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The evolution of first excited 0+ states in transitional nuclei of theN<90 region is correlated with the
structure of the ground band. Iachello’sXs5d solution for the Bohr-Hamiltonian for axially symmetric prolate
nuclei is generalized to the transition path betweenXs5d and the rigid-rotor limit using infinite square-well
potentials in the quadrupole deformation parameterb with boundaries atbM .bmù0. Analytical solutions in
terms of Bessel functions of first and second kind are derived and describe well the evolutionary trajectory of
the studied 02

+ states in this mass region.
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A prime example for deformed quantum systems are
atomic nuclei [1–5]. As the number of valence nucleons
grows, symmetry breaking to a deformed shape can occur.
The evolution of the structure of nuclei in these shape-
changing regions has traditionally been the most difficult to
understand and predict. This situation improved, recently,
when Iachello proposed[6,7] analytical solutions of the
Bohr-Hamiltonian eigenvalue problem appropriate for the
description of nuclei near the critical points of spherical-to-
quadrupole deformed shape phase transitions, calledEs5d
andXs5d, with large fluctuations in the deformation param-
eterb. The evolution of structure was, however, still left to
numerical procedures.

In nuclei formed by even numbers of both protons and
neutrons there exist intrinsicJp=0+ excitations, some related
to single-particle degrees of freedom, others due to collective
excitations. According to the geometrical model of deformed
nuclei, the first collectively excited 0+ state is often consid-
ered a “b vibration,” an excitation in the space of the intrin-
sic quadrupole deformation parameterb with small fluctua-
tions around the mean deformationb0 assumed to be
decoupled from the rotational motion. The rotational band of
nuclear states, built on top of theb vibration, is called theb
band. A considerable effort has been made to identify theb
band in deformed nuclei with, up to now, mostly inconclu-
sive results[8–11]. The excitation energy of the “b vibra-
tion” either is an explicit model parameter or enters implic-
itly through the particular choice of the potential.

Generalized models couple rotational motion to intrinsic
excitations[4,5] and relate the latter to the structure of the
ground band. Some agreement with data on transitional nu-
clei was observed, e.g.,[12,13]. Iachello’sXs5d solution rep-
resents an analytical solution for this coupling close to the
prolate shape phase-transitional point. It predicts the energy
of the 02

+ state to be 5.65 times the energy of the first excited
21

+ state, i.e., R0/2=Exs02
+d /Exs21

+d=5.65. This matches
closely the observation in transitional nuclei with neutron
numbersN<90, and the discussion of 02

+ states’ energies
became an important part of recent nuclear structure assign-
ments, both for the structure of that state and the levels built
on top of it and for the transitional character of a nucleus as

a whole [14–17]. The nuclear shape phase transition is a
topic of high current interest, e.g.,[18–29]. While the recent
discussions focused on the phase-transitional point, theevo-
lution of 02

+ states[11] between the benchmarks of nuclear
structure has not received much attention.

It is the purpose of this Rapid Communication to focus on
a correlation of the relative excitation energyR0/2 to the
structural observableR4/2=Exs41

+d /Exs21
+d for nuclei in the

N<90 shape transitional region. We show that the evolution
of the empirical correlation is well described in a parameter-
free way by an analytical solution of the Bohr-Hamiltonian
eigenvalue problem using an infinite square-well potential
over aconfinedrange of values for the quadrupole deforma-
tion parameterb. This solution interpolates between the
phase-transitional point and the rigid-rotor limit in an ana-
lytic way, and accounts well for energies andE2 rates ob-
served in such nuclei.

Consider the Bohr-Hamiltonian,
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Here,b ,g are the quadrupole shape parameters. In analogy
to Ref. [7] we consider potentialsVsb ,gd=vsbd+usgd for
axially symmetric prolatesg<0°d nuclei. We adopt here the
same treatment of theg degree of freedom as in Ref.[7] and
focus again on theb degree of freedom in the limit of small
fluctuations ofg aboutg<0°. The wave functions approxi-
mately separate intoCsb ,g ,uid=jLsbdhKsgdDM,K

L suid, where
D denotes the Wigner functions withui being the Euler
angles for the orientation of the intrinsic system andhKsgd
from Ref. [7]. Equation(1) yields the “radial”(in the shape
parameters) differential equation,
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For prolate axially symmetric solutionsbetween Xs5d and the
rigid rotor, we consider infinite square-well potentialsusbd
with boundaries atbM .bmù0. We allow here forbmÞ0,
outside of the cases studied before[6,7,22]. The ratio rb

=bm/bM uniquely parametrizes the stiffness of the potential
and hence the structural evolution from the transitional point
(rb=0, large fluctuations inb) to the rigid rotor(rb→1 no
fluctuations inb).

Using the new variablesz=ÎE/ s"2/2Bdb and j̃fzg
=bszd3/2jLfbszdg, Eq.(2) transforms into the Bessel equation,

j̃ 9 +
j̃8

z
+ F1 −

n 2

z2 Gj̃ = 0, s3d

with solutions that are Bessel functions,Jnszd and Ynszd of
irrational order n=ÎLsL+1d /3+9/4, where Ynszd is the
Bessel function of second kind. The general solutions are,
thus, superpositions of the corresponding Bessel-J and
Bessel-Y functions,

j̃nszd ~ Jnszd + gYYnszd. s4d

The choice of infinite square-well potentials imposes the
condition that the wave functions inb must vanish outside of
the well and, hence, they have nodes at bothbm andbM, i.e.,

j̃nsrbzMd = j̃nszMd = 0 s5d

for zM =ÎE/ s"2/2BdbM. These two boundary conditions de-
termine the relative amplitudegY=−fJnsrbzMd /YnsrbzMdg of
the Bessel-Y function and serve as the quantization condi-
tion,

Qn
rbszMd = JnszMdYnsrbzMd − JnsrbzMdYnszMd = 0. s6d

For each value ofnsLd and rb, the appropriatezM are ob-
tained as thesth zero,zL,s

rb , of the functionQn
rbszd. The quan-

tum numbers counts the number of nodes of the wave func-
tion in b for b.bm.

The normalized eigenfunctions of Eq.(2) are

jL,ssbd = cL,sb
−3/2fJnszL,s

rb b/bMd + gYYnszL,s
rb b/bMdg, s7d

with the eigenvalues

EL,s =
"2

2BbM
2 szL,s

rb d2 s8d

and the normalization

1/cL,s
2 =E

bm

bM

b 4fjL,ssbdg2db. s9d

The parameterBbM
2 defines the energy scale.

The full solution to Eq.(1) with our choice of potentials is
given by the wave function,

uCs,ng,K,L,Msb,g,uidl =Î2L + 1

8p
ffs,ng,K,Lsb,gdDM,K

L suid

+ s− dL+Kfs,ng,−K,Lsb,gdDM,−K
L suidg,

s10d

wherefs,ng,K,Lsb ,gd=jL,ssbdhKsgd with jL,ssbd from Eq.(7),
andhKsgd is the appropriate wave function in the decoupled
g-parameter space[7]. Besides the choice of a finite value of
rb this solution is analogous to theXs5d solution of Iachello
[7].

Considering potentials with no structure inb (being b
soft) over a range of valuesconfinedwithin the variable
boundaries of an infinite square well, this approach repre-
sents a “confinedb-soft” (CBS) rotor model. We denote the
02

+ state withs=2 as the(first) b excitation.
Absolute energies in the CBS rotor model are shown in

Fig. 1 for three values ofrb (0, 0.15, 0.3), whererb=0 co-
incides withXs5d. Increasing the value ofrb shifts all levels
to higher energies since the potential narrows. That energy
shift increases with thes quantum number and with decreas-
ing angular momentum. Increasingrb raises the energies of
those wave functions that have larger contributions in the
region close tobm more than others. These are wave func-
tions with many nodes, or those for states with low angular
momentum. In theb-soft potential the nucleus gains angular
momentum due to centrifugal forces, partially by increasing
its rotational moment of inertia rather than its angular veloc-
ity, and hence the wave function’s center of gravity shifts to
larger values ofb with increasingL1, making them less sen-
sitive to the potential atbm. Therefore, increasingrb raises
the lowest spin states most and shrinks the 21

+–01
+ energy

1Evidence for this model prediction comes from the smooth in-
crease of transitional quadrupole moments along the ground band of
a b-soft rotor. TheQt values for 152Sm, for instance, increase
smoothly from 5.9(1) eb for the 21

+→01
+ transition to 6.8(3) eb for

the 101
+→81

+ transition, as can be deduced from Table II.

FIG. 1. (Color online) Evolution of energy spectra in the CBS
rotor model for three different values ofrb keeping the scale
"2/2BbM

2 constant. The structural signaturesR4/2 (online green) and
R0/2 (online blue) are given below the bands.
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difference by a larger fraction than the 41
+–01

+ difference.
Consequently, theR4/2 value increases withrb until the rigid-
rotor limit with R4/2=3.33 is reached forrb→1, where the
gain in angular momentum fully originates in a gain of an-
gular velocity with constant moments of inertia for all values
of L. This geometrical description of nuclear level bands
neglects, of course, noncollective single-particle degrees of
freedom and can, therefore, work only up to the back-
bending region. Table I demonstrates the good description of
ground bands in deformed nuclei with variousR4/2 values.

For a given spin, the energy shifts increase strongly withs
as rb increases. This is because wave functions with more
nodes have their density more evenly spread over the avail-
able range inb and, in particular, they have a higher density
close to bm than wave functions with less nodes and the
same angular momentum. Therefore, the structural signature
R0/2 strongly increases withrb and becomes infinite in the
limit rb→1. Since both structural signatures,R4/2 and R0/2,
depend monotonically onrb, the CBS rotor model yields a
parameter-free relation between them on the structural evo-
lution path between the shape phase-transitional point and
the rigid-rotor limit. This relation can be confronted with the
data.

We consider the classical region of spherical-to-prolate
deformed transitional nuclei, the light rare-earth nuclei
around neutron numberN=90. All nuclei in the first half of
the N=82–126 neutron major shell, and with at least one
known excited 0+ state, are taken into account. The experi-
mentalR0/2 values are plotted as a function ofR4/2 in Fig. 2
and are compared to the model prediction. TheseR0/2 data
form a compact trajectory[11] when plotted as a function of
R4/2, until values ofR0/2.10 are reached forR4/2.3.25. We
conclude that the 02

+ states in these transitional nuclei with
2.9,R4/2ø3.2 have a related collective structure, because
they correlate in a unique way to the(collective) structural
signatureR4/2. This remarkable conclusion is model indepen-
dent.

Second, we note that the shape of the evolutionary path of
R0/2 data and within about 10% even their absolute values,
are surprisingly well predicted as a function ofR4/2 by the

CBS rotor model in a parameter-free way. Theb excitation is
low lying in transitional nuclei and increases strongly in en-
ergy when the rotor limit is approached. For anR4/2 value of
3.25 the CBS rotor model predicts anR0/2 value of 13.5, i.e.,
the b excitation at about 1.3 MeV assuming a typical value
Exs21

+d=90–100 keV for thisR4/2. It must thus be expected
that in good rotors withR4/2 values.3.25, the actual 02

+ state
must be formed by other(e.g., noncollective, pairing, org
deformation) degrees of freedom because theb excitation is
shifted to too high energies. Indeed, theR0/2 values for
strongly deformed midshell nuclei withR4/2 values above
3.25 do not, in general, follow the CBS rotor trajectory and
scatter over a large range of values, indicating that their cor-
relation to theR4/2 value has been lost. Therefore,b excita-
tions are difficult to observe in good rotors[10], where they
are shifted to high energies above the 02

+ state. They should,
however, be low lying and, thus, easily observable in transi-
tional nuclei.

TABLE I. R4/2 values and ground-state band energies in152,154,156Sm and164Yb are compared to relevant
analytical models,Xs5d, CBS, and the rigid-rotor model, where those apply. NeitherXs5d nor the rigid rotor
can competitively describe164Yb with anR4/2 value in the middle between theXs5d and the rotor predictions.

152Sm 154Sm 156Sm 164Yb

J Xs5d Expt. CBS Rotor Expt. CBS Rotor Expt. CBS Expt. CBS

rb=0.14 rb=0.35 rb=0.43 rb=0.23

R4/2 2.90 3.01 3.01 3.33 3.26 3.27 3.33 3.29 3.30 3.13 3.13

21
+ 122 122 122 82 82 82 76 76 76 123 123

41
+ 354 366 367 273 267 267 253 250 251 386 386

61
+ 661 707 695 574 544 544 531 517 519 760 753

81
+ 1033 1125 1093 984 903 901 911 872 873 1223 1202

101
+ 1465 1609 1554 1503 1333 1325 1391 1307 1306 1753 1723

121
+ 1954 2149 2077 2131 1826 1810 1973 1819 1810 2330 2315

141
+ 2499 2736 2660 2869 2323 2353 2656 2401 2379(2899) 2972

FIG. 2. (Color online) Correlation ofR0/2 and R4/2 values in
rare-earth nuclei with neutron numbers aroundN=90. Data[30] for
all nuclei in the lower half of theN=82–126 neutron major shell
with known 02

+ state andR4/2.2.6 are plotted. The solid curve
(online red) corresponds to the parameter-free prediction of the
CBS rotor model as a function ofrb.
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An important test for the applicability of the CBS rotor to
transitional and near rotational nuclei is the comparison of
theoretical to experimentalBsE2d values. For the calculation
of E2 transition rates we use theE2 operator up to second
order in the deformation parameters[31], restricting our-
selves to nonzero quadrupole deformation parameters, only.

Mm
labsE2d = es1da2m + es2do

nn8

C2n2n8
2m a2na2n8 + Osa3d.

s11d

Since we do not make any assumptions about the charge
distribution in the deformed nucleus, the two expansion co-
efficients,es1d and es2d, are treated as free parameters to be
adjusted to data. Neglecting third- and higher-order terms
one obtains

MmsE2d = es1dFb cosgDm0
2 sVd

+ b sing
Dm2

2 sVd + Dm−2
2 sVd

Î2
G

−Î2

7
es2dFb2 cos 2gDm0

2 sVd

− b2 sin 2g
Dm2

2 sVd + Dm−2
2 sVd

Î2
G , s12d

after transformation to the intrinsic frame and exploiting the
properties of the Wigner functions. The terms proportional to
Dm0

2 fDm2
2 +Dm−2

2 g describeDK=0 fDK=2g transitions. The
E2 matrix elements are obtained from integration over the
Euler angles and over the intrinsic variablesb and g. For
separable wave functions the integrations overb and g are
independent.

Since we consider hereb excitations withng=0 [7] (and
henceK=0), only theDK=0 part of theE2 transition opera-
tor is relevant for our discussion. It takes the form

Tm
DK=0sE2d = es1dbMkcosglgFS b

bM
D

−Î2

7
es2dbM

kcos 2glg

kcosglg
S b

bM
D2GDm0

2 sVd,

s13d

=eefffsb/bMd + xsb/bMd2gDm0
2 , s14d

with the effective chargeeeff=es1dbMkcosglg and x

=−Î2/7es2dbMkcos 2glg / kcosglg to be adjusted to data. Note
that the integrals overg are independent ofs and L and,
hence, they are equal for all transitions between bands with
ng=0. These constants are absorbed in the parameterseeff
andx of the E2 transition operator.

Table II displaysBsE2d values for the nuclei152,154Sm and
analytical results forXs5d and the CBS rotor model. The
experimentalBsE2d values in the ground bands are repro-
duced by the CBS rotor model within the uncertainties at
least up to the 101

+ state. Also, most of theE2 decays of the

b-excitation band members are described with deviations not
exceeding 2 W.u. Inclusion of the second-order term in the
E2 operator allows for a consistent description of theDK
=0 interbandE2 matrix element. Consequently, theDK=0
interbandE2 strengths in154Sm are well predicted from hav-
ing adjusted the parameterx in the E2 transition operator to
the data from152Sm. This good description of theE2 rates
results from the analytical solution of a unique Hamiltonian
and a simple choice for theE2 operator. It does not involve
any ad hocassumptions about band mixing[26].

Finally, we note that an approximate consideration of the
g-deformation degree of freedom and description of theg
band is possible using the same decoupling approximations,
as done by Iachello[7] and recently discussed by Bijkeret
al. [29] for Xs5d. E0 transitions can also be studied in the
CBS rotor model. Since the difference of the average 0+

states’ deformation decreases with increasingrb, E0 transi-
tions are predicted by the CBS rotor model to be largest for
Xs5d and decrease when approaching the rigid-rotor limit.
For rb,1, E0 transitions between twoK=0 bands are pre-
dicted to decrease with increasing spin. Particle pair transfer
strengths cannot be described by the CBS rotor model, be-
cause they are outside of a geometrical approach. Finally, we
stress that a similar approach will work for an analytical
interpolation betweenEs5d and the deformedg-soft limit.

In conclusion, we have studied the Bohr-Hamiltonian in
the limit of rigid prolate axial symmetrysg<0°d with con-
fined b-soft potentials. This CBS rotor model interpolates
betweenXs5d and the rigid-rotor limit, and has been solved
analytically in terms of Bessel functions of first and second
kind. Full decoupling ofb and g degrees of freedom is as-

TABLE II. Comparison of E2 transition rates in152,154Sm
[32,33] with the Xs5d limit and the CBS rotor model forrb=0.14
and 0.35 from Table I.x=−0.535 was kept constant in theE2 op-
erator. TheBsE2d values are in Weisskopf units and scales are ad-
justed to the 21

+→01
+ transition.

Transition Xs5d 152Sm CBS 154Sm CBS

21
+→01

+ 144 144(3) 144 174(5) 174

41
+→21

+ 230 209(3) 213 244(6) 251

61
+→41

+ 285 245(5) 249 290(8) 281

81
+→61

+ 328 285(14) 273 318(17) 300

101
+→81

+ 361 320(30) 290 314(16) 314

22
+→02

+ 115 107(27) 120 165

42
+→22

+ 173 204(38) 172 234

02
+→21

+ 90 33(2) 33 8.4

22
+→01

+ 3 0.9(1) 0.3 0.94(23) 0.5

22
+→21

+ 12 5.5(5) 3 1.4

22
+→41

+ 53 19(2) 24 4.1(11) 7.1

42
+→21

+ 1.4 0.7(2) 0.1 0.1

42
+→41

+ 9 5.4(13) 2 1.1

42
+→61

+ 40 4(2) 18 8.2
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sumed for the analytical approximation. The model predicts
the evolution of structure for prolate transitional nuclei as a
function of one parametersrbd and yields a parameter-free
correlation of the two structural signaturesR0/2 andR4/2. The
relative excitation energies of the first excited 0+ states of
transitional nuclei in the rare-earth mass region correlate to
the R4/2 ratio. The shape of the correlation path ofR0/2 as a
function of R4/2 is well predicted by the model for
2.9,R4/2,3.2. The absolute values ofR0/2 are overesti-
mated by about 10%. The CBS rotor model well describes
ground-band energies, as well as intraband and interbandE2
rates for transitional nuclei, e.g.,152Sm, analytically with two
parameterssrb ,xd and two scaless"2/2BbM

2 ,eeffd. Our analy-
sis implies that the 02

+ state of axially symmetric transitional
nuclei withR4/2,3.25 corresponds to theb excitation of the
CBS rotor and that its properties correlate to the variational
moment of inertia of the ground band.

Note added in proof.While the present Rapid Communi-
cation was under review, another paper has been submitted

and published[L. Fortunato and A. Vitturi, J. Phys. G: Nucl.
Part. Phys.30, 627(2004); received 18 December 2003] that
deals with interesting analytical solutions of the Bohr-
Hamiltonian using Coulomb-like and Kratzer-like potentials
in b. These authors term their solution ab-soft rotor, too,
although their potentials are notb independent. Due to the
analogy to theg independent potentials used earlier by Wi-
lets and Jean[2], known as theg-soft case, we consider the
term b soft more appropriate for theb-independent poten-
tials (confined over a certain range) that are considered in the
present paper. It will be interesting to compare the predictive
power of both approaches.
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