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A second quantized version of the Lane-Robson reaction formalism is applied to the con-
tinuum shell-model problem. The dynamical equations have a matrix structure which differs
from that encountered in the conventional shell model only through the addition of a relatively
small number of states and the presence of complex, energy-dependent boundary-condition
parameters. Oscillator basis states may be used throughout. All matrix elements may be
evaluated by existing shell-model codes. The equations provide a practical basis for dynam-
ical studies of resonance phenomena in single-nucleon scattering channels. An extension of
the model to include cluster channels is suggested.

I. INTRODUCTION

The nuclear shell model provides a powerful tool
for the description of nuclear bound states. Re-
cent large scale calculations® based on realistic
interactions build many of the important micro-
scopic'correlations into the nuclear wave function
and achieve very satisfactory agreement with ob-
servation. However, direct application of the con-
ventional shell model to states which can decay via
nucleon emission is hindered by the fact that the
basis states are localized, whereas continuum
states contain components which extend indefinite -
ly far from the nucleus. If the coupling to possible
decay channels is neglected, the observed reso-
nance structure of the unbound states is repre -
sented incorrectly by a sequence of quasibound
levels of zero width.

A number of reaction formalisms have been giv-
en in the literature®~® which, in principle, enable
reaction channels to be correctly incorporated into
the shell-model framework. Many of these formal-
isms turn out to be quite hard to implement in
practice, with the result that there have been few,
if any, numerical calculations which attempt to
use the full power of the shell-model representa-
tion for the investigation of resonance phenomena.

T

In this note, we use a second quantized version
of the Lane -Robson reaction formalism to reduce
the dynamical equations of the continuum shell
model® to an extremely simple and elegant form.
The resulting equations are expressed directly in
shell-model terms. The various many-body ma-
trix elements which occur can readily be calcu-
lated by existing shell-model codes.

As a result, we have here a powerful new ap-
proach to the investigation of many interesting
physical phenomena. A partial list might include®:
elastic and inelastic scattering of nucleons, sin-
gle-nucleon charge -exchange reactions, single-
particle (potential resonance) and many-body res-
onance phenomena and their interference, door-
way states and intermediate structure, isobaric-
analog resonances, photonuclear emission and ab-
sorption, etc. In addition, the model can be used”’
to supply single -nucleon-transfer form factors
and spectroscopic factors for comparison with ex-
periment via distorted -wave Born-approximation
calculations. It can also provide an arena for the
testing of more approximate models, e.g. the
Pinkston-Satchler® ° approach to the form-factor
problem, and for the clarification of various tech-
nical or conceptual questions, e.g., the influence
of antisymmetry on reaction processes, the mech-
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anism by which conventional shell-model states
are shifted and broadened by interaction with the
open channels etc. Many of the above questions
have already received attention® within other for-
mulations. The present formalism may lead to
some new insights. At the very least, the greater
simplicity of the present calculational scheme will
permit larger problems to be tackled.

In common with previous formulations of the
continuum shell-model problem, the present for-
mulation has certain limitations. Although it is
able to couple in any number of single -nucleon
channels, it is not capable of describing either
breakup channels in which multinucleon clusters
separate, or many-body breakup channels. Thus
it cannot be used directly to investigate transfer
reactions. In common with the conventional shell
model, the present model will be most definite at
relatively low excitation energies.

The present derivation is carried out within the
framework of second quantization which conve -
niently ensures that all states are fully antisym -
metric. For simplicity of notation, the angular
momentum coupling in the single-nucleon channels
is not displayed, although it would be trivial to
include it. Of course, no coupling is required if
the states of the residual nucleus have zero spin.
A simple numerical example of the present model
has appeared in Ref. 10. Other more thorough-
going calculations are in progress.

II. FORMALISM

The so-called continuum shell model® is based
upon a second quantized trial state’

N ’
IT)= 3 SlAL) + Bi cs!Bs) (1)
a=1 =1

which may be assumed to have definite total angu-
lar momentum. The second term in the trial func-
tion represents thelocalized component of the state
and is described by the conventional shell model.
The first term represents the various single-
nucleon channels which are to be included in the
model. The model unknowns are the amplitudes
cg and the single -nucleon creation operators Sg.
Thus, for example, in an application of the model
to "0, one might choose the (trivial) representa-
tion |Ay) =|'®0(cs)), |Bg)=|*0(cs)v'dM) in
which |*O(cs)) is simply the closed-shell state of
180 and v! implies a configuration of one nucleon
in an appropriate valency orbit (1d;,, or 2s,,,, say).
Alternatively, one might employ the more ambi-~
tious model® |A,) ~|®C(cs)w*d M), |Bg)
~|*2C(cs)v®JM) in which there are 4 and 5 nu-
cleons, respectively, distributed across the 1p,,,,
1d;,,, and 2s,,, orbits. Intermediate assumptions

are also possible. In any case, however, the state
lAu) represents a state of the residual nucleus
which remains after a nucleon has been removed.
It is, therefore, necessary’ that the states |A,)
be eigenfunctions of the nuclear Hamiltonian within
the shell-model space allotted to the residual nu-
cleus. The states |Bg), on the other hand; can be
taken to be unmixed shell-model basis states.

Dynamical equations were obtained from this
trial state in Ref. 7 by overlapping the Schrddinger
equation for |7') with various elements of the mod-~
el space. The resulting coupled integrodifferen-
tial equations were found to be exceedingly cum -
bersome. We now show that application of the
Lane-Robson formalism® to the same equations
leads to a set of algebraic equations which are
scarcely more involved than the conventional shell
model itself.

We start by introducing the channel radius a
which is to be chosen such that the nuclear inter-
action between separating fragments vanishes for
r Z2a. In practice, this means that the radius a
must be greater by at least the range of the nu-
clear interaction than the radius beyond which the
nuclear density has become negligible (see Fig.
1.). The operators S; are represented by single -
particle shell-model functions within the region
0 <7 <a. To this end we introduce functions ¢,(x)
defined by

¢m(x)=‘pm(x), Osrs<a, (2)
Om(x)=0, r>a,
where ¥,(x) is a standard single -particle shell-
model basis function. This artifice is used only
to demonstrate that the operators a,’;, which cor-
respond to creation of a nucleon in states ¢,, do

Range of
p(r) nuclear force
D e

(X) S~ o
8000
a

FIG. 1. Illustration of the manner in which the supple-
mentary functions span the region between the conven-
tional shell-model functions (represented by a typical
nuclear density) and the external region.
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not produce orthogonal functions. Instead, we have

Olanafs[0) = [ 0206, (Wdx=0 . (3)

The expansion of S; can now be written as

SI=3 cqmal, (valid within » <a). (4)
m

The choice of states m which are to be included in
the sum needs careful handling. Clearly, we
should not introduce too many new amplitudes or
the resulting equations will become unmanageable.
Explicit calculations'® *? which have made use of
this representation suggest that some 4 to 6 am-
plitudes in each channel may normally be suffi-
cient. However, this question is still under inves-
tigation. In order to avoid redundancy problems,’
it is necessary to exclude from the sum any am-
plitudes which refer to states already represented
among the states |B5>. Thus, for example, if we
are working with the s,,, channel in 'O, the core
and valency orbits already include the 1s,,, and
2s,,, functions, so that the sum over m should be-
gin with the 3s,,, state (and possibly terminate
with the 7s,,, state). Since the orbits m lie out-
side the valency space of the conventional shell
model, we shall refer to them as “supplementary
orbits.” Their purpose is to form a link between
the conventional orbits and the external region
which begins at » =a.

The dynamical equations of the model can now
be written as

(Aglan[H+LD)=E]|T)=(Ay|a,L®)|T), (5)

(Bgl(H~-E)|T)=0, (6)

where L(b) is the boundary-condition operator,
given in second quantized form by

)= [ axy' )l 4> /20)80 -a)

x[%-(ba-n/a]ma!w(x). o

The operator y(x) annihilates a nucleon at coordi-
nate position x. The reason for the introduction of
the operator L(b) into Eq. (5) is fully discussed in
Ref. 5. We may understand it at an intuitive level
as follows. The amplitudes ¢y, in Eq. (4) are
determined by the dynamical equations in such a
manner that the form factor £, (x)={(A, |¢(x)|T),
which is sensitive to SJ, is represented as ac-
curately as possible within the model space. It
does not follow that the expansion in Eq. (4) re-
produces the derivative of the form factor accu-
rately. Indeed, explicit calculations show that
many more terms are required in the sum if the

derivative is to be accurately represented near
the edge of the interior region. The kinetic en-
ergy term in the Hamiltonian contains derivatives
which may be reduced by application of Green’s
theorem to derivatives at the boundary » =a. The
latter derivatives are canceled by those in the
operator L(b). Thus, it will be permissible to
use the expansion (4) on the left side of Eq. (5) but
not on the right. Equation (6) might also include
an operator L(b), but the vanishing of the shell-
model state IBB) at » =a (in any coordinate) en-
sures that its contribution is zero.

When Eq. (7) is inserted into the right-hand
term of Eq. (5), we find

(Aglan L) T)=@?/20) f dx ¢ X(x)6(r -a)
x[{; -<ba—1)/a]fa(x>.
(8)

This expression vanishes if we make the “natural
choice” of by,

where %, (7) is just » times the radial part of the
form factor. The parameser b,(E) occurs also on
the left-hand side of Eq. (5) and carries into that
equation the influence of the spatial region beyond
r=a.

The model equations may now be written out in
more detail as

Z {<Aa Iam(H -—E)(ZI,: 'Au'> +(ﬁ2/2“)u:(a)

o' m’
dum: b(E
X {(‘d—'r->7=a— aa( )um’ (a)] 6010"} Ca,m,

+ %,) (Aqla,H|Bgi)cgr=0,
(10)

Z; (BBIHa;n’lAa'>Coc'm'+BE <BBIH—E|BB'>CB'=O'
alml \’
(11)

This pair of equations embodies the main formal
result of this paper. The amplitudes c,,, and cg
are solutions of homogeneous algebraic equations
with coefficients which form a symmetric matrix.
The elements of this matrix are energy-indepen-
dent except where shown explicitly.

The matrix (Bg|H —E|Bg) is that encountered
in the conventional shell-model problem. The
coupling between the conventional shell-model
states and the single-nucleon channels is repre-
sented by matrix elements of form { Bg|Ha}, |A,).
Since this matrix element contains only one sup-
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plementary orbit, contributions to it will all come niques without regard to the fact that the orbit
from within the interaction region. It may, there- ¢ (%) does not exist beyond » =a. The final ma-
fore, be evaluated by standard shell-model tech- trix element may be put into standard form by
J

means of Wick’s theorem. The result is

a

(Aqlap(ll ~E)al | Ag) = [(Eu =B+ [ dx «/):(x)t(x)zpm'(x)] »
(o]
+ I ax (Prﬁ(x)(Aa I fdx'd)T(x’)v(x, xl)(l "Pxx') Zp(x')lAa’> ¢m'(x) ’ (12)

where E,=(A, |H|A,), and P,,. is the operator
which exchanges coordinates x and x’. The last
term in Eq. (12) represents the interaction be-
tween the supplementary orbit and the various oc-
cupied core and valency orbits in the residual nu-
cleus. It is simply the usual many-body matrix
element of the two-body part of the interaction
with the interactions among core and valency or-
bits deleted. It may be evaluated in standard fash-
ion for all components of the interaction save the
direct component of the Coulomb interaction. A
method for handling the Coulomb contribution is
detailed in Ref. 10. The single-body matrix ele-
ment of the kinetic energy which appears in Eq.
(12) is not in itself symmetric in m and m’, but it
gives a symmetric contribution when combined with
the explicit derivative term in Eq. (10).

Although all matrix elements in Eqs. (10) and
(11) can be evaluated by standard shell -model
techniques, the solutions of these equations in-
volve features not encountered within the conven-
tional shell model. Bound states may occur at en-
ergies such that all channel energies E~E, are
negative. The parameters b,(E) are then all real
(and negative) so that the amplitudes satisfy an
eigenvalue equation described by a real sym-
metric matrix. The matrix is energy-dependent
through the boundary-condition parameters so that
simple matrix diagonalization can no longer be
used to obtain all the eigenvalues simultaneously.
This will not present a serious drawback if the
number of bound states for any given total angular
momentum is small.

If only one channel is open, and if the Hamilton-
ian is taken to be real (no absorption), the param -
eter b, (E) of the open channel will also be real.
Equations (10) and (11) can now be solved at any
energy. They constitute an eigenvalue equation
for the boundary-condition parameter of the open
channel. The behavior of this parameter as a
function of energy determines the resonance
-structure of the scattering solution.

If an absorptive term is included in the Hamil-
tonian (to approximate the effect of omitted open

channels), if several channels are open, or even
if there is only one open channel but the residual
nucleus has a nonzero spin, the parameters b, (E)
will in general take on complex values, repre-
senting the propagation of net flux along the open
channels. In such cases the amplitudes will also
be complex in general. In such cases, also, solu-
tions have to be found which reproduce the desired
asymptotic form of the total wave function. These
solutions may be conveniently constructed’® as a
superposition of particular solutions IT%) de-
fined to have unit incoming flux in the &, channel
only. The boundary conditions in the open chan-
nels of |7, ) are specified by

e (7) r’:i va-llz[ga ('V)chxo —saaooa (7)] ’ (13)

where 9, (r)= Gy (ky7) =iFy, (ky7) is the usual in-
going combination of standard Coulomb functions,*
0,(r)=9%(r) and v =%k, /u is the asymptotic rela-
tive velocity in channel «.

The desired particular solutions may be ob-
tained as follows.” If @ is one of the open chan-
nels, the term in by (E) in Eq. (10) is taken to the
right and treated formally as a source. Equations
(10) and (11) now have the structure

Ac=g, (14)

where the real, symmetric matrix A is a fully
defined function of energy, and the source vector
&£ has elements

2
Bom = ;ilj u(a) (%) E Opat s

r=a o'=open

gs=0 (15)

which evidently contain, via Eq. (13), the unknown
collision matrix elements. The formal solution of
Eq. (14) may be combined with the identity

2 Camthn(@) =ty (@) (16)

to provide an explicit expression for the collision
matrix*®
S=p'20"}(1-RL)" (1 -RL*)9,~"2. (17)

The matrices 9, O, L, and p which appear in Eq.
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(17) are diagonal, with elements §,=9;(a), O,
=0,(a), Ly= a9i(a)/O(a), px=Fkya, and the R ma-
trix is defined by

Raa’ = Z; Ym(A-l)c(m,a’m’ 7:' ’ (18)
mm’'

where v,,= (#2/21a)?u,(a). Once the collision
matrix has been obtained, it may be used in con-
junction with Eq. (14) to provide a complete speci-
fication of the trial state | Ta) associated with any
incident channel @. The procedure is quite
straight-forward and is noniterative. It must be
carried out afresh at every energy of interest,
however.

Another novel feature of the present formalism
as compared to the conventional shell model is
that it employs more single-particle orbits so
that a larger set of two-body matrix elements is
needed. It is not difficult to evaluate such two-
body matrix elements if a suitable phenomenologi-
cal interaction is given, but the corresponding
“realistic” two-body matrix elements may be
harder to pin down.!® In addition to the matrix
elements between the supplementary orbits and
the valency orbits, it is necessary to know the
interaction between the supplementary orbits and
the core. These matrix elements might be esti-
mated by introducing a conventional Woods-Saxon
well. Alternatively, a detailed summation over
two-body matrix elements can be performed, as
described in Ref. 10.

The question as to how many open channels need
be explicitly included in any given calculation
must be answered in terms of the physics. If the
channel threshold energy E, lies much higher
than the energy of interest, the corresponding
amplitudes c,, automatically become very small,
and it will be permissible to omit all reference to
that channel. Thus, for example, a low-energy
calculation carried out for O might include only
the '®0O(g.s.) + neutron channel. The channel based
on the '°O first excited state opens'® 6.06 MeV
higher in energy; that based on the '*N ground
state opens’® 9.64 MeV higher. If these channels

are ignored, it is likely that only some 4 to 6
states are required in addition to those already
present in the conventional shell model.

Many remarks have been made in the past about
the advantages or disadvantages occasioned by the
presence of a radius parameter in a reaction
theory. In the present instance, it is clear that
the amplitudes c, will depend both upon the
choice of @, and upon the number of supplemen-
tary functions allotted to channel @. The optimum
representation, determined by solution of the dy-
namical Egs. (10) and (11), depends upon the re-
gion over which the representation is to be valid
and the particular set of functions which have
been made available. On the other hand, the form
factors f,(x) will be independent of these details,
provided only that the set of supplementary func-
tions is large enough. From these remarks it
follows that the amplitudes cy are independent of
the channel radius if the choice of supplementary
functions is adequate.

We hope that the ideas presented in this paper
will provide a stimulus for further research with
regard both to specific numerical applications of
the model and to extensions of the formalism to
include cluster channels and many-body breakup
channels within the shell-model framework. The
addition of deuteron and possibly even a-particle
channels appears to be formally possible by tech-
niques similar to those employed here. But it is
not yet clear to the author that these extensions
will be realizable in practice. The deuteron
threshold lies only 2.23 MeV below the neutron-
proton three-body breakup channel, so that the
latter should be important whenever the former
becomes significant. Improved calculations of
two-nucleon-transfer form factors may be feasi-
ble. The a-particle channel requires supplemen-
tary functions to describe four nucleons. Al-
though the number of functions thus introduced
into the model appears to be quite large, the
physical importance of the a channel suggests
that this representation will warrant very careful
study.
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An equivalent potential is derived by best fitting the Sussex matrix elements. The derived
equivalent potential is compared with the equivalent Yale potential obtained in a similar man-
ner and with central effective potentials in widespread current use. Remarks are made about

the general nature of the effective nuclear force.

I. INTRODUCTION

In any nuclear structure calculation the choice
of the interaction is crucial. Recently there has
been much emphasis on calculating the various nu-
clear properties using the realistic interactions
such as Hamada-Johnston, Yale, and Tabakin.
The first two of these have a hard core. This
makes the perturbation treatment more difficult
starting from the independent particle wave func-
tions. In actual practice, one uses the reaction
matrix G instead. The calculation of the G matrix
from these potentials is possible only within cer-
tain approximations,™? and the convergence of the
perturbation expansion should also be taken into
account.® This difficulty of the infinitely repulsive
hard core may be avoided by the use of a separable
nonlocal potential e.g., the Tabakin potential. The
principal drawback of such a potential is that it
does not approach the one-pion-exchange potential
at large distances. The Sussex group* has derived
the relative matrix elements of the nucleon-nucle-
on interaction directly from the observed nucleon-
nucleon phase shifts. Thus the usual intermediate
step of first deriving the potential from the scatter-
ing data is eliminated. This has the special ad-
vantage that the deficiencies in one’s treatment of
the many-body problem are not hidden by the ad-
justment of the free parameters of the interaction
to fit some particular properties. Various proper-
ties of nuclear systems, such as deuteron proper-
ties,® spin-orbit splittings,® binding energies, rms

radii, single-particle energies, etc.,” have been
calculated using the Sussex matrix elements and
the results are in good agreement with experiment
and with other realistic interactions.

On the other hand, there are numerous nuclear
structure calculations using the phenomenological
effective interactions, generally central potentials
of smooth shape. In fact, before the separation
technique of Moszkowski and Scott® became avail-
able for use with the hard-core problem of realis-
tic interactions, the calculations were possible
only for nonsingular effective interactions so that
perturbation theory could be used directly. In
these, the effective interaction is taken as a suit-
able combination of the conventional exchange forc-
es such as Winger, Majorana, Bartlett, and Heis-
enberg. The parameters of the effective interac-
tion are adjusted to best reproduce the energy lev-
els and other properties of the nuclei considered.
This approach has been very useful and has given
us much information about the nature of the effec-
tive nuclear force. However, the effective inter-
action is dependent on the configuration space
chosen and includes renormalizations from the
admixture of the various configurations. Thus,
there is always a danger that the description of
the relevant states might not be correct and that,
a wrong configuration having been chosen, the
good agreement might have been forced by adjust-
ing the various parameters of the interaction. This
has been very strongly pointed out by Cohen, Law-
son, and Soper® in their calculations on the “pseu-



