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Soft triaxial rotovibrational motion in the vicinity of y=/6
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A solution of the Bohr collective Hamiltonian for th@soft, y-soft triaxial rotor withy~ /6 is presented
making use of a harmonic potential nand Coulomb-like and Kratzer-like potentials fh It is shown that,
while the y-angular part in the present case gives rise to a straightforward extension of the rigid triaxial rotor
energy in which an additive harmonic term appears, the inclusion oBtpart results instead in a nontrivial
expression for the spectrum. The negative anharmonicities of the energy levels with respect to a simple rigid
model are in qualitative agreement with general trends in the experimental data.
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The search for new solutions of the Bohr collective namic moments of inertia and partly to show that the naive
Hamiltonian has recently experienced a resurgence, mainliglea that the spectrum of a soft triaxial rotor will be the sum
due to influential studies upon shape phase transifiby.  of a rigid rotor part plus a harmonig- and harmonic
The occurrence of analytically solvable models has served tg-vibrations is essentially incorrect. In the present case the
define benchmarks for the analysis of experimental nucleagolution of the y-angular part is indeed a straightforward
spectra. As long as the quadrupole degree of freedom is cogxtension of the rigid triaxial rotor energy in which an addi-
sidered, the nuclear Bohr-Mottelson collective model has gye harmonic term appears, but the inclusion of Bi@art
few well-known complete solutions that correspond Ogives rise to a peculiar combination of the various terms.
spherical or axially symmetric equilibrium intrinsic shapes.™ A closely connected solution of the Bohr Hamiltonian has

In some cases, when the full solution is a demanding tas‘?'ecently appeared as a prepr{8i. The common point be-
one has usually resorted to the so-calkigid models in y\een this work and ours is the presence of a minimum in

which one or both of the deformation variablgﬁanq v i.s _y=30°. In the cited work a critical point symmetry, called
constrained to take a fixed value. The opposite situation, iy 5 s introduced for the prolate to oblate shape phase tran-
which either thep or y variable(or both is not forced t0  gjion. The authors discuss the solution and compare their
take a fixed value, is callesoft _ _ predictions with experimental data in the Pt region, obtaining
The purpose of the present paper is to present a solutiog g404 agreement. The main difference between the two ap-
of the Bohr collective Hamiltonian for the-soft, y-soft tri- - r5aches lies essentially in the expressions of the potentials.
a_X|aI rotor with y arounda-r(6. Our model mclude$3 andy _Their potential may be written ag () +Us(y), where a har-
vibrations as well as rotations about a nonaxially symmetriG Jnic oscillator is used for the variable, and where an
equilibrium intrinsic shape. .., .. infinite square well is used for thg potential, similar to
.Years ago Dav_ydov3]_ propos.e.d a model for a r_|g|d - \vhat has been done in Ref4,2] for the so-called B) and
"P".a' rotor, Qescr|bed _d|ag0nal|2|ng the H.am|l'.[on|an for aX(S) symmetries, thus achieving an approximate separation
rigid rotqr with three d|ﬁergnt moments .Of inertia. The cor- of variables. Anticipating the following discussion we men-
resp‘?”d'f‘g SOf.t cases, which are des_crlbed by_the full BORio that in the present solution a potential of the fofBh
Hamiltonian W'th ;ome\/_(ﬁ,y) potential (that displays a makes exact the separation of variables and Coulomb and
pocl_<et whose minimum lies iBy# 0,9+ 0), has been o_nly Kratzer potentials are used in tievariable.
partially or numerically _treate@bee aI;c[4])_. Davydov dis- Two very recent paperf9] deal with a similar subject:
cussed also a model with soft behavior with respeg {8]  pegjdes a detailed study on phase transition in nuclei in the
and a model with soft behavior with respect¥q6]. These  gamework of the interacting boson model, a summary of
approaches give rather complicated expressions for the Spegiferent solutions of the Bohr Hamiltonian is done and an
trum. The latter, in which the effective potential #nis €x-  interesting solution for a triaxial case with~ /6 is dis-

panded in a series and truncated neglecting terms of ordef,ssed. The author assumes a potential of the A )

higher than the second, has some similarity with the present 1M 06 -
approach. Our model, although restricted {0~ /6, is ~u(p)+3Df5" cos 3y and follows an approach similar to the

) . ) : . ne used in Refi2].
easier to handle and gives in a straightforward fashion th€ . . . I
full energy spectrum, while the cited Davydov’s treatmentsbe-writiﬁh;gdmger equation with the Bohr Hamiltonian may
give only the energies of a limited number of states.
This study is partly born out from the necessity to over- HgW(8,7,6) =EV(8,v,6,), (1)

come the reservations on the above modste for example B L
[7]) about the neglected role of the fluctuations of the dy-WhereHB_Tﬁ+T7+Tr°t+V(ﬁ.'7) [10] and the kinetic terms
have the following expressions:
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721 1 9 d t,+ 1t + Ux(y) — 0)D(y,6)=0. 9
TVZ———Z.——Sin(3y)—, (3) ('y rot + Ua(y) — )P (v, 6) 9

2B, B°sin(3y) dy dy

The spectrum is determined by the solution of the first dif-
ferential equation in whichw, which it is found from the
solution of the second differential equation, plays the role of
the coefficient of a “centrifugal” term and, as we will show,

. yields a nontrivial expression for the energy levels.

where theQ, are the projections of the angular momentum Around 7/6 we may sety=m/6+x, with x a small ex-

(I:) in the intrinsic frame. The potential term is in general gPansion parameter. It is easily seen that in this case the rota-

function of 8 andy. The conditions, that must be imposed ontiona_l part qf the Bohr Hamiltonian, through use of trigono-
this potential term in order to separate the above differential"€t"c relations, becomes
equation, have been discussed extensively in the literature QZ
(see for exampl¢5,11,13). For our purposes it will be suf- >

ficient to notice that whenever the potential is chosen as

SN GEES &
"o 8By 32 (10 3 SIP(y— 2mkl3)’

(4)

©=1,2,3 sin®(yy - 2m«/3)

V(B,y)=Vi(B) + 2(2?,) ) (5 B 4M+ Q%< cos?(x) 4
2 (10

the Schrodinger equation is separaldg] into the following

set of second order differential equations: where we have added and subtracté@fA

) The first step to solve they, 6,) part of the problem is to
Tg+Vi(B)-E+ 2 f(B) =0, (6)  change variable in Eq9), usingy=/6+x and introducing
the following simplifications:

(BT + Tiop) + V() = Q)P(7,6) =0 (7

with W(8,v, 6)=f(B)P(y, 6). Notice that the second equa-
tion does not depend ofA. This separation of variables in-
vokes a constanf). Here we solve the problem of gsoft,
y-soft triaxial rotor with a potential that has a minimum lo- P 53,
cated in 3=, and y=y,=/6. The simplest approach to -2t Cx’-w+ Q- ng ®(x,6)=0
this problem is to choose a displaced harmonic dependence -

for the y variable in order to have a pocket around the mini-
mum. The potential in the asymmetry variable must be an
even function ofy because of the indistinguishability with
respect to the change of sign ¢f and must also be a peri-
odic function to assure that the operation of relabeling of th
axes does not change the shape of the ellipsoid, but only it9 [4]. s

orientation. This statement is obviously not fulfilled by our A +1
choice that is to be considered therefore only locally inthe [/ <="- (L) _NLpL (p
region around the minimum. We notice that gdiscreyte rota- Vv 167%(1 +dgo) i LRPARL) + (= 1Dy R )],

tion of n7/3 in the polar coordinate syste(,y) does not (12)
affect our conclusions.

In the -rigid case with a situation of maximum asymme- where the angular part is written in terms of Wigner func-
try (for y,=m/6) two of the moments of inertia are “acci- tions labeled by the projection of the total angular momen-
dentally” equal[13,14, while the axes of the ellipsoid have tum on the 1-axisR, that is a good quantum number, while
not equal length. The Hamiltonian is thus axially symmetricthe functions 7, LX) are eigenfunctions of the one-

around the intrinsic 1-axis, which may be taken as a quantigimensional Schrodinger equation for the harmonic oscilla-
zation axis, as pointed out in Rg#]. We will restrict to a

small region aroundr/6 to take advantage of this simplifi- ©" H17n, &(x)=0. The indexn, is the quantum number
cation. Before discussing how to solve thesoft case, we associated with the vibrations in the degree of freedom.
multiply the two equations above byB2/%% and we define The action of the operators in E@ll) on the respective
reduced energy and potentials as2B.E/#% and u(z)  wave functions gives

=2B,,Vi(2)/4? with (i=1,2). Lower case symbols denote re-

sin 3y=cos X~ 1, cosx~ 1.

We obtain, specifying the harmonic dependence of the
potential,u,(x) =Cx?, and exploiting relatior{10),

, (11)

where the second order differential operafd){ has been
egjefined. The wave functio®(x, 6;) may be written, follow-

duced quantities and operators. The new set of “reduced” OLRn = VC(@n, + 1) +L(L+1) - IR2. (13
equations, given the definitioris=(2B,,/#2) 8% T, (i=1y,rot)
and w=2B, /%2, is The first term corresponds to a harmoniwibration, while

w 5 the second and third account for the rotational energy of the
o N R )

=% % —e+—f(B) =0, 8 v=1r/6 rigid triaxial rotor, reproducing the Meyer-ter-vehn

( B ap” Ip 1i(B) e ,82> ) ® formula [4].
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reduced energy

B

FIG. 1. Reduced energies of the lowest state of fkand

(dashed ling and of a few lowest states of the ground state band(

(solid lineg as a function ofB. The limits for the energy levels

whenB— o, that correspond to the rigid triaxial rotor energies, are

reported on the right side. Here we fix€d1

The complete spectrum may then be obtained solving E

(8) with some appropriate potential;(3), as, for instance,
in Refs.[1,2,11,12,15-18 The eigenvalue equation in the
variable may in general be written as

w+2
,82
having imposed(B)=8"2x(8). When the potentiali,(3) is
taken to be of 16,18 Coulomb-like form -A/B, or of a
Kratzer-like form -A/g+B/ (%, with the substitutionsz
=2,8v‘2, e=—¢, k=A/(2\e) and u’=9/4+B+w, we can re-
cast Eq.(14) as the Whittaker’s differential equation:

¢ 1k, UA-p
dZ 4 z

X'(B) + (8 ~W(p) - )X(B) =0 (14)

}X(Z) =0 (15

whose well-known solution is expressed in terms of Whittak-

er's functions. As in[16,18 the requirement of the correct
asymptotic behavior fixes the spectrum, introducing e

quantum number associated wigavibrations. The reduced
eigenvalues are

A?/4
(/4 +B+ w gy +1/2+np)"

e(n,ngL,R) = (16)

wherew comes from Eq(13). Energies are usually redefine

PHYSICAL REVIEW C70, 011302R) (2004

C=5

reduced energy
T
'

C=1

0 . | . | . | .
0 10 20 30 40

B

FIG. 2. Reduced energies of thd™= 2+,n7:1,nB:0) state
solid line) as a function oB, for various values of the strength of
the harmonic potential iry, C. The first 2 of the ground state band
(dashed lingis reported for reference.

tending to infinity, with respect to the ground state band,

Ogives an idea of the degree gfsoftness. The negative an-

harmonicities evidenced in this figu(that are strictly valid
for a triaxial nucleus withy~ 30°) are qualitatively consis-
tent with most experimental data on triaxial nuclei where
typically the 3 and 4 states are found at an energy that is
lower than the rigid rotor prediction. In Fig. 2 we plotted the
lowest 2 state of the ground state band for reference and the
(J”:2+,n7:1,nﬁ:0) state for various values of the param-
eterC, that is the strength of the harmonic oscillatorynA
low value for C corresponds to a soft well, while a large
value corresponds to a more rigid situation. Wier « the
states of they-band tend to finite values, as far @ss finite.
The Wilets-Jean limitcomplying with the choice of Cou-
lomb and Kratzer potentials i [16]) is correctly obtained
from formula (16) when the y-potential becomes flatC
=0). The reduced energy spectra shown in both figures do
not depend on the parameté&r

This model has, from one side, a limited applicability be-
cause it is confined to some special triaxial nuclei for which
the minimum of the potential lies ag=/6, but from the
other side, it has a considerable flexibility as far as the posi-
tion of the excited bands is concerned. The interplay between
the two parameters may be exploited to fit experimental data.
Notice thatB andC do not separately fix the position of the

d respectives and y bands, but they both take part in a non-

fixing the ground state to zero and using the energy of thdrivial way to determine the energy levels. It is nevertheless

first 2" state as unit, namely

e(n,,ngL,R) - €0,0,0,0
€(0,0,2,2 - €0,0,0,0 °

In Fig. 1 we displayed, as a function Bfand for a fixed

e(n,,ngL,R) = (17)

very well known[19] that many predictions obtained for a
v-rigid model nearly agree with an axially symmetniesoft
model whenever the,,s of the latter equals the rigid value
of the former. This fact may increase the applicability of the
model.

The addition ofy and B vibrations to the rigid triaxial

value of C=1, the lowest states of the ground state bandotor spectrum(around y=30° shows interesting features:

(ng=0,n,=0) and the lowest 0 of the B-band (ng=1,n,
=0). It may be seen that wheB— « the typical rigid rotor

the well-accepted naive idea that the spectrum of the soft
rotor is approximately the sum of a rigid rotor term plus

energies are recovered from the limit of the ground stateseparate vibrational terms i@ and in y is not necessarily

energy levels. The relative position of tgeband(eventually

correct. Indeed we have shown that, while the solution of the
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y-angular part of the problem gives a straightforward extenstarting point to analyze energy spectra in various mass re-
sion of the rigid rotor formula in which a simple harmonic gions where triaxiality is expected to play a relevant role.
term for they degree of freedom appears, the full spectrum
IS rrather ahmoLe _com?hﬁated fuqctllon thr?t eshsgnnally deio this problem, I. Hamamoto, M. A. Caprio, K. Heyde and
pends on the choice of the potential g Other choices are A vjituri for valuable discussions and D. J. Rowe for en-

posgible as, for ipstance, a displaced harmonic oscillqtor Of fightening comments. | acknowledge financial support from
Davidson potential15,17 in 3, that lead to exact solutions. FWO-VIaanderen and from Universita di Padova, where this

| wish to thank F. lachello for having called my attention

The solution presented here may well serve as a goodiork was started.
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