behavior is deter-
mined by the sign of 1−ueixDPPs2ndu2. WhetherueixDPPs2ndu2 is

FIG. 1. The reaction probability of6He incident on12C as a
function of the impact parameter.E is the bombarding energy per
nucleon. The solid line corresponds to the halo-neutron excitation,
and the dotted line to the4He-core excitation.
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less than 1 or not depends on the sign of the imaginary part
of the 2n-DPP. As discussed later, it becomes negative at
lower energies, so 1−ueixDPPs2ndu2 becomes positive, whereas
the situation turns out to be opposite at higher energies.

Before discussing the DPP, we compare thesR value at
E=800 MeV to that calculated by a full Glauber model. We
repeated the calculation of Ref.[16] using the parameters of
the nucleon-nucleon profile function averaged by the proton
and the neutron. The wave function of12C was given by a
microscopic 3a-cluster model. ThesR values obtained by
this fully microscopic calculation are 743 and 509 mb for
6He+12C and 4He+12C, respectively, in a good agreement
with those listed in Table I. This confirms the soundness of
the present approach.

Though the4He-DPP term has a negligible contribution to
sR, it may not necessarily mean that the core excitation plays
no active role, but simply mean that the reaction cross sec-
tion does not reflect the DPP at short distances. As Eq.(7)
shows, the reaction probability for the4He-DPP term is mul-
tiplied by Pf, which is almost zero for such a geometry that
6He and12C strongly overlap. Figure 2 displays the imagi-
nary part of the DPP of6He (solid line) and of 4He (dashed
line), respectively. The difference between them is the
2n-DPP due to the halo-neutron excitation. Two characteris-
tic points are noted: One is that the DPP of6He is stronger

than that of4He and has a longer range for all the energies
considered here. The latter feature is related to the halo struc-
ture of 6He. The effect of the halo-neutron excitation to the
2n-DPP is quite large at 50 and 800 MeV. Another remark-
able point is the energy-dependence of the DPP. The magni-
tude of both the6He and4He DPPs becomes smallest atE
,200 MeV, which is understood from the fact that the trans-
parency of thep-12C interaction reaches its maximum around
that energy[22]. The imaginary part of the DPP is negative
below 200 MeV, but turns out to be positive above
200 MeV. The relationship betweenVNT and the sign of the
DPP, stated below Eq.(6), well explains this energy depen-
dence. Figure 3 shows the real part of the DPP. The two
characteristic points mentioned above for the imaginary part
apply to the real part as well. The sign change of the real part
of the DPP is also understood from the rule except for the
potential near the origin at lower energies.

The elastic differential cross section of6He+12C is shown
in Fig. 4 atE=40 and 400 MeV. The solid line represents the
cross section calculated with the full phasexs6Hed, the dot-
ted line the cross section calculated by turning off the halo-
neutron excitation, namely, with the phasexfs6Hed
+xDPPs4Hed, and the dashed line the one obtained by neglect-

TABLE I. Reaction cross sections of6He incident on12C in
units of mb.E is the bombarding energy per nucleon.sif corre-
sponds to the last term of Eq.(7). The calculated reaction cross
section for4He+12C at E=800 MeV is 516 mb. The measured in-
teraction cross sections atE=790 MeV are 722±6 and 503±5 mb
for 6He and4He, respectively[18].

E sMeVd sR sf sDPPs2nd sDPPs4Hed sif

50 1279 1193 +84 +6.0 −4.0

100 955 906 +48 +1.0 −0.5

200 686 700 −11 −3.0 −0.1

400 708 766 −52 −5.0 −1.4

800 737 811 −71 −0.7 −2.1

FIG. 2. The imaginary parts of the dynamic polarization poten-
tials for 6He and4He incident on12C. E is the bombarding energy
per nucleon. The solid line is for6He and the dotted line for4He.
The difference between them is the polarization potential due to the
excitation of halo neutrons in6He.

FIG. 3. The same as Fig. 2 but for the real parts.

FIG. 4. The elastic differential cross sections in Rutherford ratio
for 6He+12C scattering. Thep-12C optical potential is taken from
Ref. [23] for 40 MeV/nucleon or from Ref. [10] for
400 MeV/nucleon. The phase-shift function used inxs6Hed (solid
line), xfs6Hed+xDPPs2nd (dashed line), or xfs6Hed+xDPPs4Hed (dot-
ted line), respectively. The experimental data are taken from Ref.
[6].
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ing the core excitation, i.e., with the phasexfs6Hed
+xDPPs2nd. The calculation reproduces the experimental data
reasonably well. The effect of including the DPP reduces the
cross section at 40 MeV, while the 2n-DPP enhances the
cross section at 400 MeV because it has a positive imaginary
part. Comparing the relative importance of the two DPPs, we
see that the halo-neutron excitation generally gives stronger
effects than the4He-core excitation. The core excitation pro-
cess nevertheless becomes significant at larger angles; even
at 40 MeV, to neglect the core excitation results in 20–40%
overestimation of the cross section at the angle of 20° –30°.

In conclusion we have studied the dynamic polarization
potential due to the nuclear excitation for a halo nucleus6He
incident on12C at medium energies. Both the halo-neutron
and the core-nucleon excitations are taken into account by
using the realistic wave function generated from a variational
Monte Carlo calculation. The polarization potential has been
calculated from the nucleon-target optical potential in the
eikonal approximation. We find that the imaginary part of the

polarization potential changes a sign(negative to positive
with increasing energy) around 200 MeV/nucleon. Because
of this energy-dependence the optical potential of6He tends
to be more absorptive than the folded potential at lower en-
ergies but less absorptive at higher energies. Thus the
optical-limit approximation underestimates the reaction cross
section at lower energies but overestimates it at higher ener-
gies. The real part of the polarization potential also changes
a sign at least near the surface; repulsive to attractive around
300 MeV/nucleon. The effect of the halo-neutron excitation
is larger than that of the4He core excitation but the latter still
gives a significant contribution to the elastic differential
cross section at large angles.
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