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It is well known that the nuclear single-particle level density g,b, , obtained from statistical
nuclear reactions, does not follow the behavior of a free Fermi gas; previous attempts to re-
produce g,b, have largely been empirical. %'e have used the properties of our renormalized
gas model (ROM) to deduce an approximate analytic expression for our model density gRGM
We study the consequence of the concept of momentum anisotropy in the phase space of the
RGM system relative to the isotropic distribution of the free Fermi gas. We find that our
model is a very suitable one to fit in with this concept. With fair accuracy, we find that gRGM
=g,b, throughout the range of stable nuclei, 50 ~ A ~250. The effects of specific model inter-
action energies (the single-particle combinatorial effects, the pairing, deformation, and

Coulomb effects) are all observed in appropriate regions in desired strengths. All these ef-
fects are strongly dominated by the prescribed shell structure and its state-mixing and occu-
pation dependence.

1. INTRODUCTION

~o ~o yp
A = go(~) de = 4V,(2') '4vP' —dg

0 0

=4V,Q,(2') ',
where eo is the Fermi energy, Qo is the momen-
tum volume, and I is the action constant; the fac-
tor 4 with Vo appears on account of the spin and
isospin of the nucleons. The Fermi energy qo @nd

the single-particle level density g, at 60 for such
a system are'

e, = (9v/6)"'a'/2m', ', (2)

go =—go(to) = SA/260 = 600/7f

The single-particle level density g at the Fermi
surface ~ of a nucleus, or its associated level-
density parameter u= v'g/6, is a basic parameter
in the nuclear statistical-type model. A proper
definition of g or g is necessary for evaluating
the nuclear level densities. The most common
form of nuclear model in use in this context is the
simple free Fermi-gas model'-a system of A
noninteraeting particles confined to move in a
spherical volume V, = 4', 'A/3 with an isotropic
momentum distribution in a rectangular well of
arbitrary depth. Assuming that a continuous den-
sity-of-state function g, (e} exists, the total phase
space occupied by the system in its ground state
is the volume-momentum product,

where m and xo are the nucleon mass and radius,
respectively. Vfe note that eo is a universal con-
stant (independent of the number of particles A of
the system} and that g, is a simple linear function
of A. %8 take this as our reference system and
use the subscript naught for quantities (e.g., Vo,

A„zo, go, g, etc.}of this system.
A real nuclear system, however, is not a sys-

tem of free fermions. There are often discernible
shell, deformation, pairing, isospin, and Coulomb
effects in the ground state of a nucleus. Experi-
Inentally derived values of the level-density pa-
rameter s,„~= v'g, „/6 often reveal" most of these
effects. By its very nature, the free Fermi-gas
model can in no way reproduce these features,
One attempts to include these effects in several
possible ways. ' ' The early approaches~' are
semiempirieal exercises of statistical level count-
1ng. Attempts Ilave been made ' to estimate the
"shell corrections" in the mass formula (average
liquid-drop energy surface) from an ansatz of the
free-gas model. These attempts4 ' are briefly
discussed in See. 2.

A recent self-consistent approach includes the
short- and long-range parts of the nuclear interac-
tions on the free Fermi-gas model. It describes
the statistical properties of a model system from
the nuclear interaction energies in a realistic man-
ner. The model has been named the renormalized
gas model (RGM). In this work, we shall concern
ourselves mainly with various aspects of the sin-
gle-particle level density of the RGM system, and

shall compare them with experiments.
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2. PAST STUDIES ON THE NUCLEAR
SINGLE-PARTICLE DENSITY

The earliest attempts to understand the ob-
served features ' of the nuclear single-particle
level density are those of Newton' and Cameron. '
They both realized that the region of interest of
g(e) is near the free Fermi-gas surface e,.

Newton defined an average density g, near e, as

f g(e) in[1+ exp —(e —e,)/t] de

J in[1+ exp —(e —s,)/t] de
(4)

where t is the thermodynamic temperature of the
free-gas system at an excitation energy U obeying
the relations

t = (6U/w'g, )'"= (U/a)"' . (5)

Newton's shell effects are contained in g(e), since
his average spacing d in a given shell degeneracy
(2 j„+1) is greater than the splitting between the
j„substates. He took

g(e) =g„+g, = 2( j„+j,+ 1)/d, (6)

where n and P refer to neutron and proton config-
urations, respectively. For a spherical nucleus
of radius R =r,A"', d~R '~A '", and (6) may be
written as

g(e) =2n(j„+j~+1)A' ',
where a is a constant. The choice of j„and j~ was
made~ from an early form of shell model. An
iterative procedure was used to average g(e) to
obtain g, in (4). In effect, j„and j~ were replaced
by their averages j„and j~, respectively, to de-
fine g, as

g, = 2n (j„+j,+ 1)A"' . (8)

s(z, N) =s(z)+s(N),

(9)
P(Z, N) =P(Z)+P(N) .

P(Z) or P(N) were set as zero for odd values of
Z or ¹ Treating the problem of exciting the nu-

The adjustable constant a was determined from
the nature of variation of gg'" with the mass num-
ber A. Since j„and j~ are small near the closed
shells, Newton predicts the magic shell effect
(drop in the magnitude of g) prior to the positions
of actual magic particle configurations.

Cameron' averaged the single-particle spacings
instead of the densities. He used his semiempiri-
cal mass formula together with empirically intro-
duced shell and pairing corrections S(Z, N) and
P(z, N}, additive for Z protons and N neutrons:

cleons from the Fermi surface as one of adding
particles (rather than lifting a nucleon to an ex-
cited state), Cameron wrote the proton and neu-
tron spacings as

d(Z) =M(Z, A) —2M(Z —1, A —1) +M(Z —2, A —2),

(10a)

d(N) =M(Z, A) —2M (Z, A —1) + M(Z, A —2),
(lob)

to be evaluated near the valley of p stability.
These orbit spacings were then averaged similar-
ly to Newton's density-averaging procedure; the
reciprocal of these spacings defined his single-
particle level density.

Myers and Swiatecki' deduced a four-parameter
liquid-drop-model (LDM) semiempirical mass
equation containing exponential shape and range
dependences of nuclear masses with the deforma-
tion parameter n:

M(Z, N, n) =M„,„(Z,N, n)

+Cs(z, N) exp[-((5R)'),„/cP ].
(10c)

A staircase "shell" function s(Z, N) along the line
of P stability was defined. The free Fermi-gas
model was invoked to determine the shell correc-
tions with three parameters. Their mass formula
was fitted to about 1200 masses and 240 quadru-
pole moments. Although the single-particle level
density was not explicitly deduced, the change in
the Fermi energy due to shell bunching of states
was used as the shell correction s(Z, N).

Strutinsky' pointed out that the distribution of
the single-particle states as a function of the
ground-state deformation in the ¹ilsson diagram'
clearly shows an inhomogeneity in energy space.
In most phenomenological models (e.g. , the LDM),
this distribution is assumed to be uniform. Strut-
insky argued that the predicted inhomogeneous
distribution of states of soluble models seems to
define regions of stable deformation and regions
of closed shell-like configurations at certain de-
formations. One may treat this inhomogeneity as
an average "shell" correction on the homogene-
ous liquid-drop energy surface. The single-par-
ticle state density was taken as

g.(&) = (sr) "'Q exp( [& —g„(q)]'/r'], (l l)
V

where y is the energy region (shell interval) over
which the averaging is performed, and E,(q) rep-
resents the nucleon levels at a given Nilsson de-
formation parameter' q. An oversimplified Gauss-
ian distribution of levels (with y = 0.15I&o, where
Kco is the ¹Isson oscillator energy) was used to
calculate g„(E}.
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3. RGM PHASE SPACE
FOR SPHERICAL SYSTEMS

The RGM' treats a nuclear system as an ensem-
ble of interacting fermions. It measures all nu-
clear interaction energies from the particle-in-
variant free-gas reference Fermi surface &0. The
Fermi energy of a given nucleus e„ is considered
to be a shift of ep. The magnitude of the shift 5e
= E'p E'0 is computed as an adiabatic sum of the
long- and short-range nuclear interaction energies.

The RGM appears to give a fair account of fis-
sion energy partitions, fast-neutron (n, 2n) reac-
tion cross sections, "prompt fission fragment y
decay, "and independent mass yield in fission. "
The computational details of 5~ are briefly re-
viewed in Sec. 4.

An inhomogeneous distribution of single-particle
level density requires a complete reformulation of
the phase-space analysis. We note from (1) that
the free-gas system has an isotropic momentum
distribution Q, = I 4vp'dp. Nuclear interactions
will distort this to an anisotropic one. Introduc-
tion of an anisotropy in momentum space is thus
equivalent to the introduction of suitable interac-
tions on our reference free-gas system. ' Assum-
ing that the continuous density-of-states functions

g,(e) and g(e) may be defined as functions of nucle-
on kinetic energy e in both cases, one may com-
pare the densities for the two systems at their
respective Fermi surfaces with the same number
of particles A. This last constraint (viz. , the to-
tal number of particles is the same in both cases)
is simply a restatement of the RGM condition that
&0 is the hypothetical reference energy of the nu-
cleus. Since we have already elaborated the con-
cept of momentum anisotropy in a separate note, "
we stress here the parallel between the RGM ap-
proach and the phase-space analysis, while touch-
ing upon the salient points of the latter. The total
phase space of a spherical system of A interacting
particles now reads

(12)

where V and Q are the space and momentum vol-
umes of the interacting system. The factor 4 has
the same origin as in Sec. 1. On switching off the
nuclear interactions, (12) reduces to (1) and e„
goes to &0 in accordance with the BGM hypothesis.

In case of spherical nuclei, V = V, = 4', 'A/3;
setting Q to be numerically equal to Qp we get

I 4 (dj/ dd)dd =fdd/(dNdd/dd) dd,
0 0

spherical surface under the constraint &~4 &0 A
deformed surface f(p} is a direct consequence of
the nuclear interactions being introduced in our
reference free-gas system.

The expansion used" to treat the nuclear shape
deformations (restricting to small, axially sym-
metric, volume-conserving deformations) is writ-
ten in terms of a radius vector g of the deformed
object expanded" around the spherical radius Rp
as

1+ g p„P„(cos8) Aq ', (14)

where A. z is a volume-conserving constant, and
other symbols have their usual meanings. Our
RGM satisfies all conditions for making a similar
expansion of the momentum volume Q. We had
found' "that (i) the RGM correction 5e. is small
(5e (eo) and hence the momentum anisotropy will
be small, (ii) the RGM momentum volume is con-
served and hence a deformation expansion is pos-
sible, and (iii) an expansion around the RGM ref-
erence momentum po=(2(neo)' seems to be an

ideal choice. We try an expansion

P =P, 1+ Q n„P„(cos8) (15)

F=P, 1+ Q n „P„(cos8)
n=l

where the volume-conserving constant X has the
form"

] 3

1+P n„P„(cos8) d(cos8) .
Cose = -l

I n=l
(1'1}

We are to show the exact functional dependence of

y on p and the connection between 7 and p~.
Retaining only the lowest symmetric term 0.„

we write (15) approximately as

F= p, [1+n,P,(cos8)ja '=a+bx',

where

a =p,(1 —n, /2)/X,

5 = 3p,n, /2x,

x=cos9,

(18)

(18 ')

The maximum momentum radius should correspond
to the Fermi momentum p~ = (2mez)"'. Since P
varies with the polar angle 8, we have to deter-
mine for what value of 8 the observable Fermi mo-
mentum p~ of the RGM system exists. Introducing
a variable y as a function of the local momentum
I', we have

where f(p) is an elementary momentum surface
of the interacting system; f(p) represents a non-

and X is obtained from (1'I) as

X' = 1+3n2'/5+ 2n2~/35 . (18")
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Since @re have:introduced both o., and 5c as our measures of deformation, me relate them as

a, = 6~/e, = (er/&, ) —1 . (19)

The total momentum volume 0 in (13) may be written as

0 = &(y)—de = y' sin8 d8dydg.
o e=o 3=o &e=o

The total phase space, from (12) and (20), is
'r 4VZ(y) dy „' "'"' 16vV,

(2vg}' de „.. . (2')' y

(20)

from which we obtain

g(e) =—=4V(2') 'E(y) —.dA, dy
IR (22)

In (21}, we make a necessary change in the order of integration since the upper limit of y integration is it-
self a function of x. The integration, using (16), gives

(23)

The two integrands may be combined into a common integral within common limits of the first integral
(y =0 to y = a+ b) by making the required change in the second integrand. " The form of (23) is then

(24)

whence the function E(y) in (22) is solved as from (22), (25), and (26) as

)
16gr V P~
(2')' X~,

(25)

We ascertain the relationship between y and P (or
e) at this stage with the help of boundary condi-
tions (21) and (24). Noting that

e =0 when y=O,

whence the single-particle level density g(er) at
the RGM Fermi surface e~ may be simplified to

(30)

chen y= a+ b,

we get, from (19),

Ep = E'0(1+ &A),

(26)

The observed Fermi momentum p~ corresponds
to the maximum of F (F =a+&) at 8=0.

4. PHASE SPACE OF DEFORMED
NUCLEI

a+ 5 =P,(I+n, )/X =p, er/Xe,

at the maximum limits of y and &. Replacing the
limits by the actual variables, we have

y Po&/&&0 ~

which automatically satisfy the conditions (26).
The single-particle density may now be written

No special properties of the RGM system need
be invoked to treat the problem of permanently de-
formed nuclei. The RGM energy correction 5e
nolv includes the energy of deformatlon -+8 at the
ground-state deformation p, and a change in mo-
mentum distribution is indicated. The space vol-
ume of a deformed nucleus is obtained from

g (8') 2fr

V= ~

~

~'sin8'd49'dad '=Vo.
e'=o r=o ~ 4'=o
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A change in the order of integration as before
(Sec. 3) gives V = J, f(r, p, ) dr with the upper limit
R now independent of O'. The total phase space
may be written as

retaining only the lowest-order symmetric-defor-
mation terms in both cases, and defining a new
function 6:(c, n, ) instead of F(y) in (25). The as-
sumption of Sec. 3, viz. , that the nuclear shape
and the momentum distributions are separately
conserved, leads to a physically untenable situa-
tion according to the formalism developed. %e
note that since the limits of the double integral
are constants„each integral is to be treated sep-
arately, but the radial integral again yields just
V, . If we conserve the total phase space as a sin-
gle entity, we expect that one kind of deformation
will reflect on the other, This in essence requires
defining a new set of dynamical coordinates to
describe the problem [in the notation of (32), the
limits R and &~, and the parameters n, and p„
will be interrelated. ] In lieu of this complicated
procedure, we introduce an alternative simple ap-
proach, which involves small adjustments of our

mathematical procedure (with perhaps less rigor),
but none of principles.

A shape-deformed nucleus with a symmetric
ground-state deformation P, is more stable than
a spherical one; as Mosel and Greiner" have
phrased it, the "binding energy of deformation, "
EB, will reduce the kinetic energy of the system
by the amount E8. Since our n, is directly pro-
portional to the RGM correction 6e, we define a
new deformation o., in case of permanently de-
formed nuclei as

n~ = (ae —Za)/e(& = [(eI —ZB)/~o] —1, (33)

instead of (19). Our limits in (2V) are now rede-
fined as

a+ b = (P,/XC, )(sr —Zg), (34)

from which the variable y in (28) may be written

(35)

with the same value of dy/tk in (28). The bound»y
conditions in (26) are now slightly changed; al-
though at y = g+. 6, the upper limit of ~ remains e~
as before, at y=0, we have the new lower limit

c =Es. (24) now reads

A= Fp —G6= g 6 6'
2wh ' de

where g'(e) has the explicit form

Using Landau's translation theorem, "(36) may be written as an integral within limits of zero and er —Rz,
instead of that of Eq and cr., necessary changes are then required in (37). The final density g(e) is ob-
tained, again changing the limits of integration from zero to z~, along with the concurrent changes in the
integrand, as discussed in deducing (24). The final result, after these manipulations, is

dA 18lrV P, (a —Ks) P, E (E —Es) 1 bP t(E ESI (P (f Zs))+Q
dE (2%K) XEOErX'four 0+ 5 (0+ 5)XEofr (0+ h)XEOCJ;' (38)

The single-particle level density g(er) at er of a deformed nuclear system is obtained by putting proper
limits in (38):

which is approximately

neglecting the term cubic in +2 in A, .
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Switching off the nuclear shape deformation in-
teraction (Ea =0), the momentum deformation
a, and the constant X in (33) to (38) will fall back
to the corresponding quantities o., and X of (18) to
(29); the density (39) goes back to (30). Compari-
son of these two equations shows the important re-
sult" that the deformation energy EB reduces the
effect of momentum anisotropy in g(e~). A test of
this prediction is made later in Secs. 6 and 9 in
regions of permanently deformed nuclei.

eracies N and N, :
Nf~ = go

'
12

-
2 (&m - a &~)

where N =g', ,N„k being the total number of
subshells contained in m. The main problem is to
sum up the two interactions in (42) suitably in the
form f = Xf + pf„. A particularly suitable simple
choice is" "

5. OUTLINE OF THE RGM AND ITS
COMPUTATIONAL PROCEDURE f=(~) [(f„/k)+f, ], (43)

Ep = to+ 56 = 60+f LP/G Fa . (40)

The pairing interaction correction E&= 6'/G, the
gap correction 6, and the deformation energy Es,
may be estimated from the Belyaev model" if the
input parameters of the model are uniquely de-
fined. %'e assume that eorreetions due to extra-
core neutrons and protons axe additive:

The Rosenzweig combinatorial correction" is of
the form

f=————(v- —,n)
1

go 1
(41)

where ~= 2j,+ 1 is the shell degeneracy and v is
the number of particles in the shell %. Near
closed shells, f changes sign and goes negative,
and the Belyaev interactions tend to go to zero;
one may interpret the closed-shell RGN system
to have a binding energy f, = 7b'/24g, rel-ative to
the free Fermi gas. In regions of pure shell-
model states, the combinatorial correction (41)
predicts a parabolic dependence with the number
of particles v.

In regions of strong state mixing, one may de-
fine effective Rosenzweig functions" "f and f;
for the major shell m and the ith subshell, re-
spectively, in terms of the corresponding degen-

Use of (39) to compute the single-particle level
density g(e~) requires knowledge of R and er. As-
suming sufficient adiabaticity between different
nuclear interactions, the main RGM interactions
amongst v interacting particles are the single-par-
ticle energy corrections and those due to pairing
and deformation. The Rosenzweig type of single-
particle shell correction" f tends to unbind the
midshell nuclei, while the Belyaev-type quasipar-
tiele interactions" tend to bind them:

s = [(g, —g.)/2 sinhq](1 —Xn)"', (45)

where e„and &, are the energies at the shell bound-
aries, b and a, respectively, and

n= 1/l~, g = 2(g&+g.), X=1 -»/&,

g being the mean density, g, and g, the level den-
sities at b and a, and (1-y') is the occupation
factor (}t is the occupation amplitude).

The equilibrium deformation energy F.B at the
ground-state deformation p has been calculated"
following Bbs" based on the Nilsson' level scheme

z, =!(e, -~,)A(7}),

where the Belyaev occupation parameter A(q) is

A(n) = 'n (1 —x')((1 —'&')~(n) —2.x[~(n) -the —'1],

( =(g; -g.)/4". +g.)

y(q) = cothq(1 —2q/sinh2q) .

(48)

(49)

The Coulomb contribution to the nuclear deforma-

which has the special advantage of using all quan-
tities from the shell model; a further desirable
feature is that at the start (or end) of a major
shell m, the effects of the following (or preceding)
k- 1 subshells are suppressed, so that the effect
of the 0th subshell (k=i =1) alone is felt; the
choice (43) then reduces to f = ,'(f +f,).-

An energy normalization at this stage is neces-
sary to introduce the quasiparticle interactions.
Vfe assume that the transition qo- &' due to the
Rosenzweig f interactions alone brings the sys-
tem back to a system having a level spectrum of
equidistant spacings.

The pairing correction F~ and the gap correc-
tion 6 are given by"

Z, =~'/G, G, =82/Z, G„=48/V,
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tion energy E8 is in the form of an expansion

Ee—- —,'CP', C=C,(1 —5c'/e, ), (51)

where 5e' is the RGM correction due to Rosen-
zweig and pairing interactions alone, and C, is
the stiffness coefficient of the nuclear system.

In our computations, the input parameters of
the Belyaev interaction energies (44), (45), and

(47), were fixed from (41)-(43), and no further
adjustments were made. They are thus free from
arbitrary parameters and themselves form a self-
consistent set of parameters. The constant C, in

(51) was taken as" -320 MeV.
Our computed g parameters have been plotted in

Figs. 1 and 2 in the stable nuclear mass range 50

~.(fI) =—,„~.,P 2„„fI.'= F-., (1 e-'i4. "-),
(50)

where E~, is the Coulomb energy of a spherical
nucleus. The deformation parameter P may be
calculated using the relationship of Mosel and
Qreiner"' "

«A. «250. Vfe expect different features of our
RGM (viz. , magic shell and subshell effects, mid-
shell effects, odd-even effects, and deformation
effects) to show up in these predictions.

6. COMPARISON WITH EXPERIMENTS

The experimental a parameters are mostly de-
rived from the analysis of slow-neutron reso-
nance data or from nuclear-reaction cross sec-
tions using the equidistant-spacing-model level-
density formula. Neutron resonance data have
been used by Newton4 in 52 nuclei, by Ross" in
50 nuclei, by Erba, Facchini, and Saetta-Meni-
chella' in 100 nuclei, by Lang" in 83 nuclei, and

by Facchini and Saetta-Menichella' in 189 nuclei.
In addition, Ref. 2 analyzed 31 nuclei from fast-
neutron (n, n') and (n, P) cross sections and 5 nu-
clei from (P, n) reactions; these usually show
wider fluctuations of g values compared to the
slow-neutron (n, y) resonances.

In these analyses, the level-density function

p(U, Z) of a nucleus at an excitation U is used in
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FIG. 1. A comparison of experimental a parameters (Refs. 2, 3) with our predicted values in the medium-mass region,
50 ~A ~ 160. Note that the general trend, and the magnitudes, agree reasonably satisfactorily throughout this mass
region from our model formulation using the single-particle schemes of Ref. 8.
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the usual exponential form'

U =E„+Q—6, (53)

where E„is the incident neutron energy and Q is
the reaction energy (Q value).

In the analysis of the slow-neutron resonance
data, the observed level spacing D,~ is usually
taken to be

D,b,
'= —[ep(U, J=I+e)+p(U, J=I—z)] for /=0,

=P~ Q p(U, Z) for I &0,

(54)

(54')

where / is the orbital angular momentum of the
neutron, I is the ground-state spin of the target
nucleus, and the parity weight factor P~ =1 or 2,

(52}

where g is the spin cutoff parameter. It is cus-
tomary~ to introduce an odd-even correction b, in
U'e

depending on one or both kinds of parities being
observed. Fluctuations of D,&, should be weakly
reflected in the g parameter, since D,~,

' is an
exponential function of a in (52) and (54). How-

ever, there is considerable discrepancy in the de-
duced a parameters from different sources. The
two sets of analysis of the Milan group" agree
well and usually predict slightly higher a values
than the rest. %e have included both these sets
for comparison purposes in Figs. 1 and 2.

In Fig. 1, the region of medium-weight nuclei
50 ~A ~ 160 has been covered. Our comparison
starts beyond the 1f„,shell for neutrons and pro-
tons (A & 63), where N/Z & 1, and the neutron and

proton systems just start to behave differently.
Calculations have been made for all nuclei tabulat-
ed in Refs. 2 and 3, to allow a point-by-point com-
parison. The over-all fit iri general trend and mag-
nitudes is reasonably satisfactory (&25%) through-
out and &10% in 53 cases out of 81 nuclei, i.e., in
about 65% cases). In the region 73 &A &76, our
computed values show a trend opposite to the ex-
perimental values. There is considerable uncer-
tainty of the neutron subshell filling order in the
Ga-Ge-As region (see Sec. 7). One finds a good

I45 I55 l65 l75 l85 195
I & I

'
I I I ' I

x FACCHINI 6L SAETTA-MENICHELLA (I968)
o ERBA et at. (I96I)
~ R GM PREDICTIONS WITH /$2+ +

R GM PREDICTIONS WITHOUT

205
I

2I5
I

I
I

225
I

I

235 245
I

30—

26- o
0

x Qg,

X

IS—

lo—

00

xxax
X 0

x

0
X ~

x

X
x

~
g~o Oo ~

~t X, o ~ Xy„x x ~-
xx xtx-".

~ og ~

0
i@0

I

ISO
I

160
I

l70
I

l80
I i I

l90 200
MASS NUMBER

I

2I0
I I I I l I

220 230 240 250

FIG. 2. A comparison of the experimental a values {Refs. 2, 3) with our predictions in the heavy-mass region, 140
~g ~250. We have used the more appropriate single-particle scheme of Ref. 36 in this region; the fit throughout is
again reasonably satisfactory.
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agreement in the observed and calculated dips in
the mass-90 region (Rb, Sr, Y, and Zr isotopes).
Slight discrepancies exist around A-98 and A
-110 (Mo isotopes), mainly due to the assumed
contributions of l = 0 and l = 1 neutrons only in the
experimental analysis; since the local neutron
states are 2d„, and 1g7i2 inclusion of the effect
of neutrons of higher angular momenta is expect-
ed to bring down the values nearer to our predic-
tions. Similar argument also applies in the A- 75
region. A-good fit with this predicted decrease is
observed also in the A- 138 region (followed by a
rise up to 4=150).

Figure 2, the region of heavy nuclei, 140&A
& 250, compares the experimental analysis" of
108 nuclei with our predictions. We note that a
misfit occurs for '"Sm, '"Sm, '"Eu, and "'Dy.
The experimental values themselves differ consid-
erably in this region, as shown in Table I. In the
permanently deformed region (rare earths), our
model deformation energy Eq in (47) plays a vital
role in reducing the magnitude of the a parameter,
as is experimentally found. The Coulomb contri-
bution LEc in F.~ has to be included to obtain real- .

istic results.
Another interesting region in Fig. 2 is that of

transitional nuclei (Pt, Au, and Hg isotopes).
These nuclei are known to have considerable
amounts of asymmetric deformation p, at or near
the ground state in addition to the symmetric de-
formation P(=-P,). This matter is further discussed
in Sec. 9.

A large local drop in the a parameter is observed
in the ' 'Pb, ''Pb, and"'Pb isotopes, near the Z
=82, N = 126 configuration. Our theory and experi-
ments agree within 30% here.

After a sharp rise up to A = 212, our calculations
predict a plateau in the 212 & A &225 region and a
-20% drop in the Ra-Ac region (mass -226). Un-

fortunately, there are no experimental data to com-
pare with in this region. Comparison is again pos-
sible at 230&A &245, where the three sets of num-
bers" '4 agree within -15%. A drop is predicted
beyond A= 246, but no comparison with experi-
ments is possible.

7. SHELL AND SUBSHELL EFFECTS

Our predicted and the experimental trends both
show magic shell effects at V=28, 50, 82, and
126 and at Z=28, 50, and 82.

From Figs. 1 and 2, one may argue that there
are no prominent proton and neutron subshell ef-
fects in the g parameters. The experimental in-
formation has traditionally been interpreted in
this way. Our calculations show that although the
subshell effects seem to be unimportant in magni-
tude, their real absence would imply a much high-
er predicted a value in several regions (particu-
larly in the midshell regions of a major shell) with
much different slopes in the general trends. This
is specially true for the neutron subshells in '30'Zn

(1f„,), 4', Mo (2d„,), '4', Cd (1g„,), ',", m (2f»,),
and ",,'Er (lh„,) nuclei, and for protons in the Ge,
Sr, Ba, and Gd isotopes. In these cases, the sub-
shell effects of the other kind of nucleons inter-
fere to keep the local a parameter to a lower ob-
served value.

In our calculations, we had assumed a proton
shell closure at Z =40, and have obtained the fit
shown in Fig. 1. In the Nilsson scheme, ' the sub-
shell gap in the mass-90 region amounts almost
to a major shell gap. The effect in Z=50 near the
mass-130 region is thereby relatively weakened;
in this region of the 1kyU2 neutron midshell, on'.y
weak neutron subshell effects are observed. In
our notation (43), 0=1 in the 1g„,proton shell,
40&Z & 50.

TABLE I. Comparison of the experimental and predicted + parameters near the mass -155 region (rare earths).
Note discrepancies (10-15%) in the two analyses (Refs. 2 and 3). The role of the model deformation energy Es in our
calculated values is shown in the last two columns.

Nucleus
Dobs

(Mev)

Ref. 2
+ expt

(Mev-')
Dobs

(MeV)

Ref. 3
+ expt

(MeV 1)

QRGM (MeV )
Without With

150
82S

152
82Sm90

152
83Eu89

158
84~92

158
84Gd94

182
88 y98

183
BBDy97

3.3x10 '
1.3x 10 8

7.3x10 '

2.1x 10-'

2.0x 10 8

1.2x10 8

2.0x ].0-4

21.77

23.05

23.88

24.48

23.49

23.63

18.17

2.4x 10 8

l.ox10 '
6.5x10 7

1.gx10 8

5,5x 10 8

2.2x10 '

1.0x 10-4

23.61

25.56

25.05

22.45

21.60

21,69

21.39

25,10

25.50

25.70

26.00

26.40

26,60

26.60

21.10

21.10

21.60

20.65

21.20

18.90

18.70



SINGLE-PARTICLE DENSITY OF THE RE NORMA LIZE D FE RNI. . . 849

The statistical model of nuclear reactions pre-
dicts from (52) a low reaction cross section for
a nucleus with lower a value. In a systematic
analysis2~ of the shell effects in the (n, n} reac-
tion cross sections with 14-MeV neutrons, de-
scribed in terms of the Rosenzweig shell interac-
tion" alone, a subshell effect in the Ga-Ge-As
region was predicted"; this was later experimen-
tally confirmed by Rao and Fink. " Similar effects
are expected in the mass-88, -125, and -190 re-
gions, and are indeed observed, "for instance at
A - 125 (1h»» neutron subshell) .

8. ODD-EVEN EFFECTS

Neither the experimental data nor our predic-
tions reveal any strong odd-even mass effects in
Figs. 1 and 2. Our predicted values include both
the interaction P =6'/G and the pairing-gap cor-
rection b, . These corrections attain their maxi-
mum values in the midshells. The magnitudes of
these two together are -20% of the total correc-
tion 5e in (40), and hence are numerically unim-
portant beyond the region of light nuclei (A &60}.

From the experimental data analysis, Newton4

pointed out that the observed level spacings D,b,
in slow-neutron resonances do not exhibit any
marked odd-even effect. One expects, however,
that for thermal and slow neutrons, where the ex-
citation energy U of the system is put equal to the
neutron binding energy B„, the residual nucleus
should show rather strong odd-even effects. This
point has been illustrated by Malishev, "who
argues that the odd-even effects present in B„
should be strongly reflected in the level-density
parameter. Newton4 suggested that the odd-even
effect should be removed by measuring the excita-
tion energy from a fictitious ground state such that

(55)

Neutron energies 50&E„&100 keV introduce a
further small correction in B„so that

1U,ff =B,ff —b, =B„+2E„-b, , (56)

which takes the place of (53) in the use of the level-
density formula (52). The n values in (55) and (56)
are usually taken from various mass formulas. Er-
ba, Facchini, and Saetta-Menichella, ' Gilbert and
Cameron, "and Facchini and Saetta-Menichella'
used b, values from the mass formula of Cameron
and Elkin. " Malishev" used the values of Nemi-
rovskii and Adamchuk" deduced from the odd-
even mass difference including the Coulomb and
surface-energy corrections.

Our RGM 6 values, obtained from the Belyaev
formulation, behave differently from the 6 values
of Refs. 5, 28, and 29. Our values go to zero at

9. DEFORMATION EFFECTS

We recall that the model deformation energy EB
in (47) contains the Coulomb contribution Ec(p),
given by (50). They both go to zero for closed-
shell nuclei which are stable in their spherical
shapes. In the midshell nuclei, both model ener-
gies contribute, due to the symmetric deforma-
tion parameter p(=p, ). This is indeed reflected
in our theoretical estimates of the g parameters.
Neglect of EB will considerably enhance the mag-
nitudes of the local a values (by -30%), as shown
in a few sample comparisons in Table I. The Cou-
lomb contribution Ec(p) accounts for -15% of this
effect.

TABLE g. A partial comparison of RGM pairing-gap
corrections 6 with those of Nemirovskii and Adamchuk
(Ref. 31) and Cameron and Elkin (Ref. 30).

Nucleus
Ref. 31

b, p A„b
Ref. 30 RGM

30Zn64

32Ge40
72

80
34Se46

gSr„
4oZr52
92

96
42Mo54

106
46I'deo

118
)Snes

1262Te

138Ba

'soNd84

152
62S 90

162
66D~96

172
70~102

182
74 108

194
7sptiie

1.34 1.67 3.01

1.72 2.15 3.87

1.76 1.70 3.46

1.43 1.55 2.98

1.31 0.92 2,23

1.68 1.18 2.86

1.18 1.32 2.50

1,51 1.17 2.68

1.27 1.46 2.73

0.98 0.96 1.94

1.38 0.99 2.37

1.80 1.52 3.32

0.86 0.98 1.84

0.76 0.78 1.54

0.54 0.71 1.25

1.47 1.14 2.61

2.47

2.79

3.00

2.17

1.92

2.40

2.59

2.34

2.23

2.43

1.94

2.32

1.62

1.37

1.45

1.55

0.91 1.23 2.14

1.09 0.76 1.85

1.42 1.06 2.48

0.87 0 0.87

0 0.41 0.41

1.83 0.58 2.41

1.86 0.93 2.79

0 0.63 0.63

0.59 0.89 1.48

0.92 0 0.92

0.97 0.61 1.58

0.97 0.30 1.27

1.23 0.43 1.66

1.18 0.57 1.75

0.93 0.58 1.51

0.40 0.45 0.85

shell closure points because of their dependence
on the occupation factor (1 —}i') in (45). The 6's
of Nemirovskii and Adamchuk" and of Cameron
and Elkin, "however, have finite values at shell
closures. Table II compares some of these values.
The main discrepancies occur at or near the shell-
closure positions, as discussed above. If we use
the RGM 6 values for computing the g parameters
from D,b„ the changes in the a values are only a
few percent (&10%); the nature of the general
trend in Figs. 1 and 2 is hardly affected by this
substitution.
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TABLE IH. Comparison of the experimental and pre-
dicted g parameters for nuclei near A. - 196 {transitional
nuclei) .

0 expt ~eferenee
Nucleus (MeV «) No.

QRGM With

P, =0 P, =0.75P, P, =P,

f93
vsPt~~s

vs~|1&
i8S
~8Autts

188
SOHgt(8

20.19

20.62

19.13

21.95

20.68

24.90 22.90 20.75

23.60 22.60 20.40

26.10 24.50 22.25

25.80 24.50 22.30

2s000Hgg20 . 19.01

17.62

26.20 25.10 23.00

The transitional nuclei are separately considered
in Table III. Here, the asymmetric octupole de-
formation P, (in our approximate RGM treatment)
goes to increase the "Coulomb deformation ener-
gy of binding, "

h, (P+P, ) = (g, /4&)[P2+ iOP, '/rj, (57)

and this will increase the total deformation energy
(Eq+ E8,); the net result is an increased binding

in these nuclei due to the combined deformations
with a concurrent reduced magnitude of the g pa-
rameter, as shown in Fig. 2 and Table III, in the
mass-195 region. Cohen'3 has argued that for
these nuclei, P, is almost as large as the symme-
tric deformation p; our theoretical estimate, which

gives the best fit with observations in this region,
supports Cohen's conjecture. We may compare
the two cases, p, = p (black dots), and p, = 0 (tri-
angles) in Fig. 2.

The model deformation energy enters twice in

(39), once through the Fermi energy e~ and once
again through the momentum deformation parame-
ter e~. The shape deformation of a nucleus thus
plays a dual role in the momentum space. Qn the
one hand, it redefines the upper limit of the mo-
mentum distribution by reducing the magnitude of

&~ and on the other, it readjusts the momentum

shape by decreasing the magnitude of the aniso-
tropy of such an interacting system. One which

fits the experimental a values is the one in which
this dual role is incorporated. This clearly illus-
trates the insufficiency of adjusting the "deformed"
Fermi energy c~ alone in these regions without a
corresponding alteration in the momentum distri-
bution.

Another interesting consequence of the deforma-
tion effects is found in the heaviest elements (Ra
to Cf). A local subdip in the a parameters in the
Ra-Ac region is not due to any shell or subshell
closure effects, but is due to the presence of large

deformation energies (5 to 6 MeV). This corrob-
orates the conjecture of Strutinsky' that a stable
(closed-shell-like) configuration exists in highly
deformed nuclei; recast in our formulation (Sec.
4), large deformation energies reduce both the
Fermi energy e~ and the anisotropy of the momen-
tum distribution n, to attain a stability.

10. DISCUSSIONS, SUMMARY,
AND CONCLUSIONS

Several interesting consequences of the RGM
show up clearly in the observed trends of the sin-
gle-particle level densities. The specific RGM
interaction effects have been discussed in Secs. 7

to 9. The main point we have learned is that the
properties of the RGM system are governed pri-
marily by the form of the shell model used. We
have seen that the subshell mixing, occupation,
pairing, and shape-deformation effects depend
critically on this prescription. The pairing-inter-
action effects get considerably reduced in inten-
sity in the heaviest stable nuclei. The nuclear
shape-deformation effects gradually gain in inten-
sity with increase in mass number, and show up
characteristic effects in rare earths and light ac-
tinides; the Coulomb contribution to the deforma-
tion energy, and the presence of asymmetric de-
formations towards the end of a deformed major
shell, are both strongly felt in these regions.

Two things happen when a subshell closure oc-
curs in the midshell of highly deformed nuclei.
The RGM correction 5& is reduced on accouni of
the subshell closure itself, and the presence of
large deformation energies further reduces the
momentum anisotropy (and the Fermi energy qz).
A valley in the rare-earth region, A -165, is due
to this combined effect. A similar thing happens
in the actinide region, A. - 226. These corroborate
the Strutinsky hypothesis that regions of large de-
formations sometimes behave like closed-shell
configurations.

The Rosenzweig shell correction f becomes dou-
ble valued at magic configurations. A configura-
tion of a closed shell q, is also a point where the
next available shell q, ' is completely open. We
have, somewhat artificially, chosen the repre-
sentation that the shell ~' starts with the particle
v~, =1, v, =0 being equivalent to the closure of
the previous shell % with p„=%. The other possi-
ble representation does not agree with the experi-
mental trends.

The odd-even mass effects are hardly observable
in the single-particle level densities since such ef-
fects are usually small in magnitude.

We may raise a basic question: Is it possible to
find a nuclear species which behaves like a free
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gas'P One may argue that when there is an acci-
dental cancellation of RGM interaction energies,
5m= 0, the system will behave as a free gas (cf.
Sec. 1) in the sense that (a) its ground state will
coincide with the free-gas Fermi energy eo, and

(b) its single-particle level density of equidistant
spacings will be g, =3A/2eo. We note that it is
possible to find nuclei in which 5& - 0. Such nuclei
occur near closed-shell configurations; near here,
the model pairing and deformation interactions are
small negative quantities, and the Rosenzweig in-
teraction f changes sign (goes negative to positive,
from the shell closure point towards midshel1, cf.
Sec. 5). The condition 5e -0 is then equivalent to

f -0, which gives vz-Tb/12; hence, for a just open
large orbital angular momentum state with one or
two particles, the system is expected to behave
as a pseudofree gas. Such nuclei, however, will
not have the approximate free-gas g parameter
a, =w'A/4e„but will have a -2a, . The factor 2 in

(30) and (39) arises mainly from our choice of the
definition (19), where the momentum deformation
a, is assumed to vary quadratically with the Fer-
mi momentum p„. An assumed linear variation
does not reproduce the realistic behavior. Fur-
ther, the gross average a,„x (smoothening over all
structure effects in Figs. 1 and 2) does not show
a mean slope v'/4c, with the mass number 4, but
appears to have a mean slope v'/2e, s v'. We also
note that our RGM formulation in Sec. 6 predicts
that the model a values reach the lowest limit -g
near the doubly magic Pb nucleus. Usually, the
observed values lie close to, but smaller than,
2a„due to the form of V in (2S) and (35) or of a
in (30) and (39).

The average, maximum, and minimum-magni-
tudes of 5~ in the region of stability are -3, -7,
and --2 MeV, if we take co= 31.0 MeV following
Cindro. " These numbers give binding energies
-7, -3, and -12 MeV, if we take the nuclear po-
tential '0 corresponding to k~ =414 ' ' MeV fol-
lowing Nilsson. ' If the state-mixing or deforma-
tion effects were absent in heavy midshell nuclei,
their binding energies would have gone to zero
(or even positive).

An extrapolation of the formalism is possible
to calculate the single-particle level densities of
superheavy nuclei. This requires the knowledge
of the shell structure of these nuclei. This infor-
mation is now available in the form of several al-
ternatives, ""and the most suitable form to
choose is unknown. We have calculated the a val-
ues using all three schemes.

A detailed comparison with experiments appears
in Fig. 3. The scheme of Rost" shows well-sep-
arated 1i»,x and 2f„x proton subshells in contrast
with the schemes of Seeger' and Nilsson et gl. ,

"

A R G M VALUES x-ROST S SCHEME
WITHOUT STATE g SEFGFR g NIL$$0N
MIXING et et:

40 B = R G M VALUES li ~ SEEGAR &NILSSQN
WITH STATE MIXING

J et a1.

0-EXP ERIMENTAL OATA

35- O XX

0A x«x xxW

30- ~f Ix exx ~~~~Qgx+fgx~

x h 4 aa
25-g h

X

20 x~

~ 0

~30—,~ ~ o 0"-~ d'o'o
Qg ~ ~

~ ~ 0

25—
~ y

~0

20~
~ ~

~y

10 I I I I I l I I I

2IO 220 230 240 250 260

FIG. 3. A comparison of our predicted u parameters
using different single-particle schemes (Befs. 34-36)
with and without state-mixing effects. The few experi-
mental data (Refs. 2, 3) shown as 0 in the mass range
230 ~A ~245 seem to favor all the three alternative
schemes if the state-mixing effects in this mass region
are ignored.

where these two states lie very close. A possibil-
ity of subshell mixing thus exists in the two latter
schemes, which are essential). y identical in gen-
eral features in the mass region 210 &A. & 260. If
we take the subshells to be unmixed, good fit with

experimental data' is obtained in this region using
all the three schemes. Subshell mixing in the
schemes of Refs. 34 and 36 will decrease a«„to

' 'Pu ' 'Am, ~Am, and '~,'Cm nuclei. We thus
conclude from Fig. 3 that subshells in this region,
while they may have small energy separations, re-
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main unmixed. Using Rost's scheme, the fits be-
yond A =250 (superheavy nuclei) worsen"; further,
the well-known neutron subshell closure effect,

found in the binding-energy systematics, "at N
= 152, does not appear.
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