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The expression E/A=a I+2& n 2+&e (e +e )2+3& (n -6. ) for the ground-state ener-
gy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons
(characterized by the corresponding parameters, 0;~ = (N -Z)/A. , o.„=(N~-N~)/A, and a&
= (Z ~

—Z~)/A), contains three symmetry energies: the isospin symmetry energy e ~, the
spin symmetry energy e~, and the spin-isospin symmetry energy ~«. General expressions
for e and e«ax'e obtained in terms of the K matx'ix which depends on four different Fermi
momenta. With suitable approximations, numerical values of e~ and e«(and also of e ~)
Rx'8 derived usMg the Brueckner Gammel- Thalers the Hamada Johnston& Rnd the Reid soft
core nucleon-nucleon potentials. The most reliable results, obtained with the Reid soft-core
potential, are:. e'~ =61 MeV, a~=74 MeV, and e« =73 MeV. The possibility of estimating
the energies of the spin and spin-isospin modes of collective nuclear excitations is discussed.

I. INTRODUCTION

@(A~ nr~ nn~ np) =&(A~ nr~ np~ n-n) ~

&(A, n „n„,n~) = E(A, n, „-n„,n~) . -
(l)

(2)

The first one results from the charge indepen-
dence of nuclear forces, and the second one from

Let us consider nuclear matter composed of N~

neutrons with spin up, N~ neutrons with spin down,
Z~ protons with spin up, and Z~ protons with spin
down. All the nucleons are contained in a periodici-
ty box of volume Q. The composition of the sys-
tem may be characterized by A=N~+N~+ Z~+ Z~,
the neutron-excess parameter

n, =(X, +X, —Z, —Z, )/A=(X- Z)/A,

the neutron-spin-up-excess parameter e„
= (N~ —N~)/A, and the proton-spin-up-excess pa-

rameterr

n~ = (Z~ —Z&)/A.
The ground-state energy E of the system is sub-

ject to two conditions:

the time-reversal invariance of the interaction
(or, in other words, from the requirement that
E does not change when the spins of all the nu-
cleons are reversed).

Because of these two conditions the expansion
of E in powers of a„n„,and e~ takes the form

E/A = e„„+—,'e, n, '+ —,
' c,(n„+n, )'+ —,'~„(n„-n,)',

where powers higher than quadratic are neglected.
ln expression (3), apart from the volume energy,
e„,&, and the usual (isospin) symmetry energy,
denoted here by ~„wehave two more quantities:
e, and e„.Quantity e, is the measure of addi-
tional energy necessary to maintain a spin excess
in the system, characterized by the spin-excess
pR1'Rn1etel', n ~ = n„+n& = (N~ + Z~ —N~ —. Z~)/A.
QuR11tlty 6~ is 1'efe1'1'ed to further Rs the sp111 sym-
metry energy Quantity .e„is the measure of
additional energy necessary to maintain in the
system an excess of spin-up neutrons and spin-
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&n 3=k~'(I+ n,

+nolan„),

3=ks'(I- n, +n, +n„), (4b)

down protons, characterized by the spin-isospin-
excess parameter, n„=n„-n, =(Ni+Z i- Ni-Z i}/
A. Quantity e, is referred to further as spin-
isospin- symmetry energy.

The purpose of our work is to calculate c, ande„.Having this in view we apply the method of
calculating the isospin symmetry energy, e„pre-
sented in Ref. 1 (hereafter referred to as BD).
As a matter of fact, the method requires a slight
modification. The isospin (crucial as regards
e, ) is a vector in the abstract isospin space,
whereas the spin (crucial as regards e, and s„)
is a vector in the real space. Thus, one has to
take into account the relative orientation of the
spin with regard to other vectors in the real space,
e.g. , momenta. This becomes essential in the
case of a two-body tensor interaction.

Notice should also be drawn to the fact that four
Fermi momenta appear in our considerations,
viz. , K„for neutrons with spin up, X„for neutrons
with spin down, z~ for protons with spin up, and
A,~ for protons with spin down. These Fermi mo-
menta are related to the excess parameters by
the relations:

where k~ is the Fermi momentum for nuclear
matter with N~ = N~ = Z~ = Z~ = &A.,

3n'2 A
k '-Sv'p/2=

2 n'
The effective interaction between nucleons in nu-

clear matter will depend intrinsically on all the
four Fermi momenta. This results in additional
complications.

Our calculation will be carried out in terms of
the Brueckner theory of nuclear matter. ' It should
be emphasized, however, that our general expres-
sions for ~, and ~„donot depend on how the ef-
fective nucleon-nucleon interaction in nuclear mat-
ter (the Z matrix) is derived from nuclear forces.

In Sec. II, we derive the general expression for
e, and e„in terms of the effective nucleon-nu-
cleon interaction in nuclear matter. Similar ap-
proximations to those which have been used in
BD are applied to Sec. III to simplify the expres-
sion for rearrangement contributions to c, and~„.In Sec. IV we describe the procedure of cal-
culating the E matrix starting with three forms
of nucleon-nucleon forces (the Brueckner-Gammel-
Thaler, ' the Hamada- Johnston, ' and the Reid soft-
core' potential). In Sec. V, numerical results
are presented and discussed. In particular, the
possibility of estimating the energies of the spin
and spin-isospin modes of collective nuclear ex- .

citations is pointed out.

II. GENERAL FORMULAS FOR eo AND egq

if we divide the total energy E into the kinetic and potential parts, E =Eq;„+Ep„,then expansion (2}of
Ski„leads to the following values of the kinetic parts of ~ and c„:

&kin &kin &kin 2&
E&

where the Fermi energy e~=g'k~'/2M. Thus, we have

(6)

~ki" + CP00 0 =fk +0T 0T y

where the potential parts of the symmetry energies are:

pot Epot/A pop
~E g/Apo

~Q 0~ ~Q0T P

Subscript 0 refers to the value of the derivative at point n, =u, =n„=O.
According to the Brueckner theory the potential energy is given by the expression

( t3s3)
E = —,

' Qg Q V(ms t,),
s3 t3 m

(6)

where

( t 3s3)
V(ms, t3) = gg P (ms, t, m's,'t,'~R(z„h,„zpx~)~ms, t,m's,'t,')- exchange,

ss t3 m'
(10)

and t, denotes the third component of the isospin of the nucleons. We use the convention t, =-,' (-—,') for neu-
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trons (protons). The third component of the spin of the nucleons is denoted by s, . The sum gz&'s' denotes
summation over all momenta states occupied by nucleons with the third component of isospin and spin equal
to t3 and s„respective ly . We thus have, e .g.,

($ 3 ) ttt & K n

In Eq. (10) the intrinsic dependence of the K matrix on the four Fermi momenta has been explicitly shown.
The order in which the Fermi momenta appear as arguments of K will be kept the same throughout this
paper, and so, for instance, the third argument always stands for the Fermi momentum of protons with
spin up.

Nowt we shall pass to the representation of the total spin and isospin of the two nucleons, s and T, with
the corresponding third components, m, and T3. Using the notation

(mm'sm, TT, (K(K„X„K~X~) ( mm'sm, TT,)= (mm' jK(sm „TT„K„A.„K~A~) [ rnrn '),
we may write, for instance, V(mfn)= V(ms, =2t, =m) in the form:

ltt & K~ ttt'& g„
V(mtn) = g (mm'(2K(11, 11;K„A„K~A~)(mm')+ Q (mm'( QK(s0, 11;K„A.„K~X~)(mm')

m' S

m &Kp m'& Xp
+ Q (mm'(QK(ll, TO; K„X„K~«&))mm') + g (mm'( 2 Q QK(s0, TO; «„A.„K~«~))mm').I T 15' S

(13)

We introduce expression (13), together with similar expressions for V(min), V(mtp), and V(mkp), into
Eq. (9), and obtain an expression for Ep~ which depends on o., and o.

„

in two ways: first, through the
upper limits of the sums over m and m, and secondly, through the intrinsic dependence of K on the four
Fermi momenta, related to u, and n„byEqs. (4). Thus, when we calculate the second derivatives of
E~, indicated in Eqs. (8), we get two parts of e~" and ep'„',

~pot ~(0)pot+ +~ ~pot ~(0)pot+ +~0 0 0t 01 07 OT t (14)

the first part, c'0 p" and e,',p", resulting from the first type of the dependence, and the second part, hc
and h~„,resulting from the second type of the dependence of E~t on u, and n,„.The terms he, and
Ac„will be referred to as the rearrangement part of ~, and ~„,respectively, and the nonrearrange-
ment part of e,(e„)will be denoted by

(0) = Ekin+ f(0)pot
0 0

~(0) ~ki n + ~(o)pot
OT 07 ~ (14')

Analogous notation will be used in the discussion of the corresponding parts of e, . Here, we do not write
the formulas for c„sincethey have been presented in BD.

The calculation of e~~ and e&~ i.e., the calculation of the second derivatives in Eqs. (8), is lengthy but

straightforward. So let us mention only that in obtaining our final expressions for e pot and cp'„'we applied
two relations

K(smdq T Tg) KqA. „Kd,kd) =K(8m qTTdgg Kd, kd, K„Xg)q

K(s -5zd, TT~', K„A.„KpXp) =K(sPBdd TTsd A.„ApKKp),

(15a)

(15b)

(17)

which reflect the charge independence and the time-reversal invariance of nuclear forces.
Our final results for ~,'P" and e'O,Pot are:

( )p 2
dd („-), BV,(m))&0 —
4 @+3 y

- m=0& t
Pe

"S"(k )+'n-
m=ky t

where V,(m) is the single-nucleon potential in the case of N~=E~= Z~= Z~=A/4. The quantities S' and S"
are expressed by K(sm„T;k„)which is the effective interaction (independent of T,) in the case of
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Nt=N&=Z&= Z&=A/4. We have:

(k k 1,ig(2 T + 1)[K(11,T; k~) —2K(10, T; k P) —2K(00, T; k~)] i
k k„).4~

Our final results for A~, and A~„are:
«a-&O~+&i~O~ ~~a =~O~+~i~oT ~ (18)

where b,,e denotes the same expression as in BD, and is related to the rearrangement potential V2z(kz)
in the case of Nt= Nq= Z~= Z~ =A/4,

2
62@= —2V2„(k1,) .

The expressions for h, e, and A,e, are:

b„e,=—
I

4 (kzm i k2 ———g(2T+ 1)K(11,T; »A. »A) ikzm)
A, f dk~ 8

haft T

(20)

+— (mm'ik~' ——— g(2T+1)[E(11,T; »A»X)+ —QE(s0, T; »A»A)]imm')
1 1

2m m T S

(21)

and

b, ,e =2 4 (k2 mike
———2K(11, ll; »AX»)ik2 m)

1 8 8
+— (m m '

i k~2 ——— 2K(11, 11;»AA») + QK(s0, 11;»XX»)
Pl SR

+ P K(11, TO; »AA. ») +—QK(s0, TO; »AA. ») i m m')
S J

(22)

where all the derivatives are to be calculated at the point »„=X„=»2=A2=k~,and where f =(41/k~2) 'j",
& .

haft p
It should be noticed that the effective interaction K required for calculating h, ~, and 4,e, depends only

on two different Fermi momenta. For the case of 61m, [Eq. (21)] we have «„=»2=»and X„=X2=X,i.e.,
N~=Z~ and N~= Z&. In this case K does not depend on T, which has been omitted in our notation. For the
case of h, e„[Eg.(22)] we have «„=A2=» and A.„=»2= A., i.e., Ni= Zi and Ni= Zi.

III. APPROXIMATE EXPRESSIONS FOR 61e0 AND 61e0~

Although it is possible to calculate the K matrices which depend on two different Fermi momenta, this
calculation is very tedious. For instance, such a calculation has been performed in Ref. 6 for K(»»XX),
which is the K matrix necessary to calculate e, . On the other hand, an approximation has been applied in
BD which enables calculation of ~, using K(kz), which is the E matrix when all the four Fermi momenta
are equal. The same type of approximation will be applied in calculating h, e, and A,e„in the present
work.

The following approximations are introduced for calculating b,,~,:
K(11, T; »X»A.) = K(11, T; »),

K(s0, T; »A.»A) =K(s0, T; kz),

and the following approximations for calculating A,c„:
K(11, 11; »A. A. ») =K(11,1; «),

K(s01 11; «A.A.») = K(s0, 1; k/, ),
K(11, TO; »XA.») =K(ll, T; kp),

K(sO, TO; »AA») = —,
' [K(s0, T; ») +K(s0, T; A)],

where

2-1/2[ 2+ g2]1/2

(28a)

(28b)

(24a)

(24b)

(24c)

(24d)

(25)
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and where the K matrices on the right-hand side of Eqs. (23) and (24} are calculated for the case of Ni
=Hi= Zi= Zi= ~ with the indicated common value of the Fermi momentum. These EC matrices are inde-
pendent of T3.

The motivation for the above approximation is the same as for the analogous approximations in BD.
Let us explain, for instance, approximations (24a, b, d). Approximation (24a) states that the effect of the
spin-isospin excess on the scattering of two spin-up neutrons is determined by the shift of the Fermi mo-
mentum of the spin-up neutrons. Approximation (24b) states that the same effect on the scattering of two
neutrons with opposite spin directions is determined approximately by the shift of an average value [Eq.
(25)j of the Fermi momenta of the spin-up and spin-down neutrons. To explain approximation (24d) let
us'consider, for instance, the case s=l, T=l, in which

) so, To& =-,'{ (~sip&+ ( ~p~n&+ ) spin&+ ( in~p&).

The former two states on the right-hand side of Eq. (26) are states of nucleons whose Fermi momenta
equal a, and the latter two states on the right-hand side of Eq. (26) are states whose Fermi momenta equal
A. (in the spin-isospin excess nuclear matter with z„=z,A.„=A., a~ =A., A~= a). lf the spin-flip amplitudes
are neglected, we see that half of K(s0, TO; aAAx) represents the scattering of two nucleons whose Fermi
momenta equal I(;, and the other half the scattering of two nucleons whose Fermi momenta equal A.. This
leads us to the approximation (24d).

When the approximate expressions (23) and (24) are introduced into Eqs. (2l) and (22} we get the following
approximate formulas:

~x&o=— '
I kern &z 2&+1K1»y»'&p- kzm

+- (mm'j u '„,g(2T+i)A(il, r;u, )+ u„g-g(r2+i)Z( sor;e ) ~mm)
1 d

t8

(k, m(a, „2Z(li,l; n, ) (k, m)

+— mm' 0~2 ~ 2K11,1;kz +2 K So, T;4~
m S

+}t, „QZ(so,l;y )+PZ(li, r;u ) ~mm') .
r

(28)

IV. CALCULATIONAL PROCEDURE

The main problem in applying the general formulas of Sec. II for the calculation of ~~ and ~, consists
in determining the effective nucleon-nucleon interaction K. Since we shall apply the approximate expres-
sions of Sec. III for he, and he„,we avoid the tedious problem of determining the K matrix for the case
of two different Fermi momenta, and calculate the K matrix which depends only on one Fermi momentum
k~. In the present work this is performed in terms of the Brueckner theory, where K is determined from
the nucleon-nucleon potential e by solving the equation

(kP;IA lk, kp) =(k,k, l~lkp4)+ Q (kg, l ~ lkP, ) („,) (,) (k;k, IIf lk, k,),

in which pure kinetic energies, e(k) =8'k'/2M, in the intermediate states are used, and where the exclu-
sion principle operator is approximated by its angle average value, i.e., averaged over the directions of
center-of-mass momentum of the two nucleons. By z we denote the sum of the self-consistent single-
particle energies of the states k~ and k~.

Equation (29} refers to the case when the momenta of the two interacting nucleons are equal to ffkz and
1k~, i.e., when the two nucleons are on the Fermi surface. The effective interaction K between two such
nucleons is only needed for calculating 8'(k~) and S "(k~) according to Eq. (18).
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It should be noted that in this case

e=2[e,+ V,(k,)].
The use of pure kinetic energies in the inter-

mediate states in Eq. (29), which in recent years
has become a standard procedure, deserves some
comment. This procedure simplifies radically the
calculation of the K matrix. Essential for its
justification is the smallness of the contribution
to the binding energy of nuclear matter from three-
body clusters (see, for example, Ref. 2 and also
Ref. 7, where the relevant references are given).
The existing estimates seem to indicate that this
contribution is small. The estimates are, how-
ever, only approximate. In our opinion the prob-
lem of proper choice of the particle energies in
the intermediate states has, so far, not been
solved satisfactorily. It should also be mentioned
that the choice of the free-particle energies has
been criticized recently by Baker and Gammel'
and also by retry and Schutte' who have shown
that this choice is incorrect for certain classes
of two-body interaction.

Fortunately, the consequences of the ambiguity
in the choice of the intermediate-state energies
are much less important for the spin and spin-
isospin symmetry energies than for the volume
energy, and the equilibrium density. The volume
energy is a small difference between big kinetic
and potential energy parts, whereas e and ~,
are sums of a positive kinetic and positive po-
tential part [Eq. (7)]. Furthermore, the contri-
butions to ~, and ~, , which contain S' and S"
[Eqs. (16) and (17)], appear to be insensitive to
wide changes of the gap in the single-particle
spectrum at the Fermi surface, and by reducing
the gap we may simulate the effect of adding an
attractive single-particle potential to the ener-
gies of the intermediate states. So, only less
than half of the value of c, and ~, is directly
affected by the choice of the intermediate-state
energies.

Three different nucleon-nucleon potentials were
used as input: the Brueckner-Gammel- Thaler
(BGT) potential, ' the Hamada- Johnston (H J) po-
tential, ' and the Reid soft-core (RSC) potential. '
All these potentials have been applied before, in
the Brueckner theory of nuclear matter. In par-
ticular, the equilibrium density and the self-con-
sistent single-particle energy spectrum of the
occupied states have been determined by Brueck-
ner and Gammel' for the BGT potential, and by
Banerjee and Sprung' for the H J and RSC poten-
tials. In our calculation we use the values of k~
and e [Eq. (30)], and also the value of [m &V,(m)/
em] ~ determined inRefs. 3 and 7.

In this way we avoid the necessity of solving the

whole self-consistency problem, and to determine

e,' ~" and e, I'" from Eqs. (16) and (17), we have

to solve Eq. (29) for the K matrix elements on the
Fermi surface only. We do this in the standard
way by using the integral equation for the wave
function of the relative motion of the two nucleons
in configuration space, with the hard core of the
two-body potential being replaced by a hard shell.
Like in Ref. 7, the RSC potential is treated, for
computational convenience, as having a very small
hard core (0.04 fm). We apply a partial-wave ex-
pansion, and confine ourselves to partial waves
with the orbital angular momentum L & 2. Since
the RSC potential of Ref. 5 has not been deter-
mined in the D, state, this state is neglected in
our calculation for the RSC potential. The inte-
gral equations for the radial dependence of the
partial waves are approximated by linear alge-
braic equations, and solved by the Gaussian meth-
od. Otherwise the whole procedure, including
meshes, is the same as in Ref. 10.

The value of L,e may be obtained from Eq. (20)
and from the known relation"

e„+Vo(kr) + Vos(k„)= e„,g,

valid at the equilibrium density. All quantities
except V» have been determined in Refs. 3 and 7
for the BGT, and HJ and RSC potentials, respec-
tively.

To calculate h, c and d,~„from the approxi-
mate expressions (27) and (28), the density or
Fermi momentum dependence of the K matrix
must be known. In the case of the BGT potential
this density dependence has been determined by
Brueckner, Gammel, and Weitzner" (cf. also
Ref. 13), who have shown that the variation of K
with density could be entirely included in the s
wave repulsive part of the K matrix. Using the
very simple form of this part of the K matrix
given in Ref. 12, we have calculated A, ~, and
a,~„for the BGT potential in exactly the same
way as the analogous term, h, ~„of~, was cal-
culated in BD.

For the case of the RSC potential, Sprung and
Banerjee" have constructed a local effective in-
teraction,

V(r) =++[a&(ST)+b&(ST)k ]e ~"
~ A

(32)

that reproduces the K matrix elements appearing
in their nuclear-matter calculation' with the RSC
potential. By A» we denote the projection opera-
tor for two-nucleon states of total spin S and total
isospin T. The values of constants a, (ST), ( bT)S,

and A. , are given in Ref. 14. Here V(r) is con-
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sidered in the form (32) referred to in Ref. 14 as
G-O force, since this form proves to reproduce
better the K matrix elemerits than other forms
considered in Ref. 14 (the G-1 and G-3) do. The
representation of the K matrix in the form (32)
has been used in the present work to calculate
a,e, and h, e„[Eqs.(27) and (28)] for the case
of RSC potential. In this calculation only contri-
butions of the S, P, and D waves have been in-
cluded. Let us notice that tensor and spin-orbit
components of the effective interaction, also de-
termined by Sprung, "do not contribute to expres-
sions (27) and (28) for h, e, and a,e„.

In the case of HJ potentia, l, we do not have any
simple representation of the density dependence
of the K matrix elements. Because of this, we

did riot ca,lculate a, ~, and a,~„for the H J po-
tential.

V. NUMERICAL RESULTS
AND DISCUSSION

TABLE I. Calculated values {in MeV) of the three
symmetry energies, and values of kz {in fm ~) and other
quantities {in MeV), used in the calculation.

Potential

ky
z

/k'(BVO/sm)k~
&o& =- ~s~oz{kz)

1.49'
1 8

11.4
-8.2

1.27 b

-33.4 b

9.6'
-6.0 b

1.43b
-42.8"

16.6b
-7.4

The values of kz, z, ~&+[&V,/sm], , and a,e

have been adopted from Refs. 3 and 7 in our cal-
culation, and are shown in the upper part of Table
I. The value of z for the BGT potential deserves
a comment. In our calculation, pure kinetic en-
ergies are used in the intermediate states, where-
as a single-particle potential has been included
in the intermediate- states single-particle ener gies
of Ref. 3, and thus the gap between the single-par-
ticle energy spectrum of the occupied and unoc-
cupied states has been lowered. The value of z,
suitable for our calculation, has been fixed by the
requirement that it leads in our calculations to
the value of ~',"I'", found in Ref. 3. Actually, the
values of co &~ and eiop' would change only slight-

ly, if in the case of the BGT potential a value of

z of a magnitude similar to that for H J and RSC
potentials were used.

The lower part of Table I shows the results of
the present calculation. Values of e„calculated
in terms of the theory given in BD are also in-
cluded in Table I.

The three potentials considered lead to different
equilibrium densities, i.e., different values of k~.
To compare the symmetry energies produced by
the three potentials, it is therefore necessary to
provide for the differences in the k~ values. This
has been done by calculating the symmetry ener-
gies for the HJ and RSC potentials for the BGT
value of k~=1.49 fm ' in the following way. The
parts containing S(k~) [Eqs. (16) and (17)] have
been obtained from our calculated values by as-
suming a liriear dependence on p. The term
~k~[SV,/Sm], has been obtained from the val-
ues of the effective mass as a function of k~,
given in Ref. 7. The rearrangement part of the
symmetry energy has been calculated in terms
of the effective interaction [Eq. (32)]. The re-
sulting values of the symmetry energies are
shown in Table II, together with the correspond-
ing values for the BGT potential.

As is seen from Table II, the two potentials HJ
and RS C lead to very similar values of all the
three symmetry energies. This reflects the simi-
larity of the two potentials. Although the H J po-
tential contains a quadratic spin-orbit part, this
is balanced by the fact that the RSC potential is
different in each STJ channel. The fact that the
RSC potential has a soft core, whereas the H J
potential has a hard core, does not affect the val-
ues of the symmetry energies calculated at the
same density. On the other hand, the RSC poten-
tial leads to a higher equilibrium density than the
H J potential. ' Because of this, the symmetry en-
ergies calculated at the equilibrium densities of
the two potentials are different, as is seen in
Table I.

On the other hand, the old BGT potential, adjust-
ed to earlier nucleon-nucleon scattering data,
produces lower values of the symmetry energies,

TABLE G. The three symmetry energies {in MeV),
corrected for the same density, corresponding to k&
=1.49 fm ~.

~ (o)

~ (o)~a
(o)
a7'

E'
T

E'
O

~ O7

~ Determined in g,ef. 3.
"Determined in Ref. 7.

51.8
51.7
79.8
64.1
64.9
76.6

43.8

42.3

54.7

58.9

58.0

76,1

60.5
74.1
73.0

Potential

(o)
T

q(o)

g (0)

~ a7.

BGT

51.8

51.7
79.8
64.1
64.9
76.6

HJ

68.0

65.5

85.5

RSC

66.1

65,1

85.6
67.7
84.0
81.7
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calculated at the same density, as is shown in
Table II. However, in one respect the three po-
tentials are similar, viz. , the nonrearrangement
parts of the symmetry energies, calculated with
any of the three potentials, satisfy the relation

&(0) &(0) & &(0)
7' 0 07 (33}

The situation changes when we add the rearrange-
ment parts. As for the BGT potential, relation
(33) holds also for full values of the symmetry
energies; for the RSC potential we have

E'o —6g7 ~ (34)

Thus the relative values of the three symmetry
energies depend on the values of the rearrange-
ment corrections.

Let us note that the differences between e„e,
and e„aredue to the spin dependence of nuclear
forces. Hence if the forces were spin independent
we would have e, = e, = c,.

It seems to us that our results, obtained with
the more up to date RSC potential, are more re-
liable than those obtained using the old BGT po-
tential. Also in the case of the RSC potential the
rearrangement contributions to the symmetry en-
ergies have been calculated in terms of the care-
fully adjusted local effective interaction of Ref. 14,
whereas in the case of BGT potential a simplified
representation of the density dependence of the E
matrix, restricted to the S state, "has been ap-
plied. Consequently, we consider the following
RSC values of the three symmetry energies to
be our most reliable results'.

in Ref. 18 and the value given in Eq. (35) shows
that probably the approximations of Sec. III, to-
gether with the local effective interaction, Eq. (32),
are sufficiently accurate in the case of the RSC
potential. On the other hand, the difference be-
tween our BGT value, e, = 64 MeV, and the value
of Ref. 6, c,=56 MeV, seems to indicate that the
representation of the density dependence of the E
matrix (Ref. 12) is not accurate enough for the sym-
metry-energy problem.

The spin and spin-isospin symmetry energies,
~, and c„,are not related directly to the proper-
ties of nuclear ground states (the spin of even-
even nuclei is zero in their ground state). They
are, however, similar to ~, related to the proper-
ties of certain collective nuclear excited states.
To explain this point let us recall the Goldhaber-
Teller" model which has been very successful
in a qualitative explanation of the position of the
giant dipole resonance that appears in the nuclear
photoeffect. In this model, as developed by Stein-
wedel and Jensen, "the giant dipole state consists
of a dipole vibration of the proton Quid against the
neutron fluid, with the restoring force being de-
termined by the isospin symmetry energy, ~, .
The total nucleon density, i.e., the sum of proton
and neutron densities, is assumed to be constant
over the nuclear volume which is a sphere of
radius R. Generally, for a vibration of a given
multipolarity A. and of the order n, the energy of
this charge vibration (isospin or ~ vibration} is
given by

E(7" A. n) =PE(6 /M)" R 'z~ (36)
~, = 61 MeV, ~, = V4 MeV, e„=V3 MeV.

(35}

The isospin symmetry energy, ~„is obviously
of greater practical importance than the other two
symmetry energies, since medium and heavy nu-
clei have an appreciable neutron excess resulting
from the Coulomb forces. Several empirical esti-
mates of ~, are available in the literature. For
instance, by assuming that the isospin symmetry
energy contains a volume and a surface part,
Green" finds ~, = 61 MeV, and Cameron" finds
e, = 63 MeV. Both these values agree very well
with our RSC value, Eq. (35), and also with the
BGT value, e, = 64 MeV. Of the theoretical cal-
culations of e, let us mention Ref. 6 in which the
value ~, =56 MeV has been obtained for the BGT
potential, and the work by Siemens, "who has ob-
tained the value e, =62 MeV for the RSC potential.
Since in Refs. 6 and 18 two different Fermi mo-
menta for protons and neutrons have been used
explicitly in the calculation of the K matrix, the
good agreement between the value of ~„obtained

where z„~'are discrete numbers, tabulated as,
e.g. , in Ref. 21. For the giant-dipole case (x= 1,
n=1) we have z',"=2.08. In Eq. (36) we have as-
sumed N= Z=-,'A.

It has been pointed out a long time ago" that be-
side this isospin mode of vibration, there exist
others in which protons with spin up and neutrons
with spin down move against protons with spin
down and neutrons with spin up (spin-isospin or
gT mode), or in which nucleons with spin up move
against nucleons with spin down (spin or e mode).
Extensive studies of the properties of these modes
have been performed by Uberall, Walecka, and
others (cf. Refs. 23-28). Apart from the 7 mode,
the o ~ mode, which plays an essential role in the
muon capture and in the inelastic electron scatter-
ing, is best established. As shown in Refs. 26
and 2V both these processes may be described in
terms of a generalized hydrodynamical model
which includes all the three v, c, and ov modes
of vibration. In this generalized hydrodynamical
model of Uberall the frequencies of the different
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vibration modes, i.e., the energies of the collec-
tive excited states, are phenomenological param-
eters. The values of ~, and ~,„calculated in the
present paper enable us to relate these frequencies
or energies to nuclear forces. The simplest way
of doing this, for instance in the case of spin vi-
brations, is to repeat the derivation of Steinwedel
and Jensen" with the neutron (proton) fluid re
placed by the fluid of nucleons with spin up (down).
The restoring force for the spin vibrations is then
determined by the spin symmetry energy, ~,. Note
that within the quadratic approximation of Eq. (3)
the v; a, and a v vibrations are not coupled. In
this way for the energy of the o vibration (and
similarly for the c7 vibration) of a given multi-
polarity ) and of the order n we have

Z(o ~ n) =e(~ /~)'"It 'z"'-
E(c7"A, n) = k(e /iaaf) "It 'z'"'. (37)

The derivation of Eqs. (36) and (37) involves,
however, several approximations, for instance,
neglection of the surface diffuseness. As this ef-
fect is expected to play a similar role in the 7.

and o7 modes, it seems to be more reasonable to
discuss the ratio

E(c~; X, n)/Z(~; X, n) =(e„/~,)'n, (33)

for which one gets the value 1.1 both with our RSC
[Eq. (35)j and BGT results, as well as with our
HJ results for 6, and ~, .

The location of the v and o~ giant-dipole levels
seems to be best established in the "0 nucleus,
where both the muon capture"'" and inelastic
scattering measurements can be interpreted""
in terms of definite ~ and o 7 levels. According to

Raphael, Uberall, and Werntz" the energies of
the T and 0'7 dipole 1 levels in "0 are 22.0 and
24.5 Mev, and thus their ratio 1.1 coincides with
our estimate.

Although the above discussion shows that our
results for the symmetry energies are relevant
for the problem of the 7, o, and crv. modes of nu-
clear excitations, one should add the following re-
mark. In real nuclei the orbital angular momen-
tum L is coupled with spin S. For instance in the
case of the c7 giant dipole resonance (S= 1, L =1)
we have, in fact, three J" states: 0, 1, 2 . To
get the splitting of these three states, and thus to
be able to make any more detailed comparison
with the levels in finite nuclei, the coupling be-
tween the motion of the two fluids and the spin
should be built into the generalized Steinwedel-
Jensen model.

As it is well known, the isospin-symmetry ener-
gy, ~„,is closely related to the isospin-dependent
part of the nuclear single-particle potential (cf.
BD). Similarly, the symmetry energies, e, and

~„,are related to the spin and spin-isospin de-
pendent parts of the nuclear single-particle poten-
tial, which recently have been studied extensively,
both experimentally and theoretically (see, for
example, Satchler"). This problem will, however,
be presented in a separate publication.
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We have reexamined the problem of constructing a nuclear ground-state wave function con-
sistent with the requirement of translational invariance, beginning with a wave function which
does not have this property. A class of transformations is constructed which transforms the
initial-state vector into an eigenstate of total momentum. The particular transformation of
this class which leads to the lowest intrinsic energy is given.

A wave function generated by a shell model,
Hartree- Pock, Brueckner-Hartree-Fock, or other
such calculation, is centered about a point in
space (generally taken as the origin). Such a wave
function violates the fundamental requirement of
translational invariance. There have been, over
the years, many different methods' ' proposed to
generate a wave function consistent with the re-
quirement of translational invariance from one
which is not consistent with this symmetry. That
these methods can yield very different results
has recently been noted. ~' Perhaps the most in-
tuitively attractive prescription is that which rein-
terprets the variables r, (which locate the parti-
cles with respect to some arbitrary origin) as the
variables r, —1/Ag, r~ (which choose that origin
to be the center of mass of the system). This
prescription implies the substitution

will rewrite this prescription in operator form,
generalize this operator so that it contains a con-
tinuous set of nonequivalent prescriptions, and
finally discuss the properties and physical mean-
ings of these operators.

We define the center-of-mass position operator
and its canonical conjugate, the total momentum
operator, in second-quantized form as

m, (A)
~t d3 r t(r)r~(r)

A~

and

d ka&ka

where a~, a are fermion operators. The relation
between ~% ) and ~C p, ) is then given by

It is clear that the wave function on the right is
translationally invariant, as a translation of all
the coordinates, r, - r, + 6, leaves the wave func-
tion unchanged. Such a wave function may be
thought of as an eigenfunction of total momentum
with momentum eigenvalue zero. In this paper we

(4)

The operator ep p first translates each variable
in ~4) by an amount -ll and then the S function
fixes ll to be the center of mass of the system,
thus reproducing the relation prescribed by Eq.
(1). The R integral cannot be done explicitly mere-
ly by replacing the variable 5. in the exponent by
the operator g'"', because &'"' does not commute
with g.

The operator 6p p can be expressed in an instruc-


