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I. Lovas*
Institut fu'r KernPhysik, Kernforschungsanlage, Julich, Germany

E. Drones
Centra/ Research Institute for Physics, Budapest, Hungary

(Received 1 September 1972)

An exactly soluble three-body model is constructed which consists of two light particles
and an infinitely heavy one having internal degrees of freedom. This model is designed to
simulate various phenomena associated with isobaric-analog states, showing up in scatter-
ing and transfer reactions. The formulation and solution are done in the framework of Fad-
deev's theory using nonlocal separable potentials. The cross sections are calculated in the
neighborhood of the channel thresholds. The effect of a resonance on the threshold is studied
in detail and threshold anomalies are searched.

INTRODUCTION

The anomalous behavior of the nuclear cross
sections at the channel thresholds mas predicted
many years ago by signer. ' ' Such a thzeshold
anomaly, a so-called Wigner cusp was observed
experimentally by Malmberg' in the 'Li(P, P)'Li
reaction in the neighborhood of the (P, n) thresh-
old. A similar cusp was found also in the 'Li-
(P, P'y)'Li reaction. ' As far as we know, since
that time no other clear-cut example of the thresh-
old anomaly has been reported. In the case of the
'Li(P, P)'Li reaction the (P, n) threshold lies in
the vicinity of a strong resonance.

It was pointed out by Moore et aL. ' that a pro-
nounced dip can be observed in the excitation func-
tion of the "Zr(d, P)"Zr at 8, = 7 MeV and this
energy just corresponds to the threshold energy
of the "Zr(d, n)"Nb* process where the residual
nucleus remains in an isobaric analog state as-
sociated with the ground state of the "Zr. To
explain this dip as a threshold anomaly seemed
to be the most appealing interpretation, ' ' but, if
this simple explanation is correct, then similar
anomalies are expected to appear in the (d, P)
cross sections on other nuclei too. The experi-
mental efforts, however, to observe threshold
effects in other areas of the Periodic Table were
unsuccessful up till nom. If one assumes a coin-
cidence of the threshold with a resonance just
as it happens in the case of the Li then in princi-
ple it is possible to understand the peculiar be-
havior of the "Zr.'

The strength function for P-wave neutrons has
its maximum in the vicinity of A =90; therefore
it seems reasonable to expect such a coincidence.

To clarify the situation it mould be desirable

to perform such an analysis in which the cou-
plings of the various channels and the resonance
phenomena are treated in a consistent way. At
the moment to attack this problem in its full com-
plexity is beyond our capabilities, but to con-
struct an exactly soluble model which incorpor-
ates all the essential features of the problem is
possible. In this paper we define such a model
and studying its solution we try to draw some
tentative conclusions for the real nuclei. The
model is essentially a generalized version of the
Lane model. The target and the deuteron are
considered as a three-body system and a charge
exchange interaction with the target is assumed.
Since most of the technical details of the model
were published earlier" "we restrict ourselves
only to the most important points.

MODEL

In our previous paper we have constructed an
exactly soluble three-body model for the study of
resonance phenomena in nuclear reactions, as-
suming all three constituents of the model to be
elementary. Now we drop this assumption and we
generalize our model allowing internal degrees of
freedom and internal excitations for the particles.

The general form for the Hamiltonian of the
three-body system is given by

H =hi+h2+h3+ V, + V2+ V3

where k stands for the Hamiltonian of the parti-
cle n and the interaction between the particles P
and y is denoted by V (Peywc. ) If a parti. cle
does not have internal degrees of freedom or if
the internal states are degenerate, then the Hamil-
tonian h is just the kinetic energy K .

In the three-body system there are four channels
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defined by the channel Hamiltonians:

H„=H + V (n = 0, 1, 2, 3),
where

Ho = h i+h2+ hs ~

V, =O.

The possible initial and final states
I
4', & are

the solutions of the channel Hamiltonians:

The transition amplitude between the
I 4,& and

the I4 z, & states is obtained as the "on-shell"
matrix element of the transition operator
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The transition operators Us (z) satisfy the Fad-
deev-type" equations introduced by Alt, Grass-
berger, and Sandhas'4:
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FIG. 1. The characteristic features of the two-body

subsystems.

where T~(z} are the two-body T operators satis-
fying the Lippmann-Schqinger equations

Tz(z) = Vz + V&GO(z)T&(z)

and G,(z) is the Green function of the noninter-
acting system

G,(z) = (z -H, )-'. (6)

In the construction of the model system, we intro-
duce the following simplifying assumptions. "

The first particle is a "neutron" (n'}. The sec-
ond particle is a "nucleon" which can be either in

"proton" (p) or "neutron" (n) state. The masses
of the first and second particles are eilual (m, =m,
= —,) and we forget about the spin variables. The
third particle is a "heavy nucleus" (m, =~) which
can be either in "core" state characterized by
the isospin quantum numbers T, M~ and by the
energy E, or it can be in the "analog" state having
the same isospin T, but with the projection M~ -1
and energy F.„. As a consqeuence of these assump-
tions the Hamiltonian can be represented as a
two by two matrix in the space of the third parti-

TABLE l. The parameters of the potentials defined by Eq. (11) and the coordinates on the complex momentum plane

of the bound-state and resonance poles of the two-body T matrices. In the case of n =1, 2 the poles are obtained by

taking AcA

A, , (MeV ) 11.00
0
3.80

18.25
-79.00

3.16
9.48

-1.50
81.64
5.00
3.80

1.00
0
6.00

Bound-state
poles (MeV 2)

Resonance
poles (MeV )

Ec (MeV) 0.00

0.040
0.012

E„(Mev)

0.012
1.000
1.912i

+0,945
-0.043 i

7.10

1.000
0
2.906 i

0
1.000
2.906 i

2 7.599
0
1.061i

0
5.520
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FIG. 2. The {p,p) and {p, n) cross sections in the 0.=1
subsystem.

cle states

&iIe Ii'& =(z, +ac, +z, )a, ,

+(&iI ~8Ii&+&iI ~8Ii&)&«+&il ~iIi &,

where E& is the eigenvalue of h,

a, Ii& =E, Ii& (i =c,g).
It is a well-known fact that if one represents the
interactions by local potentials, then the Faddeev
equations lead to a system of coupled integral
equations of two variables. The solution of such
a task. is more than tedious. In order to circum-

vent this difficulty we will use separable, non-
local potentials. In this case the two-body T ma-
trices are also separable and can be obtained very
easily in an algebraic way. As a consequence of
the separability of the T matrices the Faddeev
equations are reduced to a set of coupled integral
equations of one variable. In addition to this prac-
tical reason there are some further arguments
in favor of the separable nonlocal potentials.
First, there exists a number of such two-nucleon
potentials which are capable of reproducing fairly
well the scattering phases and the properties of
the deuteron. " Second, detailed calculations show
that both the bound states and the scattering states
of the three-nucleon system can be interpreted
reasonably well by means of very simple separa-
ble potentials. " It was pointed out many times
that the success of these calculations can be
found in the fact that even the simplest separable
potential is able to generate the proper pole struc-
ture of the T matrix and the nucleon systems are
only moderately sensitive for the further details.
Furthermore it is worthwhile to emphasize that
the separable potentials are very useful and very
convenient tools for model calculations and for
the investigation of specific problems of nuclear
reactions. By properly choosing the form factors
of the potentials one can easily generate the de-
sired bound state and resonance poles of the T
matrices and one can automatically get rid of
unnecessary complications, which would mask the
essential features of the model problem to be
studied.

Exactly because of these circumstances we define the model Hamiltonian in terms of nonlocal separable
potentials which in momentum representation read as follows:

&&,k, i
I H0 I k,'k,' i'& = (}'2,'+ }'2,'+ Z,. )6(g, -g,')6(k, -k') g„.,

2

&&,k, i
I v~ $,' k,' i'& =- &(p„—p„'}A'«' Z g~.(q~)g~, (q„'),

()i =1),

p ~ I
n

n
n' n

I

-8.44

p THRESHOLD RESONANCE
(I AR)

—2.25

d THRESHOLD

ENERGY (VOV)

-1.34

n THRESHOLD

0.00

RESONANCE BREAKUP
(SINGLE PARTICLE ) THRESHOLD

FIG. 3. The possible configurations of the three-body system below the breakup threshold.
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where q, =k„p, =k„q, =k„p, =k„and finally q, = —,'(k, -k, ) and p, =k, +k, are the relative and total mo-
menta of the two light particles, respectively. The form factors are chosen as follows:

(12)

2

(k,k,il7 (s)Ik,'k,'i) =-5(pn —pn) Q 8', (q„)~', , ... (s —p„')g„,.(q„').
g, s =1

Substituting into the Lippmann-Schwinger equation, an explicit expression can be obtained for the inverse
of T:

[+(a)(+)]-1 [A(a)]-1 g +g Rns(qa)gns (qa) 4+ 2d
0 2

~0(S
(q )

q
2

p
2

q
2 y

2
~a +f.aS Qa +~nS

The couplingconstantsA~;~ form diagonal matrices except for o. =1. The nondiagonal element A~c'~„(=A~„'c~)

plays the role of the strength parameter of the charge exchange between the "nucleon" and the "heavy nu-
cleus. " The T matrix has the simple form

PROPERTIES OF THE TWO-BODY
SUBSYSTEMS

Studying the pole trajectories of the T matrices,
one can get appropriate sets of potential parame-
ters providing the desired bound states, reso-
nances, and scattering properties of the two-body
subsystems. The potential parameters and the
"coordinates" of the bound-state and resonance
poles are listed in Table I. Using self-explana-
tory notations, the characteristic features of the
subsystems are summarized in Fig. 1.

In order to simulate the Coulomb effect, the po-

tential acting on P was chosen to be considerably
weaker than the potentials acting on n and n'. "
As a consequence of this choice there is no bound
state for P.

To see the behavior of the "heavy nucleus+nu-
cleon" system, we have calculated the (P, P) and

(P, n) cross sections using the on-shell elements
of the two-body T matrix. Actually this is equiv-
alent with the solution of the Lane model.

The cross sections exhibited in Fig. 2 show two
resonances. The first resonance appearing in the

(P, P) cross section corresponds to the isobaric-
analog state [see the configuration (a) in Fig. 1];
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FIG, 4, The energy dependence of the (p, p), (p, ~).
and (p, d) cross sections for l =0, in the case when the
resonance is far from the n threshold indicated by the
arrow.

FIG. 5. The energy dependence of the (d, d), and (d, p),
and (d, n) cross sections for / =0, in the case when the
resonance is far from the n threshold indicated by the
arrow.
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FIG. 6. A typical differential cross section for the
(d,p) reaction summed for the first five partial waves at
E =-0.95 MeV.

the other one is a single-particle resonance in
the n channel [see the configuration (b)j.

complex-valued amplitudes corresponding to the
eight different form factors figuring in the two-
body interactions.

Below the breakup threshold where the singu-
larities of the kernels can be handled very easily,
the solution was obtained by Gaussian quadrature.
To get numerically reliable solutions it was
enough to use 16 Gaussian points. We have per-
formed the calculations for the (P, P), (P, n), (P, d)
and for the (d, d), (d, n), (d, P) processes Th.e
correctness of the solutions and the numerical
precision were checked by the optical theorem
and by the detailed balance theorem. The energy
dependence of the cross sections for the domi-
nant l=0 case is exhibited in Figs. 4 and 5. The
differential cross section for the (d, P) process
is shown in Fig. 6. Since the particles have no

spin and the interactions act only in relative s
states, the total angular momentum is just the
same as the orbital momentum of the bombarding
particle. The contribution of the higher partial
waves above l =4 was found to be negligible.

DISCUSSION

CROSS SECTIONS

The possible configurations of the three-body
system below the breakup threshold (8& 0) are
depicted in Fig. 3 together with the main features
of the spectrum. After having fixed the properties
of the one- and two-body subsystems, the solution
of the Faddeev equations is quite straightforward
(see Ref. 10). In our particular case, for each
value of the total angular momentum the Faddeev
equations can be reduced to a coupled system of
integral equations of one variable for the eight

First of all, we must emphasize that the re-
sults obtained for the various cross sections are
exact in the framework of the given model. This
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FIG. 7. The cusp in (p,p) cross section in the o, =1 sub-
system, when the resonance is nearly on the threshold.
The parameters are the same as in Table I, except for
A fg

——11.215 MeV Acc= 0 0425, A„A = 1.0025, and AcA
(~)=AAc =0.06.

FIG. 8. The energy dependence of the (d, d), (d, p),
and (d, n) cross sections for l =0, when the resonance
is near to the n threshold. The potential parameters
are the same as in Table I, except for Ac~A=0. 006 and
A A A

——6.072. The threshold is indicated by the arrow.
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means that after having defined the Hamiltonian
we have no freedom to neglect or overemphasize
any aspect of the reaction process by means of
approximations or additional assumptions. On

the other hand, we are able to relate uniquely
the structure of the cross sections to the proper-
ties of the two-body subsystems as it is demon-
strated in Fig. 3. Analyzing the results obtained
so far, we have to stress that threshold anomaly
appears neither in the "heavy nucleus+nucleon"
system (Fig. 2) nor in the three-body system
(Figs. 4 and 5). The punctum saliens of this paper
can be formulated by the following question: What
will happen if the resonance approaches the thresh-
old'P To get the answer we have repeated the cal-
culations for various sets of parameters.

In the case of the "heavy nucleus+nucleon"
system we have shifted the single-particle reso-
nance to the threshold. The result is shown in
Fig. V. The conclusion is quite clear, namely
if the resonance overlap with the threshold and

the coupling between the two channels is strong
enough, a pronounced %'igner cusp arises. This
corresponds just to the case of the 'Li+P reac-
tion. In the case of the full three-body system we

have shifted the resonance again step by step into

the neighborhood of the threshold by increasing
the n n'-interaction strength. A typical result is
to be seen on Fig. 8. In addition to the resonance
effect no distinguishable threshold anomaly was
found.

More precisely, if there exists any threshold
effect at all then it is smeared out by the compu-
tational errors due to the Gaussian quadrature.
Obviously, it is impossible to draw firm conclu-
sions from such a simplified model for real nucle-
ar processes. Therefore, we are forced to formu-
late our conclusion in the following precautionary
way. The results obtained from our model sup-
port the assumption according to which the neces-
sary but not sufficient condition of the observa-
bility of threshold anomaly is the overlap of a
resonance with the threshold.
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