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The evolution of first excited Ostates in transitional nuclei of the~90 region is correlated with the
structure of the ground band. lachell¢5) solution for the Bohr-Hamiltonian for axially symmetric prolate
nuclei is generalized to the transition path betwe®b) and the rigid-rotor limit using infinite square-well
potentials in the quadrupole deformation paramgevith boundaries ay, > 3,,= 0. Analytical solutions in
terms of Bessel functions of first and second kind are derived and describe well the evolutionary trajectory of
the studied { states in this mass region.
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A prime example for deformed quantum systems area whole [14-17. The nuclear shape phase transition is a
atomic nuclei[1-5]. As the number of valence nucleons topic of high current interest, e.d18—29. While the recent
grows, symmetry breaking to a deformed shape can occudiscussions focused on the phase-transitional pointgtioe
The evolution of the structure of nuclei in these shapeqution of 0} states[11] between the benchmarks of nuclear
changing regions has traditionally been the most difficult tostructure has not received much attention.
understand and predict. This situation improved, recently, |tis the purpose of this Rapid Communication to focus on
when lachello proposed6,7] analytical solutions of the a correlation of the relative excitation energ,, to the
Bohr-Hamiltonian eigenvalue problem appropriate for thestructural observabl®,;,=E(4;)/E,(2]) for nuclei in the
description of nuclei near the critical points of spherical-to-N~90 shape transitional region. We show that the evolution
quadrupole deformed shape phase transitions, c&l&ll  of the empirical correlation is well described in a parameter-
and X(5), with large fluctuations in the deformation param- free way by an analytical solution of the Bohr-Hamiltonian
eter 8. The evolution of structure was, however, still left to eigenvalue problem using an infinite square-well potential
numerical procedures. over aconfinedrange of values for the quadrupole deforma-

In nuclei formed by even numbers of both protons andtion parameterB. This solution interpolates between the
neutrons there exist intrinsit”=0" excitations, some related phase-transitional point and the rigid-rotor limit in an ana-
to single-particle degrees of freedom, others due to collectiv@ytic way, and accounts well for energies ai@ rates ob-
excitations. According to the geometrical model of deformedserved in such nuclei.

nuclei, the first collectively excited*Ostate is often consid- Consider the Bohr-Hamiltonian,

ered a B vibration,” an excitation in the space of the intrin-

sic quadrupole deformation paramef@mwith small fluctua- 2l 1 9 2 0 1 J . d

tions around the mean deformatiof, assumed to be H=- 2B Eﬁ_ﬂ EB + masm 375
decoupled from the rotational motion. The rotational band of

nuclear states, built on top of th@vibration, is called the3 1 > QE Y !
band. A considerable effort has been made to identifyghe 482= sinz(y— %wk) (B,7). (1)

band in deformed nuclei with, up to now, mostly inconclu-

;ive re_sults[S—lJ]. Th_e.excitation energy of thegs' vib_ra- _ Here, 8,y are the quadrupole shape parameters. In analogy
tion” either is an explicit model parameter or enters implic-;; Ref. [7] we consider potential¥(8,y)=v(B8)+u(y) for
itly through the particular choice of the potential. axially symmetric prolatéy~0") nuclei. We adopt here the

Generalized models couple rotational motion to intrinsic%me treatment of the degree of freedom as in Réf] and
excitations[4,5] and relate the latter to the structure of thefocus again on th@ degree of freedom in the limit c')f small
ground band. Some agreement with data on transitional ny

. ) Tuctuations ofy abouty=~0". The wave functions approxi-
clei was observed, e.d12,13. lachello’sX(5) solution rep- : _ L
) : . . mately separate int?# (B, y, 6,) = D ), where
resents an analytical solution for this coupling close to th y sep Nt (5,7, 6)=&.(8) (YD (), W

prolate shape phase-transitional point. It predicts the enertg%? denotes the Wigner functions with being the Euler

of the q state to be 5.65 times the energy of the first excite ngles f?r the 0r|en_tat|on qf Itge |rr]1tr|“nS|§_ j}’s_‘e”;‘] a;mﬂy)

o' state, ie., Ryp=E,(0})/E(2)=5.65. This matches rom Re .[7]._ Equat_lon(l) yields the “radia (in the shape
1 omn PORT AR AT TS parametersdifferential equation,

closely the observation in transitional nuclei with neutron

numbersN=90, and the discussion of;Cstates’ energies w2l1 4 4 1

became an important part of recent nuclear structure assign= B — B~ FL(L +1)+u(B) |£L(B) =EE(B).

ments, both for the structure of that state and the levels built BTop B 3B

on top of it and for the transitional character of a nucleus as (2
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For prolate axially symmetric solutiometween X5) and the at— "= . o 1
rigid rotor, we consider infinite square-well potentiaig3) gt — g 87—
with boundaries apy > f,=0. We allow here forB,#0, g . (2,+: .
outside of the cases studied befd&7,22. The ratiorg | I, T 25— g —
=Bm/ By uniquely parametrizes the stiffness of the potential 5 = .
and hence the structural evolution from the transitional point§| 1°*— . 10" — T 10" — "+_
(rg=0, large fluctuations irB) to the rigid rotor(rg;— 1 no g & . . =
fluctuations ing). g e ar= af =
Using the new variablesz=\E/(A%/2B)B and dz]  §| e— ot— 141 | e ° 76 | g B At
=B(2)%2¢[B(2)], Eq.(2) transforms into the Bessel equation, o 565FRo2 | 680 —_
2t— 27— = 3.34
~ — .9 0
- F 2] Ryt o9 280 275 | “agy 31 323 | 05,3 332
"+ —+|1-51£=0 ) obomeoo oo wellgound | .
ZZ I'B=00 rB=0.15 I'B=03
with solutions that are Bessel functionk(z) andY ,(z) of FIG. 1. (Color onling Evolution of energy spectra in the CBS

HEe DEssel
irrational order v=\L(L+1)/3+9/4, where Y,(z) is the rotor model for three different values of; keeping the scale

Bessel function of second kind. The general solutions are;?/2Bg constant. The structural signatuiRg, (online greepand
thus, superpositions of the corresponding Bedselnd R (online blug are given below the bands.
BesselY functions,

Ey(z) o« J(2) + WY, (2). (4) |\Ps,ny,K,L,M(Bv Y6 \/ [d’sn KkL(Bs '}’)Dkll k(6)

The choice of infinite square-well potentials imposes the + (=)L o )D (6)
condition that the wave functions B must vanish outside of ¢Sn «L(Bry (6],
the well and, hence, they have nodes at hgtrand 8y, i.e., (10)

~ -~ _ whereds, kL(B,7)=ELs(B) k() with & ((B) from Eq.(7),
&(rgzv) = &(zu) =0 () and7(y) is the appropriate wave function in the decoupled

T 72oo . paramete_r spgc{é’]. Besides the choice of a finite value of
for zy=E/(#"/2B) By. These two boundary conditions de- r 5 this solution is analogous to tH&5) solution of lachello

termine the relative amplitudgy,=—[J,(r gzu)/Y,(r szm)] of [7].
the Bessel¥ function and serve as the quantization condi- Considering potentials with no structure j (being 38
tion, soft) over a range of valuesonfinedwithin the variable
boundaries of an infinite square well, this approach repre-
Qf(zm) =3,z Y, (rgzm) = I,(rszw)Y,(zu) =0.  (6)  sents a “confinegg-soft” (CBS) rotor model. We denote the
0, state withs=2 as the(first) 8 excitation
For each value of(L) andr g, the appropriate, are ob- Absolute energies in the CBS rotor model are shown in
tained as thesth zero,z{f, of the functionQrVB(z). The quan-  Fig. 1 for three values of; (0, 0.15, 0.3, wherer ;=0 co-
tum numbers counts the number of nodes of the wave func-incides withX(5). Increasing the value of, shifts all levels
tion in B for B> By, to higher energies since the potential narrows. That energy
The normalized eigenfunctions of E@) are shift increases with the quantum number and with decreas-
ing angular momentum. Increasimg raises the energies of
& o(B) =c B3 I(ZE8IBw) + WY .(ZEBIBw)], (7)  those wave functions that have larger contributions in the
' ’ region close toB3,, more than others. These are wave func-

with the eigenvalues tions with many nodes, or those for states with low angular
momentum. In theB-soft potential the nucleus gains angular

52 momentum due to centrifugal forces, partially by increasing

ELs= LS)2 (8) its rotational moment of inertia rather than its angular veloc-

ZBEM ity, and hence the wave function’ s center of gravity shifts to

larger values of3 with mcreasmg_ making them less sen-
sitive to the potential aB,, Therefore, increasing, raises
the lowest spin states most and shrinks tje-@& energy

and the normalization

Bm
Uets=|  BUELBTdB. @
Bm Evidence for this model prediction comes from the smooth in-
crease of transitional quadrupole moments along the ground band of
The parameteBg;, defines the energy scale. a p-soft rotor. TheQ, values for 15%Sm, for instance, increase
The full solution to Eq(1) with our choice of potentials is  smoothly from 5.91) eb for the Z — 0] transition to 6.83) eb for
given by the wave function, the 14 — 8; transition, as can be deduced from Table I.
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TABLE I. Ry, values and ground-state band energie®#1°4158m and®*yb are compared to relevant
analytical modelsX(5), CBS, and the rigid-rotor model, where those apply. Neiti@) nor the rigid rotor
can competitively describ¥?Yb with anR,, value in the middle between th&5) and the rotor predictions.

152Sm 154Sm lSGSm 164Yb

J X5) Expt. CBS Rotor  Expt. CBS Rotor  Expt. CBS Expt. CBS
rp=0.14 rz=0.35 rp=0.43 rp=0.23

Ry 2.90 3.01 3.01 3.33 3.26 3.27 3.33 329 3.30 3.13 3.13
2, 122 122 122 82 82 82 76 76 76 123 123
47 354 366 367 273 267 267 253 250 251 386 386
6; 661 707 695 574 544 544 531 517 519 760 753
8; 1033 1125 1093 984 903 901 911 872 873 1223 1202
10; 1465 1609 1554 1503 1333 1325 1391 1307 1306 1753 1723
127 1954 2149 2077 2131 1826 1810 1973 1819 1810 2330 2315
147 2499 2736 2660 2869 2323 2353 2656 2401 23792899 2972

difference by a larger fraction than th€-40; difference.  CBS rotor model in a parameter-free way. Thexcitation is
Consequently, thR,,, value increases with, until the rigid-  low lying in transitional nuclei and increases strongly in en-
rotor limit with R,;,=3.33 is reached for;— 1, where the ergy when the rotor limit is approached. ForRy, value of
gain in angular momentum fully originates in a gain of an-3.25 the CBS rotor model predicts &g, value of 13.5, i.e.,
gular velocity with constant moments of inertia for all valuesthe 8 excitation at about 1.3 MeV assuming a typical value
of L. This geometrical description of nuclear level bandsE,(2;)=90-100 keV for thisR,,. It must thus be expected
neglects, of course, noncollective single-particle degrees ahat in good rotors withR,, values>3.25, the actual Pstate
freedom and can, therefore, work only up to the back-must be formed by othefe.g., noncollective, pairing, oy
bending region. Table | demonstrates the good description afeformation degrees of freedom because Bexcitation is
ground bands in deformed nuclei with varioBg, values. shifted to too high energies. Indeed, tig, values for
For a given spin, the energy shifts increase strongly with strongly deformed midshell nuclei witR,, values above
asrg increases. This is because wave functions with more3.25 do not, in general, follow the CBS rotor trajectory and
nodes have their density more evenly spread over the avaiscatter over a large range of values, indicating that their cor-
able range inB and, in particular, they have a higher density relation to theR,,, value has been lost. Therefo@ excita-
close to B, than wave functions with less nodes and thetions are difficult to observe in good rotofs0], where they
same angular momentum. Therefore, the structural signatuegre shifted to high energies above thestate. They should,
Ror2 strongly increases with; and becomes infinite in the however, be low lying and, thus, easily observable in transi-
limit rz— 1. Since both structural signaturés,, and Ry,,, tional nuclei.
depend monotonically ons, the CBS rotor model yields a
parameter-free relation between them on the structural evo- 30— PR

lution path between the shape phase-transitional point and - N=82-104
the rigid-rotor limit. This relation can be confronted with the 25F 411 nuclei -
data. s 04

We consider the classical region of spherical-to-prolate 20
deformed transitional nuclei, the light rare-earth nuclei
around neutron numbéX=90. All nuclei in the first half of Ropl5F
the N=82-126 neutron major shell, and with at least one L

CBS rotor

known excited 0 state, are taken into account. The experi- 10 _
mentalRy, values are plotted as a function Bf, in Fig. 2 0
and are compared to the model prediction. ThBgg data SmE g u -
form a compact trajectorfl1] when plotted as a function of . am

i > > 3.25. PN N N A I R B
R42, until values ofRy,>10 are reached fdR,,,>3.25. We e e e T i h

conclude that the Dstates in these transitional nuclei with Ry
2.9<R4,=3.2 have a related collective structure, because 2
they correlate in. a unique way to theqlleqtiva stru.ctural FIG. 2. (Color onling Correlation ofRyj, and Ry, values in
signatureRy,. This remarkable conclusion is model indepen-rare-earth nuclei with neutron numbers arot=90. Data[30] for
dent. all nuclei in the lower half of theN=82-126 neutron major shell
Second, we note that the shape of the evolutionary path afith known 0, state andR,,>2.6 are plotted. The solid curve
R/, data and within about 10% even their absolute valuesinline red corresponds to the parameter-free prediction of the
are surprisingly well predicted as a function Rf;, by the  CBS rotor model as a function of;.
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An important test for the applicability of the CBS rotor to ~ TABLE Il. Comparison of E2 transition rates in'*21Sm
transitional and near rotational nuclei is the comparison 0f32,33 with the X(5) limit and the CBS rotor model for;=0.14
theoretical to experiment&(E2) values. For the calculation and 0.35 from Table Iy=-0.535 was kept constant in it op-
of E2 transition rates we use tH&2 operator up to second €rator. TheB(E2) V?Iues are in Weisskopf units and scales are ad-
order in the deformation parametef31], restricting our- iusted to the 2—0; transition.
selves to nonzero quadrupole deformation parameters, only.

lab, — 2
MEE2) =eVay, + 22 C1) az a0, + Oa?).
vy 21 — OI 144 1443) 144 1745) 174
(11) 4t 2t 230 2093) 213 2446) 251
Since we do not make any assumptions about the charge 61—41 285 24%5) 249 29@8) 281
distribution in the deformed nucleus, the two expansion co- 8;—6; 328 28%14) 273 31817) 300

efficients,e? ande?, are treated as free parameters to be 10{—8; 361 320300 290  31416) 314
adjusted to data. Neglecting third- and higher-order terms

Transition  X(5) 1525m CBS 1545 m CBS

one obtains 2,0} 115  10727) 120 165
4325 173 20438 172 234
M, (E2) :e(l){,B cosyD24(Q) 2 7 439

D2,() + D2_() 05— 2 90 332) 33 8.4
+ B sin y—E—— =2 250! 3 0.91) 03 09423 05
\2 252t 12 5.55) 3 1.4
2 254t 53 192) 24 4111 71

—/%e2]| g2 2 i
\/;e {B cos 2yD7,,(Q2) 42 14 072 01 0.1
&4 9 5.413) 2 11

2 2 2 1

~ #sin 27DM2(Q) +EDM_2(Q) ] (12 456" 40 42) 18 8.2
\V

after transformation to the intrinsic frame and exploiting the 8-excitation band members are described with deviations not
properties of the Wigner functions. The terms proportional toexceeding 2 W.u. Inclusion of the second-order term in the
D2, [D2,+D%_,] describeAK=0[AK=2] transitions. The E2 operator allows for a consistent description of this
E2 matrix elements are obtained from integration over the=0 interbandE2 matrix element. Consequently, tiad<=0
Euler angles and over the intrinsic variablgsand y. For  interbandE2 strengths int>*Sm are well predicted from hav-
separable wave functions the integrations ogeand v are  ing adjusted the parametgrin the E2 transition operator to
independent. the data from*>?Sm. This good description of the2 rates
Since we consider herg excitations withn,=0 [7] (and  results from the analytical solution of a unique Hamiltonian
henceK=0), only theAK=0 part of theE2 transition opera- and a simple choice for thE2 operator. It does not involve

tor is relevant for our discussion. It takes the form any ad hocassumptions about band mixifge6].
P Finally, we note that an approximate consideration of the
TAK=0(E2) = eV 8 (cos {(_) v-deformation degree of freedom and description of the
w (B2 Pulcosy)y band is possible using the same decoupling approximations,

5 as done by lachell$7] and recently discussed by Bijket
- \/Ee(mﬂMMz(ﬁ) :|D20(Q)7 al. [29] for X(5). EO transitions can also be studied in the
7 (cosy), \ Bu K CBS rotor model. Since the difference of the average 0
(13) states’ deformation decreases with increasipgeQ transi-
tions are predicted by the CBS rotor model to be largest for
:eeff[(ﬁ/ﬂm)+X(ﬁfﬁm)z]Dio, (14) X(5) and decrease_\_/vhen approaching the rigid-rotor limit.
. ] Forrz<1, EO transitions between tw=0 bands are pre-
with the effective chargeesr=e”By(cosy), and x dicted to decrease with increasing spin. Particle pair transfer
=—2/7e? By(cos 2y),/{cosy), to be adjusted to data. Note strengths cannot be described by the CBS rotor model, be-
that the integrals ovety are independent of§ andL and, cause they are outside of a geometrical approach. Finally, we
hence, they are equal for all transitions between bands witktress that a similar approach will work for an analytical
n,=0. These constants are absorbed in the parametgrs interpolation betweeik(5) and the deformed-soft limit.
and y of the E2 transition operator. In conclusion, we have studied the Bohr-Hamiltonian in
Table Il displaysB(E2) values for the nuclel®>'>Sm and  the limit of rigid prolate axial symmetryy=0°) with con-
analytical results forX(5) and the CBS rotor model. The fined g-soft potentials. This CBS rotor model interpolates
experimentalB(E2) values in the ground bands are repro- betweenX(5) and the rigid-rotor limit, and has been solved
duced by the CBS rotor model within the uncertainties atanalytically in terms of Bessel functions of first and second
least up to the 1Dstate. Also, most of th&2 decays of the kind. Full decoupling of3 and y degrees of freedom is as-
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sumed for the analytical approximation. The model predictsand publishedL. Fortunato and A. Vitturi, J. Phys. G: Nucl.
the evolution of structure for prolate transitional nuclei as aPart. Phys.30, 627(2004); received 18 December 20pBat
function of one parametelrz) and yields a parameter-free deals with interesting analytical solutions of the Bohr-
correlation of the two structural signaturBg, andR,,. The  Hamiltonian using Coulomb-like and Kratzer-like potentials
relative excitation energies of the first excited €tates of in g. These authors term their solution@asoft rotor, too,
transitional nuclei in the rare-earth mass region correlate t@|though their potentials are ngtindependent. Due to the
the Ry, ratio. The shape of the correlation pathRy, as a  analogy to they independent potentials used earlier by Wi-
function of Ry, is well predicted by the model for |ets and Jeaii2], known as they-soft case, we consider the
2.9<Ry;<3.2. The absolute values @y, are overesti- = orm g soft more appropriate for thg-independent poten-
mated by about 10%. The CBS rotor model well describegjq|s (confined over a certain rangthat are considered in the

ground-band energies, as well Ez)azs intraband and intergand present paper. It will be interesting to compare the predictive
rates for transitional nuclei, e.d3?Sm, analytically with two power of both approaches.

parametersr s, x) and two scale§h?/ ZB,Bf,, ,€et). Our analy-
sis implies that the Dstate of axially symmetric transitional We thank M. A. Caprio, R. F. Casten, C. Fransen, F. lach-
nuclei with R,/,<3.25 corresponds to th@ excitation of the  ello, P. Jung, D. Micher, N. A. Smirnova, P. von Brentano,
CBS rotor and that its properties correlate to the variationaind N. V. Zamfir for discussions. This work was supported
moment of inertia of the ground band. by the DFG under Grant No. Pi 393/1-2, by the DOE under

Note added in proofWhile the present Rapid Communi- Grant No. DE-FG02-91ER-40609 and by the U.S. NSF un-
cation was under review, another paper has been submitteter Grant No. PHY-0245018.
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