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A generalization of the Hill-Wheeler generator coordinate method is applied to collective
deformations. The intrinsic wave function is constrained (as in constrained Hartree-Fock)
to be characterized not only by a given deformation, but also by a deformation velocity.
This is effected by a simple ansatz which involves operation on the singly constrained wave
function by an exponentiated single-particle deformation operator containing an arbitrary
function P(e), where n is the collective variable. The expectation value of the energy is min-
imized with respect to both P(e) and the Hill-Wheeler projection function f(e). This leads to
an integral equation for f which, upon invoking the collective nature of the intrinsic states,
may be approximated by a second-order differential equation in the deformation coordinate
e = (Q). In order to reduce this equation to the Schrodinger form, certain assumptions are
introduced with regard to the approximate form of f. This procedure leads to two different
differential equations for f and to two mass parameters. One is valid in the classical region
and one in the classically inaccessible tunneling region. This is to be contrasted to the crank-
ing model where sufficient energy must always be available to drive the system. The expres-
sions for the mass parameter are given in terms of expectation values of few-body operators.
The case of uniform translation of the nucleus as a whole is studied in detail. The general-
ized Hill-Wheeler method as described above produces the correct mass (= total nuclear
mass). This rigorous reproduction of a known result allows the study of approximations
which become necessary for the general case of deformations. Comments are made about
the potential energy of deformation surface, which is expected to lie lower than the expecta-
tion value of the Hamiltonian.

I. INTRODUCTION

In the study of collective nuclear motion, the
microscopic structure of the nucleus enters the
problem by way of the mass parameters and ener-
gy surface, which together determine the system
dynamics. A purpose of a microscopic theory of
collective motion is to determine these parame-
ters explicitly in terms of the nuclear Hamilto-
nian. Below, we develop expressions for the mass
parameter in the form of expectation values of
products of the Hamiltonian with other operators.
The particular operators which appear depend
upon the type of collective motion considered.
Primary attention is paid to quadrupole deforma-
tion (vibrations and fission) and to translational
motion of the nucleus as a whole.

This latter motion is interesting for two reasons:
First, the correct mass (which is the total nuclear
mass mA) is given incorrectly by the simpie pro-
jection method' ' to be discussed below. It would
be reassuring for such a microscopic theory to
give the correct result, although that in itself
would not guarantee the validity of the theory for
other collective motions of the nucleus. We intro-
duce a modification of the projection method which
will yield the mass mA.

Second, if a formalism produces the correct
mass in the translational case, it may be possible
to use this knowledge as a check on approxima-
tions which are necessary in the study of other
types of collective motion. The translational case
is discussed in detail in Sec. III.

The present approach is particularly interesting
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due to the variational way in which the collective
velocity is treated and to the subsequent choice
that we find for the inertia parameter. Depending
upon whether the system is in a classical or a tun-
neling region of deformation, different forms of
the mass obtain. The details of the development
are given in Sec. II, before proceeding to applica-
tions to translational motion.

In the remainder of the Introduction, we will
very briefly sketch some microscopic theories of
collective motion, particularly the cranking' and
projection' 4 approaches, in order to put our for-
malism into perspective. Detailed discussions of
these theories of collective motion have been giv-
en, for example, in the lectures of Klein' and

Villars, and by Brink a,nd %'eiguny, and by Wong.
In the cranking model, as it was first applied to

rotations, ' the nucleons are placed in a deformed
potential well which is then externally and slowly
rotated (slowly so that the particle orbits adjust
quasiadiabatically to the changing well orientation).
The energy increase due to rotation is evaluated
in perturbation theory, and equated to —,'g~'. Hexe
8 is the moment of inertia and & the angular veloc-
ity with which the well is driven.

In this way the following expression for the mo-
ment of inertia for rotation about the g axis is ob-
tained, in first-order perturbation theory,

.~l& I~. l»l'
~cranking

=~ ~ E E ~

~0 n 0

The bras and kets refer to states of a model single-
particle Hamiltonian, g =0 representing the ground
state, and the E„are the corresponding energies.
J„ is the g component of the total angular momen-
tum operator. For the case where the wave func-
tions In& are composed of independent-particle
orbitals, the cranking formula (1) gives just the
rigid-body moment of inertia. '

A similar approach may be followed in deriving
a formula to express the mass parameter for vibra-
tions. Again we specialize to the adiabatic assump-
tion that the collective motion is much slower than
the particl. e motion. A set of parameters describ-
ing the nuclear deformation may be denoted by o.,
and these are considered to be prescribed func-
tions of the time, n = n(t). The solution of the
time-dependent Schrodinger equation through first
order in n for the wave function leads to the energy

E =E0+ 2Bn,

.~l&)~Isis I»l'
+OTRiik111g

k&0

It is of interest to note a refinement to the sim-

pie cranking model which introduces constraints
in a manner we shall find useful in Sec. II. This
18 the self-consistent cl anking model, associat-
ed with Thouless and Valatin. '0' "

In this approach, one uses Hartree-Pock theory
and minimizes the total energy subject to the con-
straint that the angular momentum about the rota-
tion axis have a fixed average value. If the rota-
tion axis is the x axis, then the constraint is in-
cluded by minimizing

where + is a Lagrange multiplier, to be interpret-
ed as an angular. velocity, The moment of inertia
is deduced from the equation

where
I P& is the Hartree-Fock solution generated

from (4). The moment of inertia is given by the
expl es sion

. &-=—Z(&~l~. l»&,*"&I l~. l~&&;)
E0 pb

where p and h refer to particle and hole states,
respectively. The coefficients Cp& are in turn de-
fined by

(~, —e„)C,„+P (&ph'I Vlhp'&C, ,„,
pffft

&pp I I lhh &~, ) =g &pl~ I»,
(7)

where ez and ez are particle and hole energies,
and V is the antisymmetrized two-body interac-
tion. In general then, a matrix inversion is nec-
essary to find srv. Neglecting the interaction, (6)
leads back to the cranking form

„.~ I&pl~. lh&I'

Cp- Cb

The Thouless-Valatin or "self-consistent crank-
ing" formula, Eq. (6), like the cranking formula
itself, is semiclassical.

One may go beyond the semiclassical approaches
outlined above by appealing to the projection meth-
ods. These are specializations of the Hill-Wheeler
method of generator coordinates. " (For a discus-
sion of the relationship of the generator coordinate
approach to the cranking approach, see the recent
lectures by Klein. ') In the projection method, one
first labels the intrinsic wave function P(r, .r„)
=—Q(r) by a parameter(s) n specifying some collec-
tive property associated with P. Thus n might be
the Euler angles specifying the orientation of a
defoxmed Hartree-Pock determinant with respect
to a space-fixed axis, or a deformation parameter
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specifying (perhaps equal to) the nuclear quadru-
pole moment (Q I Q»1(j)&. A trial wave function to
be used in energy minimization is constructed by
integrating over a, y(r Z} e-(Ps y(r) (18)

specialize to one-dimensional center-of-mass mo-
tion for simplicity. Then, following Eq. (12),

y(r) —= t dn f (n)(t)(r, n) . (9)
where I' is the z component of the center-of-mass
momentum operator. In thi. s case symmetry leads
to the equation

The weighting function f, which is to be interpreted
as the collective wave function in the variable z,
is determined from the variational equation

, (41H I 4&

(4 14)

f(Z) —eikg

and computation of the total energy

1
E=EO+ k + ~ ~

2Mpp
(20)

(j)(r, II ) =R(Q)(I()(r),

where A is the rotation operator

=e ' i~e ' '2e '~3~
y

is one way we may label (t) by the variables II.
From Eq. (10), using Eq. (12), we find

f(n) =~'„,(n).

(12)

(14)

The operation (9) then projects out the component
of (j) with angular momentum J. By computing the
total energy

E ((t IHIP&

(410&

1=Eo+ J(J +1),
PY

the Peierls-Yoccoz moment of inertia may be de-
termined,

" &HJ.') -«&«.'& (16)

This result is for rotation about the x axis. When
the same approach is applied to translation of the
nucleus as a whole, the generator coordinate may
be identified with the displacement Z of the center
of mass. Then

where the angular brackets indicate both spatial
and a integration.

In the Peierls-Yoccoz theory of the moment of
inertia, ' e is taken to be the three Euler angles
of rotation, 0,

n—=9 =(8„8„8,).
If (j)(r) has its symmetry axis along the space-fixed
z axis, then the prescription

yields the Peierls- Yoccoz mass

is not Galilean invariant. That is

4,(r,„„R)=e'"" g(k; r,„,), (22)

where (j) depends not only on the intrinsic coordi-
nates but also on the momentum k, because a dif-
ferent function of relative coordinates is projected
out for each I,. For Galilean invariance, g must
be independent of k.

To accomplish this a wave function may be gen-
erated which has a mean center-of-mass momen-
tum (P). Using constrained Hartree-Fock theory
(for example), the Hamiltonian

(22)

is minimized with respect to a trial wave function.
This procedure yields the function

(HP ) —(H)(P )

which in general is not equal to the total mass. '4
This is a defect we wish to avoid. Not only is it
displeasing to produce the incorrect result in this
simple case, but the failure casts doubt upon the
rotational result Eq. (16). The difficulty may be
traced to the form used for the intrinsic wave func-
tion (18}. A more general wave function is needed.
(The translational case is discussed in detail in
Sec. IIL)

An attempt to produce the correct translational
mass, stQl remaining within the framework of the
projection method, is the double projection meth-
od of Peierls and Thouless. 4 They noted that the
Peierls- Yoccoz wave function

4,(r;„„'R)=JtdZe" it)(r;„„R—Z)'

z( )=fzzy(ziz(z, z) (t)z(rimi R) e™RAo(rin(iR)) (24)

=
I
"dZf (Z)P(r,„„R—Z),

where R is the z component of the center-of-mass
coordinate and r,.„, are internal coordinates. We

where M is the nuclear mass, and v is a Lagrange
multiplier with the dimensions of a velocity. Dif-
ferent choices of the parameter v correspond to
different choices of mean momentum (P&. Trans-
lating the solution (24) an amount Z gives a two-
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C,(r) = ~l dvdZg„(v)e "eP„(r;„„R—Z) . (26)

parameter wave function P„(r;„„'R—Z). Since the
center-of-mass motion should leave the internal
structure unaffected, it is reasonable to take a
linear combination of the wave functions P„(r;„„'
R —Z), for different v, as well as to project out

a component of linear momentum. Thus we have

inertia problem.
In our formalism, discussed in Secs. II and III

below, we make a simpler ansatz than Eq. (30).
The form of F is not left completely general. A
restricted set of forms is chosen, dictated by the
particular collective motion of interest, and the
best F is variationally determined from among the
members of the set. For translations it turns out
(Sec. III) that a reasonable form for F is

If v is chosen to be related to k by F = P(Z)R, (32)
Mv =k- k',

then

@~(r)=e'""
J

dk'dZg, (k')e ' ' P,(r,„„'R—Z)

(26)

has center-of-mass momentum k. The choice

g, (k') -=6(k —k')

leads back to the Peierls- Yoccoz result, Eq. (21).
If g, (k') is independent of k, however, then the
wave function +k is Galilean invariant since it is
a function of the intrinsic coordinates only, multi-
plied by exp(ikR). In principle g is determined
variationally, although such a procedure is very
cumbersome even for translational motion.

The formal results which we find below, when

applied to translations in Sec. III, essentially re-
duce to the form (26) with the special choice

g, (k ) =-g(k') =6(k'),

so that we have the simple result

(28)

4'k =e " dZ rintiZ ~ (29)

40-0=e' 40 (30)

where F is a single-particle operator. The "best"
operator F is then determined by variation of the
expectation value of the Hamiltonian with respect
to the projected wave function

ikZ e -iPZ 8 iE

where P is the center-of-mass momentum opera-
tor. This same approach of "variation after pro-
jection, " first discussed by Rouhaninejad and Yoc-
coz," is also applied by them to the moment-of-

A recent treatment of this problem by Villars
and Schmeing-Rogerson" does produce the correct
translational mass. Although it does not address
the vibrational problem, it exhibits sufficient sim-
ilarity to our approach to warrant discussion. The
idea is to endow the intrinsic wave function p, (a
Hartree-Fock determinant) with a greater gener-
ality in the manner

4-%, =Jl dZe" e" 'Q (r 'R —Z) (34)

or

e, =e'"s J"dZ y, (r,.„„z), (36)

which is the same as Eq. (29) and gives the correct
translational motion.

In addition to translational and rotational motion,
the generator coordinate method has been applied
to clustering phenomena in nuclei'' and to nucle-
ar scattering. "

In Sec. II we develop the general formula for the
mass parameter 8, keeping in mind the case of
vibrations or fission. The formulation is general,
however, and in Sec. III uniform translational mo-
tion is studied in detail. Finally, in Sec. IV the
general mass parameter expression of Sec. II is
reduced to tractable form for vibrations (fission)
under suitable assumptions.

II. FORMAL DEVELOPMENTS

The approach of the present paper is to derive
a second-order differential equation for the collec-
tive wave function f (n) of the form

d ~ d—f (n) +[V(n) —E]f(n) =0
dn 28(n) dn

(36)

in which the mass parameter B(n) may be identi-
fied. Here o. is an appropriate collective coordi-
nate, V(n) is the potential energy, and E is the
total energy. We proceed by generating an intrin-
sic wave function which contains in it the proper
collective motion (using constrained Hartree-Fock
theory, '"for example), and then projecting with
the collective wave function f (n) in the manner of
Hill and Wheeler. " An equation for the wave func-

where R is the center-of-mass coordinate and

p(Z), a function of the collective coordinate Z and

not a particle operator, is to be chosen to mini-
mize the energy. Then we find

(33)

a constant, so that Eq. (31) becomes



tion f, which may be reduced to the form (36), is
determined from a variational principle.

A. Intrlnslc Vfave FQnct1on

In order to obtain the energy or wave function
for arbitrary deformation, the energy minimiza-
tion is subjected to the constraint that (say) the
quadrupole moment operator

H =H+nQ —PQ ~ (3S)

A discussion of Hamiltonians such as in Eq. (38)
from the point of view of Hartree-Fock theory may
be found in the lectures by Villars. '

The A-body wave function g(r, n, P) is then la-
beled by both n and P. The quantity P is taken to
be a function of n =(Q) and its precise form is to
be determined by variation of the total energy.
A nonzero value of P should lead to a nonzero col-
lective velocity. The variational determination
of P is then essentially a self-consistent cranking
approach. The assumption P =P(n) means that the
velocity depends only upon the local deformation,
rather than upon all deformations. Such an as-
sumption avoids the calculational difficulties at-
tendant upon a double projection formulation. '

In Hartree-Fock the determinant minimizing
Eq. (38) may be written, for small p, as"

P(r, n, P) =e'~y(r, n),

where g is a determinant of Hartree-Pock func-

have a prescribed expectation value. This is equiv-
alent to minimizing the expectation value of

H =H+nQ, (3'I)

where e is a Lagrange multiplier and the term nQ
acts like an externally applied (single-particie)
potential.

The corresponding intrinsic A-body wave func-
tion is P(r„.. . , r„;n). Here n is a parameter
which labels the deformation of the wave function.
For example, z may be taken to be the I.agrange
multiplier n, or the quadrupole moment {Q).This
latter choice will generally be convenient.

Although this technique makes it possible to pro-
duce wave functions of arbitrary quadrupole mo-
ment, "the dynamics of collective motion are not
explicitly included. The intrinsic wave function
should also reflect collective motion. This sug-
gests that not only the value of the deformation
(Q) but also of (Q) should be specified for the in-
trinsic wave function. These requirements are
met by minimization of the expectation value of
the generator Hamiltonian

(43)

where A, B„and 8, depend upon g and n. In gen-
eral, A is nonzero, so Eq. (43) implies that even
when the collective velocity vanishes, as indicated
by the wave-function behavior f '/f- 0, the generat-
ing term pQ continues to enforce a collective mo-
tion upon the system. However, if g is determined
from the equation

A(n, g(n)) =0, (44)

tllell p will be pl.opoltlollal to the "velocity, " which
is the behavior we desire. The explicit form for
the function g is given below.

The following points are important:
(a) The Lagrange multiplier n is real in order that
0 be Hermitian, since Q is Hermitian.
(b) We choose P to be real, in which case g will
generally be complex.
(c) Although we have chosen P to be a function of
o., it will be determined va.riationally. This will
produce the best P consistent with such a restric-
tion.

8 Projected V4ve Functjon
and the Total Energy

The A. -body wave function is generated by the
Hill-%heeler projection technique, "

e(r„.. . , r„)=-
Jl dn f(n)gr„. . . , r„;n, p(n))

dn f (n)el 8'tofMQ-g'fKlly(~r )

(45)

tions generated by H+ nQ and A is a single-parti-
cle operator which satisfies

f(phil, All0) =P(phlQI0). (4o

Here ~0) refers to g(r, n) and ~ph) to a particle-
hole state built upon ~0).

A solution to Eq. (40) is

A = Pl Q g—(n) j

wllere g(n) is a e 11111111181'specifying a defol'nlRtloll-
dependent phase for the function (39). In the ab-
sence of the Hartree-Fock approximation, the
form (39) may be obtained through conventional
perturbation theory. Thus

~ (P n p(n) ) e f 8(nKC -g(a)1~(~r

Equatxon (42) will. 118 our ansatz fol' tile ill'tl'lnslc
wave function for all P. The actual form of g is
chosen to obtain a convenient interpretation of f{n).
Below, in Sec. II C, P is shown to have the form
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Note that a change of the form of g corresponds to a change in the definition of the collective wave func-
tion f. With the choice dictated by Eq. (44) the motion associated with the intrinsic function is generated
in a physically reasonable manner so that f is a suitable collective wave function.

With Eq. (45) as a complex trial wave function the energy &4 IH I4) is minimized subject to the condition
that &4 I4& =1. This leads to

5(elH-El'& =0, (46)

where the energy E is, in fact, a Lagrange multiplier for the normalization. The expectation value is to
be varied simultaneously with respect to both P(n) and f(a). Substituting the form (45) into Eq. (46) and

defining 8 -E =H we obtain the expectation value

(»'I»»l+) = JJ(««' JI~»f'(»)f(»'0'(», »P(»))A, (~» P(~, ~)',

In terms of the functions g, Eq. (47) may be written

&e I H I 4& = It dad n'f "(n)f(n')
J

d r e '8 '~" ~g'(r, n)He* s'"'+""'j(r, n') .

In the above expression

q(r, e) =- q(r) g(n) .—

(4 I)

(48)

(49}

In Eq. (48) g has been chosen to be real. The condition (44} may still be satisfied.
To make further progress we expand the exponential factors in Eq. (48), keeping terms through order

p' (i.e., through order f"/f). As shown below, terms of this order are necessary in order to compute
correctly the mass parameter (= total nuclear mass) for translation of the nucleus as a whole. With some
new notation Eq. (48) becomes

&+ IH I +& = JtJtd&«'f "(~)f(~'&l(~ IH I
~'& -~p*(~&(~l q17I ~'&+fp(~')(o IHq I

~')

2P*'(~—&(~ I
O'H

I
~'& —2P'(~')(~ IHq'I ~'&+P*&~&p( '&~& loqHq I

n'&1 (5o)

The functions g(r, a) are represented by the appropriate rounded bra and ket notation, with bra-kets inte-
grated over r. The operators q and q' are understood to be functions of the variable (o, or a') of the ad-
joining bra or ket, e.g. ,

&n I qHq I
n') -=(a

I q(a)I7q(o. ')
I o.') .

C; Energy Minimization and the Differential Equation

Varying Eq. (50) with respect to P* and setting the result equal to zero,

,(
)&+IHIP'&=o,

yieMs, to order P, the integral equation

d f( )I:(.IqHI )- p*( &( Iq'Hl & P( &( lqHql )1=o.

Similarly, variation with respect to p

(,)&+II7I+& =0

yieMS

J «f '(~)H ~ I H q I
o') + fP(o")(n IHq'

I
n') - fp*(n) (~ I qHq I

n')1 = 0 . (51b)

Equations(51)maybe used to simplify the expression for the total energy, Eq. (50). Multiply Eq (51a) by.
[ ip*(n)f(e)/2-1, integrate over a, and subtract from Eq. (50). If Eq. (51b) is used in an analogous fashion,
the energy (50) becomes

&+ IH I +& = ~l~" «d ~'f *(~)f(~'&l.(~ IH I
~') 2 fp*(~&(~

I
q1—7 I

~') + 2 fP(~'&(~ 117q I
~'&1. (52)



MICROSCOPIC THEORY OF NUCLEAR COLLECTIVE MOTION

The integral Eqs. (51) are more compactly written as

0 ={QHf) - P*( )(q'Hf). '(QHqfP),

0 =(QHf *)+iP(n) (Q Hf*) $—(QHQf P*) .
The curly bracket symbols are functions of ri and are defined as

J dn'(n i8i n')

H()
where

N(n) -
=Jf dn'(n

I
n') .

For example,

fd n'f (n')(n I q(n)H I
n')

(QHf)=
H( )

The derivation of Eqs. (53) from Eqs. (51) made use of the fact that

(n IH q" in') = (n'
I
q"H

I n),

where n is a positive integer, and

(nIQHQIn') =(n'IQHQIn)

(53a)

(53b)

(54)

(55)

(56)

(57)

Equation (53b) is the complex conjugate of (53a).
We wish to solve Eqs. (53) for P(n) in terms of f(n), substitute the resulting expression into the total

energy Eq. (52), and then finally minimize again with respect to f. To solve Eq. (53) it is assumed that,
for a fixed value of n, the range of n' over which there are important contributions to the integral (QHqfp)
= f dn'f (n') p(n')(n I QHQ I

n')/H(n) is restricted to a small neighborhood of n' = n. That is, the matrix ele-
ment (n I QHQ I

n') is supposed to be sufficiently sharply peaked about n' = n that

(qHQfP)= P( )(QHqf) (56)

is a good approximation. (Such approximations are discussed below. )
If Eq. (56) is valid, then Eqs. (53) become two simultaneous algebraic equations for P and P which may

be solved to give

p,. KQHQf *)(QHf) -(Q'Hf)(QHf *)1
I(@Hfdf) I' l(Q'Hf) I'- (59)

Since we wish to compute the energy through terms proportional to f" or f" Ito arrive at an equation such
as Eq. (36)], it is sufficient to evaluate P, which generates corrections to the wave function P, only through
terms proportional to f'. If it is assumed that all matrix elements (ni8 In') are strongly peaked about
n' = n and the first two terms in the Taylor expansion of f are kept, then P becomes

P(n) = f (QH) ((qHQ) —(q H)) + * ((QHQh(QH) —(Q H)(QH) x)

((qHq)(qH), (q'H), (qH))— l l{qHQ) I'- l{q'H) I'). (60)

The curly bracket notation has been generalized such that

(8)„-=Jl dn'(n
i
8 I

n')(n' —n)"/lv(n)

and

(8).-=(8).

(61a)

(61b)

Choosing g(n) according to the condition (44) so that P, Eq. (60), is proportional to the velocity, we find

"'= (-)
(QH)

(62
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a real function of a. P then has the form

(QH}. f'( ) —— f'*( ) —.
P(+)

(Qffq}2 (QQfI}2 f ( )
(Q Q} f0( ) (Q H}

f '(fff) f '*(n)
Bg(c()

( )
+B (Q) I(r( )

~ (63)

When expression (63) for P is substituted into the total energy, Eq. (52), the result is

««' f*(c()f(o(') (o'l&ln') -2 Bi(o')(o-IQ&l(r') -2 -*, Bi(n')(nl&QIn')
I

—lf( )f "(a'l& (a)(a(.O))(a') —lf'(a)f'(a')&. ( ')(al))q(a')I.

The form of the equation ultimately desired for the collective wave function f is

f(a—)+[V(().) -&lf(o) =od 1 d
dc. 2B(n) do.

(64)

(66)

This suggests that prior to minimization Eq. (64) be cast into the form

( l nl a)=nr(af '(a) —— —(n(a) -Z(}f(a)=0.f ~ d 1
J dn 2B(e) dn

Such a program may be carried out with the assumption, used above, that the spatial matrix elements are
peaked at z = a.. Consider the terms containing B,. By switching variables in the final term and making
use of Eq. (56) these terms may be written as

Expanding f (a') and f~(n') about c(' = n and retaining only terms proportional to the second, or lower,
derivatives of f (use of peaked nature of matrix elements) there results

—
&J(J

d rlrr'((f( )f"( )+f'(a)f (a)]'
I(f'(rr)f '(ai+f"(a)f (a))(a —a))a'(a)(al' ()))(a').

Integration by parts yields

daf'(a) r(a' q—(a, (a)( Ir)flin')(a'- )Id—f(a) ~ lf(a)q—(f).(a)(air)))la'))),d d

(6V)

(68)

which is of the desired form (66).
The transformation of the terms containing B„

proceeds initially in the same way. However, the
following expression appears:

ing behavior

f, e'"Oi", Z & V(n)

for a real velocity, or

f, ~e'"&~, E& V(a)

(Voa)

(Vob)
Q Q 0 Q

f (fff) f*(o.)
(69)

for an imaginary velocity. V(o) is the potential
energy. In the classical region we consequently
make the approximate identification

which cannot be manipulated by the above proce-
dures to look like Eq. (66). Here k(n, n') is a func-
tion of n and a' and involves B,. The expression
(69) may be simplified in an approximate manner
by the following considerations. If the potential
energy surface is slowly varying with respect to
the local "wavelength" 2v/k associated with the
deformation velocity, then in the spirit of the
cranking model, f is expected to have the follow-

(V la)

while in the tunneling region

(V lb)

[¹teadded in Proof: It might be argued that in
the classical region (E & V) we could also choose
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f to be a standing wave, and hence real, in which
case (Vlb) would also obtain. This, however,
vrould destroy the physical content of the flow as-
sociated with {j). Rather, we make the semiclassi-
cal approximation (VOa) and replace (for standing
waves) g- @+i~. Neglect of cross terms be-
tween 4 and 4* in the energy leads to the same
result as for the traveling wave case. ]
With Eqs. (Vl) the expression (69}has upon inte-
gration by parts, the required form (66). There
now exists a pair of distinct differential equations
for f, and hence a pair of mass parameter formu-
las, each appropriate to the regions of deforma-
tion specified by the energy conditions in Eqs. (VO).

In the vicinity of the transition point between the
regions of validity of Eqs. (VOa) and (VOb), where
the particular forms given for f are no longer ex-
pected to hold, the curvature of the wave function
approaches zero, and consequently the value of
the mass parameter is unimportant. As a final
point it may be noted that the forms (6I) leading
to two distinct equations for f affect only the kinet-
ic energy terms, so that only one form for the po-
tential energy will be generated.

With Eqs. (VO) the expression (69) is equivalent
to

+R Jf dada'f "(u)f'(a)a(n, a'),

where the upper sign corresponds to the choice
(VOa) and the lower one to (VOb) {this convention
to be followed below), or

~2 )l d {{/'(a)J)da' —a(o, n') —f(n) .6f

dQ dQ
(VS)

~"«'(a ~H ~
n') =H(n)({H}—E),

while in the desired form the energy stands alone.
If Ã(n) = f dc{'({)(~n') varies slowly with {){so that
its derivatives may be neglected, then variation
with respect to f~ and division by H(a) yields the

Note that the ansatz {VOa) is correct for the trans-
lational case. In that case, as discussed in detail
in Sec. 111, the collective wave function f is just
e'az where 4 is the center-of-mass momentum
of the nucleus and g is the parameter (correspond-
ing to n) which describes the center-of-mass dis-
pl.acement of the nucleus. The remaining term in
Eq. (64) is handled in a way similar to that of the
B, terms.

The expression for the total energy {+~H ~ 4} is
now almost of the form (66}. The term involving
E is

second-order differential equation for f,

{eg-2(—{r7),) +4( .{0{.) y

d, — {QH},' d
d. '{"}-"{QHQ},{QH}d.f—(-)

The two choices of sign correspond to the two pos-
sibilities of Eqs. (VO}. Anticipating the arguments
of Sec. IID below that the derivatives of {H], are
small, we write Eq. (V4) as

The mass parameters are identified immediately,

2{qH},'
8 { ' {QHQ}v {Q'H}

V(o.) ={H}=
J' «'(~ i ~')

(V6b)

For some comments on the potential energy func-
tion see Secs. III and V below.

D. Small Quantities

The derivation of the expressions for P, Eqs.
{59)and (60), and the reduction of the total energy
(64) to the desired Hermitian form necessitated
assumptions about the dependence of the spatial
matrix elements on e and a'. In particular the
assumption was made that for fixed a these ma-
trix elements were sharply peaked about +' = e.
This enabled us to expand f(c{') and P(n') about the
point 0, ' = e and to retain only the leading terms in
these expansions.

A preliminary numerical study" of the overlap
function (n

~
n'} using harmonic-oscillator wave

functions supports the assumption that the depen-
dence on (c(' —a) is very strong and that the falloff
with ({).' —o.) becomes more rapid as A increases.

In connection with these assumptions it is useful
to discuss next the expansion parameters of the
theory. Consider the various matrix elements
((x(8 [().') and, in particular, the normalization
matrix element (a( n'). Expanded in a Taylor ser-
ies in (c{'—n) this is

I 2

(n~ e') =I+(n' —n){s)+ (s*)+~ ~ ~, (VV)

The upper sign refers to the region E & P({).), and
the lower sign to Z& V({).).

The potential energy of deformation has the form

J{fn'(n(Hie')
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&6&-=(aI6 I a)

Furthermore

For a sufficiently collective system the overlap
(n I

n') is expected to be a rapidly decreasing func-
tion of I a —n'I.

With a Gaussian falloff, discussed for example
by Griffin and Wheeler, ' Brink and %eiguny, '
Klein, and by Wong, to express this feature, Eq.
(77) may be written

-&a '-n &~( r~ (80)

x 6, +(n' —a)6, +
21 6, +

(82)

Comparison with the Taylor series

(a I 6 I
n') =&8& + (n' —n)(es& +, (es') + ~ ~ ~

(a' —a)'

yields

60 =&6& *

8,=&88),

8.=&88'& —«) &s'&,

(84a)

(84b)

(84c)

es =&@a'& —8&6» &s'&.

The curly bracket notation (61) may be approxi-
mately expressed in terms of the 6, as follows:

a'(a) = -2/(s').

The quantity 6 is expected to be smaQ for large-A
collective systems. It depends weakly" upon n
and is taken to be constant. Similar results have
been found for rotations by Sharon. ~e

If 6 is a few-body operator, then the falloff with

I
a' —a I

is dominated by the "core" and the same
characteristic faQoff "distance" 6 should obtain.
This suggests the expansion

4

(n Ie I
n') =e '"' "' '

The basic assumption is that the expansion coef-
ficients 6, in Eqs. (84a)-(84d) do not increase rap-
idly as the 1ndex 'E 1ncl eases. Then fo1' small 6
(collectivity assumption), the series (82) may be
truncated after a few terms. Some guidance on
the number of terms to be retained can be obtained
by studying translational motion, where the cor-
rect mass parameter is known. This special case
is discussed at length in Sec. III below. Pending
that discussion, we generally keep terms through
those of the "fluctuation" form, as in Eqs. (84e)-
(84g) ~

Another useful "distance" in the theory is the
wavelength associated with the collective wave
function f. This is the length (i.e., range of de-
formations) over which there is a significant
change in f, such that Ihf/f I= I or If' I= If/'l. I.
For a suitably collective nucleus, L» ~. In ex-
panding f(n') about n' = n, as done above for ex-
ample in the total energy expression (64), the ex-
pansion parameter is b, /I. . In the energy we have
kept such terms through order s'/I. ' This yie. lds
a second-order differential equation for f.

A third "distance" of interest is associated with

the variation of the diagonal matrix element
(n I 6 I n) -=(6) with n. Such a variation will be
milder than that associated with the related form
(nI8 I

n')„which is characterized by the falloff
distance s. If (aI6 I n) varies appreciably only
over the range D, then we expect b, /D to be a
small number. This ratio will be useful in eval-
uating outside derivatives of matrix elements,
such as appear in the differential equation for f,
Eq. (74). Note that for the case of translations D
is infinite (Sec. IH). D is also infinite for vibra-
tions for the special case 8=1.

Equation (74) reduces to the simple Peierls-
Yoccoz' form for P = 0 (A =8, = B, = 0) if D» d, . If
p=0, Eq. (74) is

(H} .— (H} .—(-.'(H})—f=0.
2 dQ 4 dQ dQ dc'

(85)

Equations (84e) and (84f) for fH}, and fH}, may be
written in terms of 6 as

(H},= —,'a'&Hs&+-'. a'(&Hs'& —3&He& &s'&)

(84e) (86b)



If the overlap falloff parameter 6 does not depend
too strongly on the deformation, then derivatives
of fH}, and $I7},with respect to n carry factors of
n./D. These terms will then be small compared
with III}, so that Eq. (85) becomes

I — d
dQ 2 dQ

as the equation for fwith p=0. The mass param-
eter in this case is

(&8)

or since

(H},=-,'~'&rI&+-', ~'(«s'& —«& &s'&),

we find

(9o)

1 «s'& —«& &s')
(92)

This equation neglects the kinetic contribution to
E. Note that in Eq. (90) the energy E appears only
in the expectation value &II& and not in the second
term. Substitution of Eq. (92) for E into Eq. (90)
finally yields

which is the analog of the Peierls-Yoccoz moment
of inertia formula, Eq. (16).

An alternative method of evaluating Eq. (76) is
to compute the integrals such as {H},=fda'(o. '- n)'
x (o. lH l

n') directly. Such a program, which avoids
any doubts about convergence of the expansions dis-
cussed above, is currently being investigated. "

III. APPLICATION TO TRANSLATIONAL

MOTION

In this ease the collective motion of interest is
the uniform translation of the nucleus as a, whole.
There is no Lagrange multiplier equivalent to that
given in Eq. (&7) for the vibrational case. Rather,
from a wave function belonging to the system Ham-
iltonian H another determinant localized at a differ-

For the case of a sufficieritly large mass param-
eter B (static approximation), the differential equa-
tion (&V) provides the result

(91)

(phl[H, A]I0) = (phlPIo& (98)

Equation (98) is analogous to Eq. (40). Using the
expression for P as a commutator of II and g,

P =fM[H, R],
where M is the nuclear mass, we find

A =Mv[R —g(z)] =MvR,

where g is not a particle operator. If P is identi-
fied with Mv, the intrinsic wave function becomes

y(r,„„R—Z; p) =e""j(r,„„R-Z), (101

and the trial wave function is

e(r( =Jesf (Z)e' e"(((r,.„;B -Z(. (102)

The function g is to be determined in accordance
with the discussion of Sec. G. Minimizing the total
energy simultaneously with respect to f and P, the
formulas of See. II are recovered, with Q replaced
by R. The function g should Chen be chosen [see
Eq. (44)] such that

( [R g(Z)]II}=0. — (10&)

g(z) =z

then Eq. (103) is satisfied. This can be seen by

ent point is obtained by the transformation

4(r, ~ r„)- j(r,.„„R—Z)

=P(r, -zs, ... , r„-ze). (94)

Here Z is a collective coordinate (analogous to a)
representing the displacement in the z direction
of the z component of the center-of-mass

A

R-=—Pz;,A] ~

and r;„, represents internal nuclear coordinates.
ln Eqs. (94) and (95) we have restricted ourselves
for simplicity of notation to displacements in the
z direction as indicated.

The intrinsic wave function is provided with a
small mean center-of-mass motion" (P), where P
is the center-of-mass momentum operator in the
z direction. The generator Hamiltonian becomes
in this case

H + 6Q —PQ-H —vP,

where v is a I agrange multiplier. If the Hartree-
Fock approximation is employed, the determinant-
al solution for small v is

(l((r;„„R—Z; v) = e'"p(r;„„R—Z),

where the single-particle operator A satisfies
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expanding the curly bracket notation

fdZ' fd r,„,dR (R —Z)(t)*(r,„„R Z—)H j(r,„„R- Z')
((R —z)H) -=

fdZ' fd r,„,dR )t)~(r;„„'R—Z))t)(r(„„'R —Z')
(105)

and noting that the d r;„,dR integrals are functions of (Z —Z') only. (Note H is the true Hamiltonian and
hence translationally invariant. ) The result of the Z' integration in Eq. (105) is therefore independent of Z,
and we may take Z=0. Then

((R Z)H j' =(RH)~ -()

with the understanding that on the right-hand side of Eq. (106) Z is to be set equal to zero in the wave
function

fdZ' fd r;„,dRR)I)*(r;„„'R)HP(r,„„R—Z')

fdZ' fd r,„pR (t*)(r;„„'R)$(r (,'R —Z')

(106)

(107)

Generally, in what follows, the subscript instruc-
tion is dropped and Z is assumed to be set to zero.
From parity considerations which become evident
upon the expansion of Eq. (107) according to Eq.
(82),

I

so that

(e (H [ e,) (e, (H;„, + P'/2M [ q )
(+&I+~)

0

(I7q)-(I7(R —z')), , -=(HR),

(qI7q)-(RH(R —z')), , -=(RI7R),

(q'I7)-(R'I7), , =(R'H), -
(qI7), (RI7z'-), ,= (RH)„-

(109a)

(109b)

(109c)

(109d)

where Z' is an integration variable. The expres-
sions (109) will be used below. Using Eqs. (104)
and (100) the trial wave function may finally be
written

so that Eq. (103) is satisfied with the choice (104).
In a similar fashion

where H;„, operates only on the internal coordinates
and P is the total momentum operator.

It is now necessary to show that the expressions
(112) and (113)for f and ti follow from the formal-
ism discussed in Sec. II, and that consequently the
mass-parameter formula (76) in fact gives the cor-
rect result 8 =M.

Consider the total energy Eq. (47) specialized to
translations. The integration d r gives a function
of (Z —Z') only, so that a variation with respect
to f* yields

dz'f (z')h(z' —z) —x Jt dz'f (z')n(z' —z) =0,

e(r) = d Zf (Z)e'8~ ~) )t)(r;„„R—Z) . (110) (116)

Let us anticipate the final result. Since the cor-
rect total energy is

& =Eo+

a(Z Z) =Jtd r,„,dR—t(r;.„R Z)Hy(r, „„R-—Z'),

(117)

f (Z) e())g (112)

must be correct. In this case

e-=e, ( )=e" fdzij(;„„))—2)

(113)

where E0 is independent of k, and M is the nuclear
mass, the choices

s(z' —Z) =) d r;„,dR )I)(r,„(,R —Z)(I)(r,.„„R—Z'),

(118)

and X is a Lagrange multiplier for the normaliza-
tion. A solution may be obtained with the exponen-
tial form, "

f(z)) —g @())g'

where C is a constant. Rewriting Eq. (119) as

—e~ dz r Z (114) f(z)) g &())s &i))(s'-8)
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and substituting in Eq. (116) gives

fdZ e"eh(Z)
(121)

Evidently p = k if {RHRj —{R'Hj vanishes. Using
Eq. (99) to express the commutator of H and R in
terms of P, we have

fdZe" en(Z)

Each of the two integrals on the right-hand side of
Eq. (121) is just a number, so that with the choice
X =X„f=Ce'~e is a solution of Eq. (116). Writing
Eq. (121) in detail gives

(122)

the total energy.
To see that the general result for P given by Eq.

(63) agrees with Eq. (116)we make use of Eqs.
(108) and (109), so that

[u{R'H.j{RHj,+fu{RH(R z)j{RH—j,]
{RH(R —Z)j*-{R'Hj'

Further simplified, Eq. (123) becomes

. fdz(o~Ri ~z)
{RHR -R'Hj =- '{Ri—j=—

N(0)

1 fdZ(OiRs/sZ|Z)
=0.

H(0)

Therefore the formal result for p (63}is correct
in the translational case. In obtaining the result
(125), use has been made of the fact that

8, 9I' -=-i —=i
BA BZ

The last step follows, since I' operates on a func-
tion of 3 —Z only.

Similarly the total energy expression

{RHj,
{RHRj {R'Hj—{—RH j, ' (124) &~. IH l4~&

[see Eq. (52)] gives the result (111). Using P =0,

f&z~" ((0IH I
&*)-!i&t(0IRiili) —(oIii(ii —&) I&)1)

0

faz 8 *(0I ~)"—.'sxf(o Ii—i
I z) - (0 I (ii —z) I z) I)

(12'1)

Keeping terms through k~ and using

~l dz(0(Hlz)z=0,

(dz(o —,'„z) =o, (129)

since

8 go
dZ(oip'iZ) = lim 0 —Z =0. (134)

go~ oo ~g

Expanding (133) through use of Eqs. (64) we have

E =& "&-2( )((H'"P')-& &&P'&)

fdZ(0[H|„, [Z) 1 fdZ(0(P [Z)

fdz(0(z) 'M fdz(0(z)
reduces to

fdz (0 iH („,( z)

fdz(0 iz)
={H;,,j,

g'az(0/i'/z)z= if dz(olz-),

we have as expected

fdz(oiH iz)
E +-- ={Hj+

fdz(0iz)
It is interesting to note that the total energy at

rest, Eq. (181) with 0=0, which can be expressed

&H) = &H;.,&+ 2M (136)

assume that the wave functions with respect to
which the expectation values in Eqs. (135) and
(186) are calculated separate into a produce of a
center-of-mass and an intrinsic part.

Then

Z, =(H,.„,&.

This formula is in fact exact for such a separable
wave function. Thus the general formulation (181)
for the total energy is an improvement over the
expectation value of II, in that it compensates for
extra energy of center-of-mass localization which
is present in Eq. (136}.

(135)

To obtain a simple comparison with the expecta-
tion value of 0,
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The kinetic term of Eq. (132}vanishes identical-
ly. However, for other modes of collective mo-
tion it mill not be possible to evaluate such terms
exactly. This makes it interesting to see if the
energy in the translational case is improved when

Eq. (132) is evaluated in an approximate way. The
integral Jd Z(0~ P'~ Z) may be expanded by using
Eqs. (84). Then, continuing to use separable wave
functions

a {}' {RII(R—Z})-{R'I7)' (139)

The term {RH},may be manipulated in the follow-
1ng way:

{RI7),=J dZ J dr, „,dRZy*(R)RH j(R —Z). (140)

The expression (P ) —&P')2 is non-negative
(Schwartz's inequality) so even in this approxi-
mate calculation Eo is an improvement over (H&.

This leads us to anticipate that in the case of vi-
brational motion the potential energy will be given
by the expectation value «) minus a positive quan-
tity. We return below to a discussion of approxi-
mate results in the translational problem, but
first me verify that the formalism of Sec. II does
predict the correct translational result.

Substitution of the appropriate quantities into
Eq. (V6) yields the equation for the mass param-
eter

depends upon the translational invariance of 0, a
does the fact that such quantities as {RI7]„arein-
dependent of Z. The result (145) is therefore ob-
tained when the true JI is used, but generally not
if a shell-model Hamiltonian is substituted in its
place.

Tile fil'st 'tel'111 in Eq. (139) ls eqllivalellt 'to the
Peierls-Yoccoz result (P =0) for the case of trans-
lations [see Eqs. (88) and (93)]. In terms of P,
the Peierls-Yoccoz mass parameter is, using
Eqs. (126) and (93),

(P 2&2

(HP') -(H) (P') ' (146)

To obtain the exact translational result (145) it
was llecessal y (1) 'to al'gue that the coIIllllllatlon
of terms {RHR) —{R'H) occurring in the denomina-
tor of Eq. (139) vanished exactly and (2) to manipu-
late the integral {RH),. We can anticipate, how-

ever, that for the case of vibration (Sec. IV) where
the symmetry properties belonging to translation
are generally lacking, the terms {QHQ}-{QH)
and {QH}must be treated approximately. It will
therefore be useful to study the translational case,
where the mass is known, in an approximate man-
ner. This mill provide a test of particular trunca-
tions of the expansion of the overlap matrix ele-
ments as in Eq. (82).

Using the first equality in Eq. (125) to reduce
the combination of terms {RHR -R I7], the curly
brackets of Eq. (139) may be expanded in accor-
dance with Eqs. (84) as:

Changing variables and using

(Z[(R-Z)H)0) =(0[H(R -Z) ~Z)

{RI7),= -{HR),+{I7),.

(141)
)

1 (RP') -(RP) (P')
&P')

. (RI7P) z' (RI7P ') —3(RHP) (P ')
RHIl -2

(P-2) +2 ( 2)2

(147a)

(147b)

The commutation 1elat1on between 0 and R allows
this expression to be written as

{RH) =2~{P) + l{I7}'

The bracket containing the momentum operator is
reduced by an integration by parts,

J dZZ(0is/SZiZ)

dZ (Oiz)

{H)
&H& 3 &HP'& —&H& &P'&' &P') 2 (P'&'

To the order given in Eq. (14"la)

{RHR -R'H} = '{RP}=0, -—
M

where the relations

&RP& =-,'-2

(147c)

(148)

(149)

so that substitution of Eq. (143) into the mass for-
mula (139), with the result (125), yields

(145)

(RP') = —,'2&P'&

have been used. The result (150) was shown to be
exactly satisfied in Eq. (125). Under this approx-
imation the mass equation reduced to

the correct mais.
The step leading to the left-hand side of Eq. (141) {I7),+ 2{RI7),. -1= (151)
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To evaluate the two terms in Eq. (151) nuclear
wave functions must be explicitly introduced. The
matrix elements in Eqs. (147b) and (147c) may be
evaluated simply using a harmonic-oscillator mod-
el. In this case the wave function separates into a
product of internal and center-of-mass parts"

My(|&=(, (;.,(7;., &e (™, (152)

where g; is a function of relative coordinates only,
M is the nuclear mass, and & is the frequency of
the well. Equation (152) gives the following results

&H& =-,'(d,

(RHP) =i(&(d,

&P') =-,'Mu&,

&P') =-, (M((&)',

(P H) =(&M&@',

(RHP ) =i&(&M(d,

and use has been made of

1 &H P') —&H) &P')
&P')

(153a)

(153b)

(153c)

(153d)

(153e)

(153f)

[see Eq. (92)]. As indicated from Eq. (133) the
approximation (154) is exact for the harmonic os-
cillator, since

&H)
1«P'&-«)&P'&

&H ) (H ) (155)

in that case.
With Eqs. (153) and (155) we may now write out

the terms in the expression for the mass

1 (H) 3 (H) 1 3 1
B (P ) 2M 2(P ) 2M 4M M '

(156)
which is the correct result. The square brackets
contain the expansions of (H), and (RH}„respec-
tively. The first and second terms within each
bracket correspond to the first and second terms
of Eqs. (147c) and (147b), and together they also
produce the correct mass. The "correction"
terms in Eqs. (147b) and (147c), although cancel-
ling each other in Eq. (156), are of the same size
as the leading terms ((H)/(P') = 1/2M).

To study the convergence of the expansions (84),
for which Eqs. (147) give the leading terms, the
curly bracket symbols may be evaluated exactly
using the harmonic-oscillator wave functions.
Thus, for example,

There are two terms contributing to the integral,
and they correspond to the two terms of Eq. (147b)
as may be verified by explicit integration. In the
harmonic-oscillator model, therefore, it is
enough to keep only the first two terms in the ex-
pansion of (RH}„ the remaining ones being iden-
tically zero. Similarly the Eqs. (147) for J&RP) and

(H), are exact for the harmonic oscillator. For
more realistic wave functions the truncations of
Eqs. (147) will no longer be rigorously true, but
they will remain useful approximations.

Taking the translational results as a guide, it
would seem to be a prudent course to retain the
"fluctuation" terms, as in Eqs. (147), when dis-
cussing other classes of collective motion. This
is pursued further in the following section.

IV. APPLICATION TO VIBRATIONAL
MOTION

In this section the general result for the mass
parameter

2(qH},'
B [ }' (qHq}+(q'H) (76)

will be specialized to the case where the collec-
tive motion is a change in nuclear deformation.
Then Q is the quadrupole operator

A

Q = Q (2z, ' —x,' —y, '), (158)

which is a sum of single-particle operators. Here
(x„y;,z, ) refer to the (x, y, z) coordinates of the
ith particle.

From Sec. II,

( )
[QH)
EH)

(62)

The function g may be approximately expressed as
an expectation value as follows. From Eq. (84)

(H)
' (159)

At the values of &@ corresponding to the natural
extrema of (H), g can be simply expressed. This
is done by generating the wave functions in Eq. (76)
from H+nQ [see Eq. (37)] with a =0. For these
particular equilibrium deformations H does not
connect the ground state to one particle-one hole
states, so that Eq. (159) becomes

J dZZ[--,'M(dZ+ (M(u)(&'Z']e "-z "
(RH) =-

g(n& = &0&

The intrinsic wave function is then

(160)

J dZ Ntuz~/4

(157) z(BQ-(Q»y(~ ~) (161)
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The same result for g follows from a perturba-
tion theory treatment of the generator Hamiltonian

H+ nq —Pq.

where the expansions (84) give

&H& 3 1
[H}2=-

&sa)
+

2 &82&2
(&Hs'& —

&H& &8'&), (170a)

For small P an approximate eigenfunction is

In& &n I Q I 0&

g g
n&0

(162)

(QH}, = .—+2, , (&QHS'& —3&QHS& (S')),
(170b)

where In& refers to a member of a complete set
of states, with energy E„, which are eigenfunc-
tions of a Hamiltonian h, itself an approximation
to H + nq. Defining for the moment Q =f[h, Q], we
have

e =[I+fe(q -&q&)]I0&.

For small p Eq. (163) is equivalent to Eq. (161).
In Eq. (76), Q is taken to have the definition

{QQ}=&QQ&—2,. (&Qqs ) -(qq) &s )). (170c)

Contributions through "fluctuation" terms have
been retained in accordance with the discussion.
of Sec. III.

If the only contributions to Q arise from the com-
mutation of Q with the kinetic part of H in Eq. (168),
then Q is the single-particle operator

Q=Q- &Q& (164)
8 8 8

Q = -— 4z, —2x, — -- 2y,
pl 88

g Bg) 8$]
(171)

Vile now wish to expl ess the mass parameter ln
terms of expectation values. The curly bxacket
symbols may be expanded in the manner discussed
previously. For the region E& V(n), the upper
sign of Eq. (76) is relevant. The denominator is

D,(o.) =QHQ —Q H

f«'(~
I [(Q o')H(—q —n') —(Q —o')'H]

I
n')

~(o)

where m is the nucleon mass. The energy F which
appears in Eqs. (170a) and (170b) through the defi-
nition B =H -E may be written

E =(H}+kinetic energy terms.

Neglecting the dependence of B on the kinetic ener-
gy gives

Z =(H}=&H&
——,[&Hs'& -(H) (8')],

2 &8'&

a = dr r, n Q r, n

0 = Jtd r tjh (rp Q)QQ(rp A) =(Q) .
%'riting

n' = n+(n' —n),

Eq. (165) becomes

D,(o) =-~C@q}-ÃH},

with

(166a)

(166b)

(167)

which may be used to eliminate explicit reference
to the energy in Eq. (169).

In the regions of deformation where Z& V(a),
the lower sign of Eq. (76) is appropriate. The
denominator in this case is

D.( ) =ÃHq} ÃH}=2(QH}- gq}-(QH}„

so that the mass parameter becomes

a, ' -2(q'H}+ffqq}+(qH}, '

(175)

q =f[H, q]. (168)

In the case of translations, fQQ} is equivalent
to (RP}which was shown to vanish, Eq. (125). If

(qq} were to vanish, then Eq. (76) would read

—= -[H},+2(qH}„
1

1

analogous to the simple translational result Eq.
(151). Generally, (QQ} is nonzero, so we have

2(qH};

The expansions necessary for this formula are
given by Eqs. (170) and

fq'H} =&q'H& --. .. [&q'Hs'& -&Q'H& &s'&I.

(170d)

The most difficult expectation values to handle
are (QHB') occurring in Eq. (169), and &Q~HB'&

occurring in Eq. (175). The partial-derivative
operator is equivalent to a sum of single-particle
operators, so expectation values of six-body oper-
ators are necessary in principle. In the event of
replacing the real Hamiitonian H in Eqs. (169) and



MICROSCOPIC THEORY OF NUCLEAR COLLECTIVE MOTION 967

(175) by a model Hamiltonian, expectation values
of operators such as QHs

' and Q'Hs' become ex-
pectation values of four-body operators, if the
computation is performed with eigenfunctions of
the model Hamiltonian. All other expectation val-
ues are less, or comparably, difficult to evaluate.

V. COMMENT ON POTENTIAL ENERGY

As mentioned in Sec. II, the potential energy sur-
face is not given by the expectation value (n IH I n),
but rather by the expression

f«'( nIH I
a')

V(a) =(H)=

fda'(nl n')

=(nlHI n)

1 (nlHs'ln) —(nlH In)(nfs' fn)
2 (n Is'I n)

(176)

For the translational case the "correction" terms
were shown to remove the energy of center-of-
mass localization present in (H). As the Hartree-
Fock value (n IH I n) is an upper bound to the ener-
gy, one hopes that in the case of deformational
motion the additional terms in Eq. (176) will tend
to lower the energy surface by removing the extra
energy of localization.

VI. SUMMARY

Although the idea of applying the simple genera-
tor coordinate method to nuclear vibrations has
existed for some time, ' the variational treatment
of the cranking term PQ and the subsequent identi-
fication of two different formulas for the associat-
ed mass parameters, applicable in two physically
different regions of deformation, are new exten-
sions of this approach. We summarize below.

Generator coordinates have been used to pro-
duce intrinsic wave functions yielding specified
expectation values of Q, and also of Q. The re-
quirement that the expectation value of the latter
operator be, in general, nonzero, induces a col-
lective motion on the wave function. The Hill-
Wheeler wave function is then formed by integrat-
ing the intrinsic function, multiplied by a weight-
ing function f, over the generator coordinate n
This wave function is then a functional of f and of
p, the coordinate associated with Q.

The energy expression is likewise a functional
of f and P. These two functions are chosen in such
a way that the energy be a minimum. Varying the
energy with respect to P yields an integral equa-

tion containing both f and P. Using the falloff prop-
erty of the overlap matrix elements (n I8 I

n') asso-
ciated with the collectivity of the state I n), P may
be explicitly expressed in an approximate way in
terms of f. This relation is used to eliminate P
from the energy expression, which finally is var-
ied with respect to f. An integral equation for f
results.

Another application of the falloff property of
(n I

8
I
a') yields a differential equation for f. This

is not of the Schrodinger form, and consequently
the mass parameter may not be unambiguously
identified, unless certain approximate forms for
f are utilized. Generally, different forms are
appropriate to the classical regions (E & V) on the
one hand and to the classically inaccessible re-
gions (E& V) on the other. This situation leads to
two expressions for the mass parameter, one val-
id where E & V, and one where E& V. This is to be
compared to the case of the cranking model, which
always assumes that there is enough energy avail-
able to generate the motion under consideration.
The energy surface maintains one simple form in
both regions of deformation.

The mass parameters are given by a combina-
tion of integrals over the overlap matrix elements,
in the generator coordinate space. These inte-
grals may be approximately equated to sums of
expectation values of few-body operators if the
matrix elements (n I

8
I
n') falloff quickly enough

with
I
n —n I. Preliminary numerical work indi-

cates that the matrix elements in fact have this
behavior. These approximations, which are nec-
essary to produce a tractable result in the case
of deformations, are studied in detail for transla-
tions, where the analogous expressions may be
evaluated both exactly and approximately. It is
also verified that the formalism produces the
known mass correctly for this special case, and
that the energy for the nucleus at rest is an im-
provement over (H).

Finally, the general result for deformations in
terms of expectation values is written down for
both the classical and tunneling regions. Those
terms are dropped which are expected to be small
in their own right, and which are demonstrated to
be small in the translational case. The final ex-
pressions are sufficiently tractable for numerical
calculation.
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Direct modifications are made to the off-shell two-body t matrices which are used as in-
put to the Faddeev-Lovelace equations for the three-body bound state and for scattering be-
low breakup. The t matrices are modified when either momentum argument exceeds a par-
ticular value, in a manner which will maintain off-shell unitarity when it is important. In
this way, we are able to test the dependence of these three-body properties on different re-
gions of the off-shell momenta. We find a strong sensitivity for both momenta less than
2 fm ' weak, potential-dependent sensitivity when either argument is between 2 and 5 frn ',
and essentially no dependence if either argument exceeds 5 fm ~.

INTRODUCTION

The ambiguity in the two-nucleon scattering
amplitude off the enex'gy shell can ln px'iDclple,
be resolved by studying many-body phenomena.
Sevexal authors have studied the effects on nucle-
ar matter and on three-body properties of making
phase-shift equivalent transformations on the scat-
tering wave functions. ' These procedures yield
modifications of the two-body t matrices over the
entire range of the momentum and the energy vari-
ables. To understand the manner in which a given
many-body phenomenon restricts the variation in
the t matrix, it is desirable to learn which regions

of momentum and energy play a dominant role in

the calculation. In this paper, we address our-
selves to the low-energy three-nucleon problem
and study the sensltlvlty of the blDdlDg 8Dergy and
of scattering below breakup to the two-nucleon
scattering amplitude in different regions of its
momentum arguments.

%8 consider simple models of the triton within
the framework of the Faddeev-Lovelace equations'
for separable two-nucleon scattering amplitudes.
The results presented here are based on modifica-
tions of the two-body t matrices thxough multiplica, -
tion by a function of momentum and energy chosen
so that off-shell unitarity could be maintained.


