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A nonlinear integrodifferential equation for the correlation function between two nucleons
in nuclear matter is obtained. This equation results by writing the (trial) expression of the
energy per particle in nuclear matter in a suitable form and applying subsequently the varia-
tional principle. The investigation of the behavior of the equation for 1arge internuc1eon dis-
tances x&2 leads to a new integra1 constraint on the correlation function.

1. INTRODUCTION

The determination of the nucleon-nucleon corre-
lation function, which is used in the variational
or "Jastrow" approach to nuclear matter' ' has
been a thorny problem for a long time.

In this approach the trial many-body wave func-
tion

+» =s» IIf(~~&)
j &1

is employed for the calculation of the (trial) ex-
pression of the energy per particle E/¹

In expression (I), S» is a Slater determinant in
which the orbital parts of the single-particle wave
functions are plane waves and f the nucleon-nucle-
on correlation function. This should be chosen to
be zero inside and at the hard-core radius c of the
nucleon-nucleon potential and to approach unity
sufficiently rapidly for large internucleon dis-
tances.

The E/N is written in the form of a cluster ex-
pansion

+g +g +. . .
2 3

in which only the first few terms are retained. The

expansion ls often truncated at g2 and the enelgy
per particle depends upon the correlation function
only through the second term, which is proportion-
al to the constant density p of the (infinite) nuclear
matter. The first term is just the Fermi energy'.

The problem of determining f has been faced in
two ways:

In the first, a suitable analytic form is assumed
for the f in which there are certain parameters
and the E/N is minimized with respect to them.
It was realized, however, that the correlation
function has to be restricted in order to avoid the
so called "Emery difficulty, ""which is due to the
absence of normalization in the above-mentioned
truncated cluster expansion of E/N. Various re-
strictions have been used. The early types of
them have been suggested in Ref. 3. The condi-
tions which were employed recently are of inte-
gral form, and one of the parameters in the ex-
pression of the f is fixed by the requirement that
the considered condition is satisfied. It should be
noted, however, that it is not clear which of the
various conditions is the appropriate one to be
used, and consequently there is a degree of arbi-
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1 JtII f'(s'o)&t(~g~~)drs" dr»

p'f'(w, .)

The cluster expansions of these functions are well knovrn2:

G~{&»)=D»+ p J [@»&sP»s+2&»(D»s -D(P»)]d rs+' ' '

"l

F{rls) =&(D»+P J' [&»&ss&(Lt»s+&»(&t&»s -D»&(D»)l~ rs+ ' '

13a„=j--l (Z,s„),
8

i(If + ) — 21(+s'+»)
5'+lR

n„,=1 [l'-(Z-,r„)+ l'(Z, r„)+ l'(Z, s „)]+—,i(I(,r„)l(Z„s „)i{@,r„),2

jt,q=f (sz( )t—1, s,y=1, 2, 3. (14)

For nuclear matter in which vie are particularly interested, the degeneracy of the single-particle levels
is s =4. We write the radial distribution functions Gz and F in the following forms [which are easily ob-
tained from expressions (8) and (9)]:

( )
Ã-1 Gt, (s»)

F y'la

f'(s»)G~(s»)(j r„

N-1 F{rs)

J"f'(~»)G~(»)d rls

and we substitute into expression (7):
"

AQ

, ~s„s (j~l-1)-.'p
2

[(~f)s-fVsf]+V(~»)fs G,(~»)-, tsYfs F(r») .dr»

N 5 2m
PJI f (s»)G„(s'„)dr„

jjy writing tile E/N in this fol'In we cRn allow for tile normajjsatjon. Qarjatjon of (1'1) js 8(jujvajent (ln the
llmlt &- ~p & - ~p such that NjQ =p) to variation of (7) provjded that

P Jl [f Gs (&») —1](jr»=flllite constant .

We should note that this constraint has its orjgin, to the denominator Rnd the fact~~ (jtl

(1i), Which RppeR1' because we hRve wrijtell tile functions G& and F jn the form (15}and (18)
It is obsel've(l tllRt condition (18) js a. Bolt of "general constraint" jn the sense that lt merely

the fRct (itl R cotlclete mRnll'er, Ilowever, which js very important for the structure of the 8(juatjon to be
obtained and jts Rsymp«tjc behavj») th« the co»elation function must be of "finite. range. " The precise
VRlue of tile llljegl Rl ln (18) ls llot yet known. Tile 'specjfic constrajnt" on the correlation function will be
derived in the next section.

The variational problem me have to solve is therefore the following:

~
2 JI &~&» fif' f")«»=0~
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with

(21)

2, = [f'Gr(r») —I]r„'.
The Euler equation of the variational problem is

(22)

Bg d Bg d 8g
af dr» Bf' dr»' Bf" (22)

By taking into account the dependence (through integral expressions) of the distribution functions Gr and

F on the correlation function we obtain after some algebxa the following equation:

(
,dG (r„) dfr„G,(r„)„,+ 2r„G,(r„)+r„

m +12 +12 +12

k2
rl «„'[V(r )+Z 0){rr„)~

2
r„~ P(r„))

g' dG„(r„), d'G~(r») d ~r
+12 +2&12 2 FPr»)

2m dr» dr» dr» r»

2 + + y~ +y 2 F 12

+y ' — ——~ Fr =0.

In this equation a/af denotes partial derivative with respect to f.
We see that the Euler equation is a nonlinear integrodifferential equation. This has to be solved with

boundary conditions

(25)

We may note in passing that (24) haa similar structure to the Euler equation for a. many-particle Bose
system. In the case of such a system the terms arising from the F do not appear and also instead of C~
ere have the function G, defined by

~(~ I) Jtg f (.„)dr, ~ dr„
G(r») =

mfm( )
I Q f'(r„)dr, . dr„

In Ref. 7 an approximate expression for G(r») has been used.
We give finally the equation which results if we make the transformation

f(r„)=I ——s(r„).C

12
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This equation is;

II' ~ ~ IsG(r„) d'r dG(r„) I. s ~ -,
) drI

m " " 4 Bf dr„' dr» 4 sf

d'G„(r„) d r„+c
2

~2» d 2

l
' F(r~~]

m +lR +18 +12

l
n r„-, , @ dG~{r.2) i d Gr(r») d ~r

rim ' FH») +2 r» d +~a» d a
+3.2 +12 +12

)s'SG (r„), Ir'r' ISG (r \ d'r s dr ' I I ~r -( r dr
2 sf 2m 2 Bf dri2' r» drim 2 &f rim rim dr»

The boundary conditions for the new correlation function g are

(29)

It is interesting to investigate the behavior of the integrodifferential equation for large values of r». As
we shall see this investigation will lead to the "specific" constraint on the correlation function, we men-
tioned in the previous section.

I.et us consider first the simplest case, namely, that the cluster expansions for G~ and F are truncated
at their first term. That is

Therefore we have

(30)

(31)

Taking into account expression (12) and that for large r»,

l(K„r») = 0,

we see that in the region of large distances r», Gr tends to unity and F to zero The po.tential p{r») tends
also to zero. Therefore, beyond a certain very large distance d, the equation takes the forint

—Xu=~(-1.), d&rI 4 Q

fPl &'ga C
3.3 (33)

It is obvious that the boundary condition at infinity [u(~) =0] cannot be satisfied, since the right-hand side
of the above equation becomes infinitely large when r»- ~. Even if X=0 [which means that constraint (18)
is not taken into account] this condition cannot be satisfied. In such a case the solution of (33) is c,r»+c,
(d& r»& ~) and even if we choose c, =0, u becomes a constant and therefore f behaves for large r» as
1 —cc,/r», with the effect that the integral in (18) has not a finite value, as we expect.

Let us now truncate the cluster expansions for Gr and F at the next term (proportional to p). That is we
include the three-body terms but we neglect the higher terms, indicated by dots in formulas (10) and (11).
We 86e that the distribution function Gz can be written ln the forDl
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where

(0) 2 1 2 2 2 2 1, 2
Gr(r») = ——l» +p th» 33 ( $3» 33 ) 3»»l33»+2p tl3» ——I» + 3lh31»l» 3l„ 1» dr» ~s s s s s s

(35)

[We have put l(Krr„) =l, f, l,j =1,2, 3.]
Taking into account expression (32) and that the integrals in expression (35) are supposed to be calculat-

ed with a function h =f' —1 = (c'/r»')u' —(2c/r»)u approaching zero sufficiently rapidly for large r», we
see that for d&r12&~

G'p'(r„) = 0 (36)

and therefore G~ becomes again close to unity for large r». Obviously the functions dGr/dr» and d3Gr/
dr»2 should tend quite rapidly to zero. The examination of the asymptotic behavior of the other functions
in the equation, namely,

—F(r„),r12 ——F(r„))r„"' af ' af r„
can be done in a similar way. Among these functions the aGr/sf requires some special attention and we
shall deal with it in detail.

The expression for aGr/af can be easily obtained from (10) (truncated at the three-body terms):

&G~
8 P 13h'23 123 + 4 13 123 D 1 12 (37)

We write

f=1 f" (thst tsf"'= ——s (38)

where f'"tends sufficiently rapidly to zero for large distances. In this way we obtain the following expres-
sion for a Gr/af:

where

K =4p Jt (D» —1)d r»+4p) (f —1)D»d r». (40)

Note that we have put, in the above definite integrals, r» instead of r». The function (aGr/af)"' is given
by

(0) 12122 (0) 1 2 1, 2

af
=4p h» -—l» ——l» +—,l»l»l» dr, +4p f»h» D»- —l» ——l» +—,l„l„l„dr,s s s s s s

(0) 1 2 ", (0) 2 2
+4p~l f„——l» dr+4p (1+f») 3l»l»l» 3l„ l drhs s s (41)

It is easily seen from this expression that for
large 'Y»

existence of a solution u, approaching zero for
large r» is not possible. This term is

(42)
[-X(1+-,'K)].

C
(43)

Taking into account all the above remarks we

see that while the left-hand side of (28) [having
also divided both sides of (28) by cr»] can approach
zero as z» becomes very large, there is a term
surviving in the right-hand side of the equation.
Unless it is required that this term be zero, the

Therefore we must have K =-2. That is

4p D» -1 d r„+4p ' r„—1 D»d r„=-2.
(44)

This condition may be written more compactly as
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follows:

2p 1 — ' re Dj2 dr»=1. (45)

We may remark that the very important term
r»/c[-X(1+ —,'K)], as well as the other equally im-
portant terms in the left-hand side of the equation
(28) which become asymptotically -X(I +K) [note
that we have divided both sides of (28) by cr»]
owe their origin to constraint (18) (since other-
wise X should be zero), and to the inclusion of the
three-body terms in the cluster expansion of G~.
If these terms had not been included then & =0 and
the terms (43) could not become zero, since X o0.
It is also clear that in order (28) has a solution
which tends to zero for r»- ~, the value of X must
be negative.

If four-body and higher terms are included in the
cluster expansions, the examination of the asymp-
totic behavior of the equation may proceed in a
similar way. This, however, becomes very com-
plicated.

We finally point out that condition (45) is a "spe-
cific" constraint on the correlation function in con-
trast to (18), which merely requires the value of
the integral p f [f'G~(r») —1]d r» to be any finite
number. The examination of the asymptotic be-
havior of (28) led us to "specific" constraint (45)
and therefore the value of the I.agrange multiplier
X should be chosen in such a way that this condi-
tion is satisfied. Then the value of the integral in
(18) is also specified.

4. DISCUSSION

According to the results of the previous sections
the nucleon-nucleon correlation function is ob-
tained by solving numerically the nonlinear equa-
tion (24) with boundary conditions (25) [or equiva-
lently (28) with boundary conditions (29)], choos-
ing the value of X in the prescribed way.

It might be argued that due to the complexity of
the problem such an approach is not practical. It
should be noted, however, that at least an approx-
imate solution may be obtained if we linearize first
this equation and follow techniques analogous to
those used for the impure nuclear matter prob-
lem. " 'Ihe pure nuclear matter problem we are
discussing is of course more complicated, but no

Av +Bv+C =0 (4I)

to which condition (45) is equivalent for a correla-
tion function of the type (46). The A, 8, and C are
given integral expressions. The other parameters
(lj,„p,„and Kz) are determined by minimizing the
trial expression of the energy per particle with re-
spect to them.

It is clear that in the above described approach
at least two parameters should appear in the cor-
relation function, so that the one is fixed by con-
dition (45) while the other is left for the minimiza-
tion of E/N. Therefore one-parameter correlation
functions, such as

0 0~&y' ~&c

12 („)f(~ )=
12 ~

Q (f' ( 00
(48)

which has been frequently used in the past, are
not appropriate.

It might also be advisable to take p., = p,, in the
expression of the correlation function (46) if the
value of the so-called "healing integral" (or
"wound integral" ),

Q =p 1 —
gg Djad re (49)

is large, since this would indicate that the magni-
tude of the omitted higher terms is not sufficiently
small.

It should be also noted that the constraint we
have obtained on the basis of the theoretical argu-
ments developed in Sec. 3 differs from two other
well-known conditions (given in the form of inte-

fundamental difficulty should arise in obtaining
such an approximate solution, provided that a com-
puter with very high speed and large memory is
available.

On the other hand the analysis of Sec. 3 has led
to a new integral constraint on the correlation
function. This constraint could therefore be used
when a correlation function of given analytical
shape is assumed, as for example" "

0, 0 &r„&c
y(~ ) — ' "

(46)
(I e Pt" » )(I yve Pa "» ) c (y (go.

The value of v should then be chosen to be one of
the roots of the second-order equation

TABLE I. Comparison of the constraints on the correlation function for various physical systems.

Physical system
Many-particle
Bose system

Impure nuclear matter
(hypernuclear matter) Nuclear matter

Constraint on the
correlation function

2p (1-fz & )dr& & =1 (1-fg2'D f2) dr/2 2 p (1 —fg2 D(2)dr(2 =1
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gral constraints), which have been used in nuclear
matter calculations, but have not been obtained in
a way similar to that we have exhibited, namely:
(a) The (first order) "normalization condition":

P J~ (1 -f» D»)d r» 1 P (50)

(b) The "orthogonality condition, " which arises
from the imposition of an "average Pauli principle
restriction":

P I (1 f„)D-„dr„=0. (51)

These conditions have been discussed recently
by Clark and Ristig. " The first" "is formally
closer to ours, though there is a difference by a
factor of 2. The second' "is imposed "in a de-
sire to make Jastrow theory look as much like
Brueckner theory as possible. ""

Finally it seems appropriate to make a compari-
son of integral constraint (45) with the correspond-
ing constraints for the other systems, that is of
the hypernuclear matter and the many-particle
Bose system, we have studied in a rather similar
way."

It is seen from Table I that in the case of the
many-boson system the constraint differs from
(45) in certain aspects. This constraint goes over
to (45) if fs s -f» and the antisymmetry is neglect-
ed (that is D„=1). Obviously this is expected.

Pertaining to the case of hypernuclear matter
the difference is due to the lack of a factor of 2

in the constraint for this system. This may well
be understood by making a comparative study of
the derivations of the constraints in the two cases.
In the ordinary nuclear matter the pair of nucle-
ons (1,2), which we treat explicitly in the varia-
tional treatment "is coupled" to the third nucleon
by two functions h =f' —1, while in the case of
hypernuclear matter the pair (1, A) is coupled to
nucleon 2 by only one h function. Note also that
in the latter case the constraint is again on the
nucleon-nucleon correlation function and not on
the A-nucleon one, for which the integrodifferen-
tial equation was derived.

In conclusion we would like to emphasize the
significance of the appropriate treatment of the
energy denominator and the inclusion of the three-
body terms in the cluster expansions.
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