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to one's convenience. For small A, the wave func-
tion does not seem to be so nearly factorable and
solving Eq. (2V) should lead to an improvement in
both the energy and the wave function.

In summary, we point out that a continuous class
of transformations (for generating a state which is
an eigenstate of the total momentum from a state
which is not) have been presented. Of this class,

the transformation which minimizes the energy is
the transformation characterized by the function G
which sa'tisf led Eq. (2V). This transformation
yieMs the variationally "best" intrinsic wave func-
tion (t"

~
4). Thus quantities which may be sensi-

tive to how the center of mass is treated" ' should
be calculated using the transformation character-
ized by G as shown above.
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The isoscalar magnetic moments and Gamer-Teller p decay of the systems A ~11, 13,
15, 17, 19, and 21 are analyzed in an attempt to extract, in a largely model-independent
way, the effective nuclear renormalization of the axial coupling constant: gz g„,. We
find: gz~/g~= 0.920 + 0.047.

Conservation of the vector current, which, for
the purposes of this paper, we take to be absolute,
assures us, in effect, that the Fermi p decay of
nucleons bound 1nto a nucleus 18 ldentlcal 1Q 1Q-

trinsic strength with that for nucleons in the free
state; The strong interactions that clothe the bare
nucleon in the free state and that, additionally,
bind nucleons together into complex systems do
not renormalize the effective intrinsic vector cou-
pling constant; we do Qot have to ask how the over-
all nuclear Fermi P-decay strength ls divided be-
tween baryonic and mesonic components, since an
exact compensation exists and the differing me-
sonic currents as between one nucleus and another
merely rearrange the seat of the vector P decay

as between baryons and mesons but do not change
its total strength. The situation with axial decay
is quite otherwise; the axial current is not con-
served; the strong interactions renormalize the
axial coupling constant of the bare nucleon so that,
for free nucleons, ~g„(~1.23~g„(and must effect
an additional renormalization when they bind nu-
cleons together into nuclei, The intrinsic Gamovr-
Teller p-decay strength is therefore not constant
from nucleus to nucleus nor from transition to
transition within a single nuclear system nor can
it be associated in a unique way with baryons and
arith mesons; the effect of meson currents on the
axial decay, the division of the strength between
single nucleon and many-body terms and so on
must be expected to vary smith every circumstance
but without the overriding compensation between
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the various sources that brings such simplicity to
the vector case. In short, even if we were in pos-
session of perfect nuclear (nucleonic) wave func-
tions we should not expect the rate of Gamom-Tel-
ler p decay to be given by the conventional expres-
sion incorporating the free-nucleon axial coupling
constant gA. We could, given such perfect wave
functions, extract, from each transition, an effec-
tive axial coupling constant g„,but me should not,
even then, expect the g„,to be constant from tran-
sition to transition within a single nuclear system
nor simply to change slowly and smoothly from
one nucleus to the next because, as remarked
above, axial P decay is not a purely single-nucle-
on affair. We might, however, reasonably hope
that, in sufficiently large nuclei, the many effects
contributing to the axial decay might boil down to
an acceptable representation in terms of a g„,al-
most constant from transition to transition and
changing little from g to A+ 1, But even this is
only a reasonable hope. It mould obviously be of
very great interest to know the degree to which

g„,c g„and to see whether the differences, if any,
resemble those expected from ideas about the re-
normalization mechanisms.

Unfortunately me cannot simply extract g„,from
experimental data because we are far from having
available perfect nuclear wave functions. It is
possible that our present theoretical knowledge of
the wave functions of the A =3 system is good
enough but that cannot yet be assured us and, in
any case, A. = 3 can surely not be a "sufficiently
large" nuc1eus in the sense of the previous para-
graph. Intensive experimental and theoretical
studies of tritium P decay indeed suggest that the
Gamow-Teller component. of that decay is slightly
accelerated over expectation based on the use of
g~ but we shall not reviem this special situation
here. Returning to heavier nuclei, we reiterate
our lack of confidence in theoretical Gamow-Tel-
ler matrix elements if, as is presumably the case,
accuracy of a few percent is to be aimed at. The
situation is obviously least gloomy for "good sin-
gle-particle" systems such as A = 17 but even there
the effects of configuration mixing may not yet be
wholly understood and, in any case, g„,extracted
from a single transition could be misleading for
the reasons just discussed.

Since, on the one hand, me must be able to study
a suite of neighboring A. systems in order to iron
out the fluctuations to be expected in g„,while, on
the other hand, me cannot have adequate confidence
in the theoretical matrix elements, it seems that
our quest must fail. We argue here that this is not
so and that me may, in fact, proceed towards g„,
in a largely empirical may without major reliance
on theoretical wave functions at all.

P DECAY OF MIRROR NUCLEI

f t is the f t value incorporating the "outer" radia-
tive correction'; J is the spin of the ground state
of the mirror pair; &»,o, } is evaluated in the
ground state of either member of the mirror pair. '
R, = ~g„,/g» ~

which we hope to compare with R
=

~ g„/g» ~

=1.226+0.011"for the free nucleon so
that R,/R is our measure of the effective addition-
al nuclem renormalization of the axial coupling
constant (if it should eventually turn out to make
sense to attempt to define such a quantity). The
constant 6152+ 10 sec derives from pure vector
nuclear P decay using the two best-studied (T =1)
cases of "Al (f t= 3073+ 5 sec) ' and "0 (ft= 3081
p 11 sec)' which we combine to give 3076+ 5 sec
and then double as appropriate for our T = —,

' cases. '
So from mirror P decay we may extract R~&»o,}~

and hence the desired R, if only &»,o,) were known
reliably. We nom address ourselves to this prob-
lem.

MAGNETIC MOMENTS OF MIRROR NUCLEI

Consider the conventional shell-model expres-
sion for the magnetic moment p, :

2V =&(1 —»,)(t,+ o3u,}+(1+»,)o.u.}, (2)

where p, ~ and p, „arethe free-space nucleon mo-
ments. ' This expression is not complete because
of the mesonic renormalization effects that oper-
ate upon p. ~ and p,„,and also upon the orbital g
factors, within nuclear matter in much the same
way as they operate upon g„in our own problem.
These mesonic exchange effects are of quantita-
tively unknown magnitude but they may well amount
to several percent and therefore seriously limit
the use that may be made of expression (2). The
mesonic exchange effects are however very large-
ly absent (Sachs theorem) from the isoscalar mag-
netic moment:

2u. = &4}+ (u&+ V.)&o, ) .

Noting further that

~=&4)+ 2&o3},

Consider p decay between the ground states of
T = —,

' mirror nuclei such as "F-"0etc. Such de-
cay has two components, namely, a (superallowed)
Fermi component, whose strength may be confi-
dently and accurately estimated using conserved
vector current, and a Gamow-Teller component
in which we are interested. In detail, we have

6152 + 10
1+R,'(J + 1/Z)&~, o,}'
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Nom

(4)

TABLE I. Experimental data used in the analysis.
Be~ (v&o&) ~

is derived from the ft value for the p decay
using expression (1}of the text. (o &l& is derived from
the isoscalar magnet moment using expression (4) of
the text.

3
2

f
2

2

2

2

0.5747 + 0.0040

0.3235 + 0.0024

0.3655 + 0.0017

1.096 + 0.0043

0.9216+ 0.0021

0.560 + 0.015

0.5914+0.0026

-0.3153+ 0.0009

-0.1689+0.0021

0.8656 + 0.0032

0,6358+ 0.0026

0.5909 +0.0003

' All the masses involved in the compilation of the ft
values are taken from Ref. 10 with the exception of, that
of ~50 which is from data given in Bef. 11which yield
a positron maximum kinetic energy of 1731.8 a 0.7 keg.
All decays have been corrected for E capture following
standard procedures. For A=ll, 13, 15, and 17 no
allowed p branch ln competition with the ground-state
branch that w'e are concerned with is possible. For A
=19 tBNe could enjoy an allcwed decay to the Zv = f~
state at 1554 keg but a log ft of 4.0 would give a branch
of only 0.11% so this possibility has been ignored. For
A =21 correction has been made for the (2.3 + 0.2)'fo p+

branch to the fiist excited state of Ne following Qef. 12.
For the l~C lifetime we have used t&&2 =20.40+0.04 min
from Ref. 13 which agrees with the t g)2 =20.39+0.06 min
recommended in Ref. 14. For the 3N and ~50 lifetimes
we have followed the recommendations of Ref. 15. For
~YF we have used t U2 =64.50+0.25 sec from Ref. 16.
For ~SNe we have followed the recommendation of Ref.
17. For 2lNa we have followed the recommendation of
Ref. 18.

b For all magnetic moments except that of ~lC we have
used the recommended values of Bef. 19 with errors
taken from the sources quoted there. For C we have
used p =-(0.964+0.001)p& from ref. 20.

o =@++

where p,, and p, are the magnetic moments of the
two members of the mirror pair so that if both of
these moments are known it seems that me know

(g, ) in a purely empirical and model-independent
way. This is, however, not strictly true because
the Sachs theorem is not completely valid: There
is a small but important isoscalar exchange mo-
ment p,c that must be added (x2) to the right-hand
side of expression (2) and to which we return in
earnest shortly. (We ignore the presumably very
small isoscalar modification to the intrinsic nu-
cleon moments themselves. )

With this reservation about p.,o me nom know

(o,) experimentally. But what we need is (v,g,).'
At this point we notice that (a, ) and (v,o,) are con-
nected by ((1+ 1 ~)g~) ~ This latter tluantlty would
be zero in the extreme naive shell model (the pos-
itive or negative sign being taken as the proton-
rich member of the mirror pair is of odd or even
Z, respectively) and so we might hope that it
would remain small in fact, i.e., for realistic in-
dependent-particle model wave functions. If this
should turn out to be correct we shouM gain (w,o, )
and hence the desired g, from the experimental
(cr, ) with only slight reliance on theory In p. oint
of fact the hope that ((I+ v, )o,) be small is justi-
fied as me shall see shortly but before discussing
this me turn to the experimental situation. '

EXPERIMENTAI. SITUATION

As remarked in the Introduction, g„,is a carica-
ture of a more complex situation but me might hope
to extract some meaningful mean value if me could
derive information from a series of neighboring
3 values. At present the only such suite of mirror
nuclei for which the isosealar magnetic moments
and accurate P-decay information are available is
&=11, 13, 15, 17, 19, and 21. Fortunately, for
these nuclei, excellent wave functions are also
available mhich, although not good enough to give
us (r,&r, ) directly with high accuracy, we may use
to derive the hopefully small ((1+r,)a, ). The ex-
perimental situation is given in Table I'o "where
we label as (a,)„the value of (o, ) extracted by ap-
plying expression (4) to p, , and J. Errors are not
given for (v, )„(theymerely reflect those given
for jt,) nor shallwe later refer to those given for
R, ~(v,c,) ~. This is because the uncertainties re-
siding in the later stages of our analysis are suf-
ficiently greater than the experimental errors in

(c,)„andR, ~(~,o, ) ~
for us to regard the latter

quantities as essentially exact.

EXTRACTION OF Rgp

The theoretical ((I+ v, )c,) that we use come
from the following wave functions and mere sup-
plied by Dr. J. Millener and Dr. D, Strottman:

A =II and IZ. The Cohen-Kurath (Ip}" ' wave
functions in their (8-16}2BME form. 2'

4 =gd, 27, and 19. For 8=15: Ip '+ 1p '(2s, ld}',
for g= I'I and 19: (2s, 1d)" ts+(IP} '(2s, ld)" ".
The 1P-shell matrix elements are those of Cohen-
Kurath as above; the (2s, ld)-shell matrix ele-
ments ax e those of Kuo-Brown, "and the particle-
hole matrix elements those of Hsieh, Lee, and
Chen-Tsai, ' The IP-shell single-particle ener-
gies come from Cohen-Kurath and the (2s, 1d)-
shell single-particle energies from "0; the 1p-
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ISOSCALAR EXCHANGE MOMENT

It was long ago remarked by Jensen and Mayer'6
that expression (2) is invalidated by velocity-de-
pendent forces. They took the shell-model one-
particle model Hamiltonian with R spin-orbit term
Rnd restol ed gRuge lnvarlRQce through the conven-
tional minimal substitution:

p -p —(e/c)A (5)

and showed that this implies an extra magnetic mo-

TABLE H. Extraction of B,„=R,i(v, cr, &[/i(r~os&„i
(which has no allowance for the isoscalar exchange mag-
netic moment p„o)from the experimental (03)& taken
from Table I and the theoretical ((1+v3)03) taken from
the wave functions discussed in the text. (The sign in
the latter quantity is positive or negative according as
the proton-rich member of the mirror pair is of odd or
even Z, respectively. )

0.591
-0.315
-0.169
0.866
0,636
0.591

0.030
-0.044
-0.004
-0.018

0.010
0.036

0.561
0.271

-Q.165
-0.884

0.626
—Q.555

1.024
1.194
2.215
1.240
1.472
1.009

(2e, 1d} splitting is given by fitting known particle-
hole states in A = 16 and 18. The 2s, Id states
were selected by using SU, to include )99% of the
wave function resulting from the complete related
(2e, ld) diagonalization.

A =22. (2s, 1d)' using Kuo' matrix elements
with the basis truncated according to the prescrip-
tion of Akiyama, Arima, and Sebe." (Omission
of pair excitation from the 1P shell is unlikely to
be serious: Its omission from A =15, 17, and 19
nowhere brings as great a change as 4% in (r,a, &„.)
Table H shows these theoretical ((1+v, )o,), (o,&„
taken from Table I, the deduced (v,o, &„and also
R,„i(v,o,&„i.We see that indeed, as hoped,

&(1+&s}cs&«(c3&„'
the former quantity averages only 5.1$ of the lat-
ter. This we take to assure us that (r,o, &„cannot
contain gross errors on account of the-intervention
of theory and that we may regard it as an almost-
experimental quantity. However, we see that R,

„

shows wide variations: It is evident that the iso-
scalar exchange moment p,„,must be playing a
significant role. Since we know almost nothing
about p„,we must proceed empirically, taking
such guidance as may be available.

ment for a proton (nothing for a neutron} of

2j+1
Pso + ~2 2 Pg~

~ being for j=l~ —,', where (=0.25, This leads to
the expectRtloQ p.„o +0.1p,&.

It is clear, however, that the Jensen-Mayer es-
timate cannot be relied upon quantitatively. For
example, as pointed out by Blin-Stoyle, one
should not wait until the model Hamiltonian is
reached before imposing gauge invariance but rath-
er do this at the earlier stage of the two-body NN
interaction that underlies the model Hamiltonian.
There have been two attempts to do this, one by
Philpott (reported by Blin-Stoyle)" and one by
Chemtob ' again using the minimal substitution
of expression (5). Philpott's results imply p,„,
=+0.05', ~; those of Chemtob p,„,=+0.01@.„,both
may be represented roughly by expressions of the
form Rnd hRvlng the sign of thRt derlvlQg f

lorn

the
naive one-particle shell model of Jensen-Mayer
viz expression (6).

We see that although there is agreement as to
the sign of p.„oin relation to j = E+ —,

' there is no
agreement as to magnitude and it is clear from
the computations of Chemtob that, in any case,
substantial fluctuations in magnitude might be ex-
pected from case to case.

PresumaMy what is rea11y needed is more fun-
damental than summing the effects of the phenome-
nological two-body force, namely, an explicit cal-
culation in terms of the mesons that mediate the
nuclear forces (and that generate the velocity de-
pendence): For example, a. p meson emitted by
one nucleon, transforming into a pion through in-
teraction with the electromagnetic field, the pion
then being absorbed by another nucleon, generates
an isoscalar moment. Such computations are not
yet available for nuclei as heavy as those we deal
with here although they are beginning for the light-
est systems.

ALLOVPANCE FOR p „0'.A~

We clearly cannot make any a Priori allowarice
for p.„obut we have tried three reasonable and in-
dependent approaches, of a statistical nature, to
the problem.

Approach ¹. l. Our nuclei cover several shells
such that the signs expected for p,„o,following the
computations reported in the previous section,
change from case to case; magnitudes must also
be expected to change from case to case. Under
these circumstances the most likely expectation
for Qp„„the summation being extended over the
six cases, is zero. We, therefore, for each A
vRlue listed ln TRbles I RQd II Rsk whRt vRlue
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FIG. 1. (Pp„o)tversus R, from approach No, 1. The
horizontal bars are at (gp«)t = 2.4x 10 Sp&2 snd indicate
the error range of R,.

(~,o, ) would have to take in order to give a par-
ticular value of R, on the basis of the known

R, I(v,o, )1; this then implies a certain value of
p,„pfor each A. as a function of the presumed R,
and therefore a certain value for Q Ij,„,. We then
take as the "best value" of R, that which gives

g p„,=0. The standard theory of random flights
then associates with this R, a variance 5(p,„,') in

Figure 1 shows (flu„,}'as a function of

5(p„,') when g p,„,=0 is 2.4x 10 'p„'which,
as may be seen from Fig. 1 leads to our first es-
timate:

R„=1.12+0.13

the actual y, „values at Q p.„0= 0 are given in Table
III; they will be discussed later but since this is
the only one of our three methods of analysis in
which the analysis itself-fully determines the signs
of the p.„pwe should note with satisfaction that five
out of the six signs generated by approach No. 1

are in fact in agreement with expectation based on
the naive jj-shell model using the results report-
ed in the previous section

I
expression (6)]. The

exception is A. = 11 which is certainly not a good
jj-coupling nucleus and so for which the j= l + —',

FIG. 2. Q(p«-(p, o))t versus R, from approach No. 2.

expectation as to the sign of p, „pcannot necessarily
be expected to hold; we also note that the magni-
tude

I p„Iis small in this case.
Apjroach ¹.Z. Although we must expect the

magnitudes of
I p„,l to scatter, they will scatter

about some mean value and we may take as most
satisfactory a situation that minimizes that scat-
ter, due regard being taken for the sign of p, p.
We therefore compute, as a function of a pre-
sumed R„the value of p, ,p required for each A.

value to give that R, . We then count positively
those p,„pthat have the sign expected for them
under the naive shell model (as indicated in Table
III) and negatively those that have the opposite
sign, to establish (p„).This enables us to con-
struct Q(p„o—(p,„,)}'which we then minimize to
determine R„." The error in R„wedetermine
by associating a normalized X' of unity with the
minimum in Q(p.„,-(p.„,)}'. Figure 2 gives the
result of this exercise from which we derive

Table III gives the resultant values of p, „passoci-
ated with the minimum in Fig. 2.

Approach ¹.3. We accept the suggestion of the
naive shell model as to the sign of p,„pfor each 4
value, again ignore the weak j dependence possibly

TABLE III. Estimates of the isoscalar exchange magnetic moment p, 0 according to the three approaches discussed
in the text.

Naive shell
model sign Approach No. 1

&x(I&z
Approach No. 2 Approach No, 3

11
13
15
17
19
21

+0.009
+0.003
+0.031
-0.018
-0.037
+0.012

+0.013
+0.001
+0.028
-0.010
-0.030
+0.016

-0,021
+0,021
+0.021
-0.021
-0.021
+0.021
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MSCUSSION

%'e must firstly emphasize that'our result is
statistical both in that the critical isoscalar ex-
change moment has been handled statistically and
also in that g„,is a statistical concept that can

0.0 I 0.02 0.05
lp. „oI(„„) 0.04 0.05

FIG. 3. Q (R, -(R, ))2 versus (p,J from approach No. 3.

expected for its magnitude, assuming the same

~ p„,~ for all A, then, for each 2 value, derive ft,
as a function of

~ p„,~ and so (R, ) as a function of
We take as the best value of

~ p„,[ that which
minimizes the value of Q(ft, —(ft, ))', g„is (ft, }
at this minimum and the associated error is that
derived in the usual way from the scatter of the
individual ft, . Figure 3 shows Q(B, -(8,))' ver-
sus ( p„,( and we find

R„=1.102' 0.085 „

Table III shows p„,resulting from this approach.
As may be seen from Table III the magnitude of

p,„,as deduced from these statistical approaches
is about 0.02@,„,and its sign, where freely deter-
mined, as already remarked, is usually in accord
with the naive jj expectation. t iL„OI= 0.02@,

„

is
also entirely reasonable in view of the wide range
up to 0.j.p, „expected from the various theoretical
estimates referred to earlier. These facts, and
the agreement between theB„,9,2, B„ofthe dif-
ferent independent approaches, gives some confi-
dence in the possible meaningfulness of the ft, val-
ues and we average the three of them to gain our
final result

R, =1.128 y 0.058,
or

g„,/g„=0.920 + 0.04V

for the range of nuclei in question. "

only take weight if it is derived by averaging over
a sufficiently large number of transitions in suffi-
ciently large nuclei; there is nothing to assure us
that our cases are sufficiently large in either
sense. But it seems clear that, whatever its mean-
ing, g„,may well be significantly less than g„:It
seems quite likely that the axial p decay of com-
plex nuclei is significantly slower than we should
expect if nucleons bound into the nucleus simply
decayed as individuals with the same strength that
they would dispose of in the free state.

A semiquantitative attempt has been made by
Ericson" to calculate this effect. In this attempt
the pion-nucleus interaction is linked to axial p
decay. The sum of all pionic vertices between the
ground and excited states of a nucleus is connected
to an integral over the total pion-nuclear cross
section in a dispersion relation, The Goldberger-
Treiman relation then transforms this sum into a
sum over the corresponding Gamow-Teller ma-
trix elements in a nuclear Adler-Vfeisberger sum
rule. Thus, with the neglect of certain processes
likely to be of major importance only in the very
lightest nuclei, hopefully outside our present
range, we may use empirical pion-nucleus scat-
tering data to predict the sum over all Qamow-
Teller transitions leading from a given state.
This does not tell us what will be the g„,effective
for any individual transition from that state but
we may tentatively follow our earlier conjecture
that, with sufficient averaging in sufficiently large
nuclei, the mean g„,mill follow the sum rule.
The prediction is A-dependent because the nuclear
renormalization is connected with the shadowing
effect of the inner nucleons of the nucleus against
pions by those towards the surface. However, the
expected A. dependence in our range of A is weak
(a change of only +0.006 in g„,/g„about its mean
value) and the prediction averaged over A = 11, 13,
15, 1V, 19, and 21 is g„,/g„=0.932 against our
"experimental" g„,/I„=0.920 y 0.04V.

Vfe conclude, cautiously, that it seems quite
likely that g„is indeed effectively renormalized
inside nuclear matter as we should qualitatively
expect and that that renormalization is of about
the expected magnitude, its sense being to slow
down the decay. Any sharpening of our tentative
conclusions must await better theoretical guidance
as to p.„o—it would be illuminating to evaluate this
directly using a realistic NN force and wave func-
tions such as we have used for ((1+r,)a, ) —and
also reliable estimates of the relativistic effects.
It will also be important to understand relativistic
effects on g„,.¹te added in Proof: Very recent work of Arima
and his colleagues has shown the importance of
core polarization (single-particle excitation
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through many oscillator spacings). This modifies
the theoretical expectation values; however, since
the core-polarization term has the same form and
effect as the isoscalar-exchange magnetic mo-
ment the conclusions about g„,are not sensibly
changed.
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