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A solution of the Bohr collective Hamiltonian for theb-soft, g-soft triaxial rotor withg,p /6 is presented
making use of a harmonic potential ing and Coulomb-like and Kratzer-like potentials inb. It is shown that,
while theg-angular part in the present case gives rise to a straightforward extension of the rigid triaxial rotor
energy in which an additive harmonic term appears, the inclusion of theb part results instead in a nontrivial
expression for the spectrum. The negative anharmonicities of the energy levels with respect to a simple rigid
model are in qualitative agreement with general trends in the experimental data.

DOI: 10.1103/PhysRevC.70.011302 PACS number(s): 21.60.Ev, 21.10.Re

The search for new solutions of the Bohr collective
Hamiltonian has recently experienced a resurgence, mainly
due to influential studies upon shape phase transitions[1,2].
The occurrence of analytically solvable models has served to
define benchmarks for the analysis of experimental nuclear
spectra. As long as the quadrupole degree of freedom is con-
sidered, the nuclear Bohr-Mottelson collective model has a
few well-known complete solutions that correspond to
spherical or axially symmetric equilibrium intrinsic shapes.
In some cases, when the full solution is a demanding task,
one has usually resorted to the so-calledrigid models in
which one or both of the deformation variables,b andg, is
constrained to take a fixed value. The opposite situation, in
which either theb or g variable (or both) is not forced to
take a fixed value, is calledsoft.

The purpose of the present paper is to present a solution
of the Bohr collective Hamiltonian for theb-soft, g-soft tri-
axial rotor withg aroundp /6. Our model includesb andg
vibrations as well as rotations about a nonaxially symmetric
equilibrium intrinsic shape.

Years ago Davydov[3] proposed a model for a rigid tri-
axial rotor, described diagonalizing the Hamiltonian for a
rigid rotor with three different moments of inertia. The cor-
responding soft cases, which are described by the full Bohr
Hamiltonian with someVsb ,gd potential (that displays a
pocket whose minimum lies inb0Þ0,g0Þ0), has been only
partially or numerically treated(see also[4]). Davydov dis-
cussed also a model with soft behavior with respect tob [5]
and a model with soft behavior with respect tog [6]. These
approaches give rather complicated expressions for the spec-
trum. The latter, in which the effective potential ing is ex-
panded in a series and truncated neglecting terms of order
higher than the second, has some similarity with the present
approach. Our model, although restricted tog,p /6, is
easier to handle and gives in a straightforward fashion the
full energy spectrum, while the cited Davydov’s treatments
give only the energies of a limited number of states.

This study is partly born out from the necessity to over-
come the reservations on the above models(see for example
[7]) about the neglected role of the fluctuations of the dy-

namic moments of inertia and partly to show that the naive
idea that the spectrum of a soft triaxial rotor will be the sum
of a rigid rotor part plus a harmonicb- and harmonic
g-vibrations is essentially incorrect. In the present case the
solution of theg-angular part is indeed a straightforward
extension of the rigid triaxial rotor energy in which an addi-
tive harmonic term appears, but the inclusion of theb part
gives rise to a peculiar combination of the various terms.

A closely connected solution of the Bohr Hamiltonian has
recently appeared as a preprint[8]. The common point be-
tween this work and ours is the presence of a minimum in
g=30°. In the cited work a critical point symmetry, called
Z(5), is introduced for the prolate to oblate shape phase tran-
sition. The authors discuss the solution and compare their
predictions with experimental data in the Pt region, obtaining
a good agreement. The main difference between the two ap-
proaches lies essentially in the expressions of the potentials.
Their potential may be written asu1sbd+u2sgd, where a har-
monic oscillator is used for theg variable, and where an
infinite square well is used for theb potential, similar to
what has been done in Refs.[1,2] for the so-called E(5) and
X(5) symmetries, thus achieving an approximate separation
of variables. Anticipating the following discussion we men-
tion that in the present solution a potential of the form(5)
makes exact the separation of variables and Coulomb and
Kratzer potentials are used in theb variable.

Two very recent papers[9] deal with a similar subject:
besides a detailed study on phase transition in nuclei in the
framework of the interacting boson model, a summary of
different solutions of the Bohr Hamiltonian is done and an
interesting solution for a triaxial case withg,p /6 is dis-
cussed. The author assumes a potential of the formVsb ,gd
=usbd+ 1

2Db6 cos 3g and follows an approach similar to the
one used in Ref.[2].

The Schrödinger equation with the Bohr Hamiltonian may
be written as

HBCsb,g,uid = ECsb,g,uid, s1d

whereHB=Tb+Tg+Trot+Vsb ,gd [10] and the kinetic terms
have the following expressions:

Tb = −
"2

2Bm

1

b4

]

] b
b4 ]

] b
, s2d

*Email address: fortunat@pd.infn.it

PHYSICAL REVIEW C 70, 011302(R) (2004)

RAPID COMMUNICATIONS

0556-2813/2004/70(1)/011302(4)/$22.50 ©2004 The American Physical Society70 011302-1



Tg = −
"2

2Bm
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sins3gd
]
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, s3d

Trot =
"2

8Bmb2 o
k=1,2,3

Q̂2
k

sin2sg − 2pk/3d
, s4d

where theQ̂k are the projections of the angular momentum

sL̂d in the intrinsic frame. The potential term is in general a
function ofb andg. The conditions, that must be imposed on
this potential term in order to separate the above differential
equation, have been discussed extensively in the literature
(see for example[5,11,12]). For our purposes it will be suf-
ficient to notice that whenever the potential is chosen as

Vsb,gd = V1sbd +
V2sgd

b2 , s5d

the Schrödinger equation is separable[12] into the following
set of second order differential equations:

STb + V1sbd − E +
V

b2D fsbd = 0, s6d

sb2sTg + Trotd + V2sgd − VdFsg,uid = 0 s7d

with Csb ,g ,uid= fsbdFsg ,uid. Notice that the second equa-
tion does not depend onb. This separation of variables in-
vokes a constant,V. Here we solve the problem of ab-soft,
g-soft triaxial rotor with a potential that has a minimum lo-
cated inb=b0 and g=g0=p /6. The simplest approach to
this problem is to choose a displaced harmonic dependence
for theg variable in order to have a pocket around the mini-
mum. The potential in the asymmetry variable must be an
even function ofg because of the indistinguishability with
respect to the change of sign ofg, and must also be a peri-
odic function to assure that the operation of relabeling of the
axes does not change the shape of the ellipsoid, but only its
orientation. This statement is obviously not fulfilled by our
choice that is to be considered therefore only locally in the
region around the minimum. We notice that a discrete rota-
tion of np /3 in the polar coordinate systemsb ,gd does not
affect our conclusions.

In theg-rigid case with a situation of maximum asymme-
try (for g0=p /6) two of the moments of inertia are “acci-
dentally” equal[13,14], while the axes of the ellipsoid have
not equal length. The Hamiltonian is thus axially symmetric
around the intrinsic 1-axis, which may be taken as a quanti-
zation axis, as pointed out in Ref.[4]. We will restrict to a
small region aroundp /6 to take advantage of this simplifi-
cation. Before discussing how to solve theg-soft case, we
multiply the two equations above by 2Bm/"2 and we define
reduced energy and potentials as«=2BmE/"2 and uiszd
=2BmViszd /"2 with si =1,2d. Lower case symbols denote re-
duced quantities and operators. The new set of “reduced”
equations, given the definitionsti =s2Bm/"2db2 Ti si =g ,rotd
andv=2BmV /"2, is

S−
1

b4

]

] b
b4 ]

] b
+ u1sbd − « +

v

b2D fsbd = 0, s8d

stg + trot + u2sgd − vdFsg,uid = 0. s9d

The spectrum is determined by the solution of the first dif-
ferential equation in whichv, which it is found from the
solution of the second differential equation, plays the role of
the coefficient of a “centrifugal” term and, as we will show,
yields a nontrivial expression for the energy levels.

Around p /6 we may setg=p /6+x, with x a small ex-
pansion parameter. It is easily seen that in this case the rota-
tional part of the Bohr Hamiltonian, through use of trigono-
metric relations, becomes

s10d

where we have added and subtracted 4Q̂1
2.

The first step to solve thesg ,uid part of the problem is to
change variable in Eq.(9), usingg=p /6+x and introducing
the following simplifications:

sin 3g = cos 3x , 1, cosx , 1.

We obtain, specifying the harmonic dependence of the
potential,u2sxd=Cx2, and exploiting relation(10),

s11d

where the second order differential operatorĤ1 has been
defined. The wave functionFsx,uid may be written, follow-
ing [4], as

Î 2L + 1

16p2s1 + dR,0d
hng,L,RsxdfDM,R

sLd suid + s− 1dLDM,−R
sLd suidg,

s12d

where the angular part is written in terms of Wigner func-
tions labeled by the projection of the total angular momen-
tum on the 1-axis,R, that is a good quantum number, while
the functions hng,L,Rsxd are eigenfunctions of the one-
dimensional Schrödinger equation for the harmonic oscilla-

tor, Ĥ1hng,L,Rsxd=0. The indexng is the quantum number

associated with the vibrations in theg degree of freedom.
The action of the operators in Eq.(11) on the respective
wave functions gives

vL,R,ng
= ÎCs2ng + 1d + LsL + 1d − 3

4R2. s13d

The first term corresponds to a harmonicg-vibration, while
the second and third account for the rotational energy of the
g=p /6 rigid triaxial rotor, reproducing the Meyer-ter-vehn
formula [4].
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The complete spectrum may then be obtained solving Eq.
(8) with some appropriate potential,u1sbd, as, for instance,
in Refs.[1,2,11,12,15–18]. The eigenvalue equation in theb
variable may in general be written as

x9sbd + S« − u1sbd −
v + 2

b2 Dxsbd = 0 s14d

having imposedfsbd=b−2xsbd. When the potentialu1sbd is
taken to be of a[16,18] Coulomb-like form −A/b, or of a
Kratzer-like form −A/b+B/b2, with the substitutionsz
=2bÎe, e=−«, k=A/ s2Îed and m2=9/4+B+v, we can re-
cast Eq.(14) as the Whittaker’s differential equation:

H d2

dz2 −
1

4
+

k

z
+

1/4 −m2

z2 Jxszd = 0 s15d

whose well-known solution is expressed in terms of Whittak-
er’s functions. As in[16,18] the requirement of the correct
asymptotic behavior fixes the spectrum, introducing thenb

quantum number associated withb-vibrations. The reduced
eigenvalues are

esng,nb,L,Rd =
A2/4

sÎ9/4 +B + vL,R,ng
+ 1/2 +nbd2

, s16d

wherev comes from Eq.(13). Energies are usually redefined
fixing the ground state to zero and using the energy of the
first 2+ state as unit, namely

ēsng,nb,L,Rd =
esng,nb,L,Rd − es0,0,0,0d

es0,0,2,2d − es0,0,0,0d
. s17d

In Fig. 1 we displayed, as a function ofB and for a fixed
value of C=1, the lowest states of the ground state band
snb=0,ng=0d and the lowest 0+ of the b-band snb=1,ng

=0d. It may be seen that whenB→` the typical rigid rotor
energies are recovered from the limit of the ground state
energy levels. The relative position of theb-band(eventually

tending to infinity), with respect to the ground state band,
gives an idea of the degree ofb-softness. The negative an-
harmonicities evidenced in this figure(that are strictly valid
for a triaxial nucleus withg,30°) are qualitatively consis-
tent with most experimental data on triaxial nuclei where
typically the 3+ and 4+ states are found at an energy that is
lower than the rigid rotor prediction. In Fig. 2 we plotted the
lowest 2+ state of the ground state band for reference and the
sJp=2+,ng=1,nb=0d state for various values of the param-
eterC, that is the strength of the harmonic oscillator ing. A
low value for C corresponds to a soft well, while a large
value corresponds to a more rigid situation. WhenB→` the
states of theg-band tend to finite values, as far asC is finite.
The Wilets-Jean limit(complying with the choice of Cou-
lomb and Kratzer potentials inb [16]) is correctly obtained
from formula (16) when theg-potential becomes flatsC
=0d. The reduced energy spectra shown in both figures do
not depend on the parameterA.

This model has, from one side, a limited applicability be-
cause it is confined to some special triaxial nuclei for which
the minimum of the potential lies atg=p /6, but from the
other side, it has a considerable flexibility as far as the posi-
tion of the excited bands is concerned. The interplay between
the two parameters may be exploited to fit experimental data.
Notice thatB andC do not separately fix the position of the
respectiveb andg bands, but they both take part in a non-
trivial way to determine the energy levels. It is nevertheless
very well known [19] that many predictions obtained for a
g-rigid model nearly agree with an axially symmetricg-soft
model whenever thegrms of the latter equals the rigid value
of the former. This fact may increase the applicability of the
model.

The addition ofg and b vibrations to the rigid triaxial
rotor spectrum(aroundg=30°) shows interesting features:
the well-accepted naive idea that the spectrum of the soft
rotor is approximately the sum of a rigid rotor term plus
separate vibrational terms inb and in g is not necessarily
correct. Indeed we have shown that, while the solution of the

FIG. 1. Reduced energies of the lowest state of theb-band
(dashed line) and of a few lowest states of the ground state band
(solid lines) as a function ofB. The limits for the energy levels
whenB→`, that correspond to the rigid triaxial rotor energies, are
reported on the right side. Here we fixedC=1

FIG. 2. Reduced energies of thesJp=2+,ng=1,nb=0d state
(solid line) as a function ofB, for various values of the strength of
the harmonic potential ing, C. The first 2+ of the ground state band
(dashed line) is reported for reference.
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g-angular part of the problem gives a straightforward exten-
sion of the rigid rotor formula in which a simple harmonic
term for theg degree of freedom appears, the full spectrum
is rather a more complicated function that essentially de-
pends on the choice of the potential inb. Other choices are
possible as, for instance, a displaced harmonic oscillator or a
Davidson potential[15,17] in b, that lead to exact solutions.
The solution presented here may well serve as a good

starting point to analyze energy spectra in various mass re-
gions where triaxiality is expected to play a relevant role.
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