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We calculate the triton binding energy and charge form factor for a set of phase-shift-
equivalent, S-wave, spin-independent potentials, The Faddeev equations are solved by the
method of Padé approximants. We present a partial wave expansion for the triton form
factor for a J =0 spatially symmetric wave function. A 6-MeV variation in triton binding
energy results occurs for the potentials studied. All but 1 MeV of this off-shell variation
is attributable to changes in the deuteron wave function. The relation between the triton
binding energy and deuteron wave function is discussed. We find that the triton binding en-
ergy is sensitive to the relative amount of scale distortion in the momentum-space deuteron
wave function. For the potentials studied, less binding in the triton is associated with deu-
teron wave functions that are more “compressed,” i.e., fall off more rapidly in momentum
space for k<2 fm™!, We also find that potentials that yield less binding in the triton (in
worse agreement with experiment) yield a diffraction minimum in the form factor at smaller
momentum transfer (in better agreement with experiment), The disparity between the bind-
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ing-energy results and form-factor results with respect to experiment may indicate a role
for three-body forces in the three-nucleon system.

I. INTRODUCTION

One of the basic unresolved problems of present
day nuclear physics is the detailed nature of the
two-nucleon (N-N) interaction. Accurate phase-
shift analyses of the experimental N-N elastic
scattering data for low partial waves and for en-
ergies where pion production is not important
(E <350 MeV) are available'; however, the N-N
data only determine the asymptotic form of the
N-N wave function, or alternatively, the on-shell
properties of the N-N transition (T') matrix. Elas-
tic N-N scattering experiments tell nothing about
the off-energy-shell T matrix. To predict the prop-
erties of the few- or many-nucleon system, one
must have a knowledge of the off-shell T matrix.*?3
Moreover, recent calculations*~7 indicate that off-
shell behavior plays a major role in predictions of
the binding energies of nuclear matter and °0.

This paper investigates the consequences of the
off -shell uncertainty in the N-N interaction in the
three-nucleon bound-state problem. The three-
nucleon bound-state problem provides an excellent
opportunity to learn something about the N-N inter-
action because, unlike most nuclear many-body
problems, an exact theory is available through the
Faddeev equations formalism.? Recent numerical
advances®~!° render the three-nucleon bound-state
problem manageable for potentials that act in a
small number of partial waves.

Previous studies!!~!3 of off-shell effects in the
triton indicate that triton-binding-energy results
are moderately sensitive to off-shell properties.

In this paper we attempt to explain how off-shell
variations in the triton binding energy and form-
factor results arise from changes in the momen-
tum distributions of the deuteron wave function and
off-shell T matrix. To investigate off-shell effects,
we calculate the triton binding energies and charge
form factors for a set of exactly phase-shift-equiv-
alent potentials. Section II briefly reviews the uni-
tary-transformation method of generating these
potentials. All potentials investigated are unitarily
equivalent, in the two-body sense, to a two-term
Yukawa potential acting in relative S waves. The
Yukawa potential is spin-independent and corre-
sponds very closely to the V potential of Malfliet
and Tjon.® We thus do not attempt to examine the
roles of spin dependence, tensor forces, or higher
partial waves in the triton problem. We employ a
simplified model of the N-N interaction to isolate
the role of off-shell properties. Since the triton
is believed to be in a predominantly spatially sym-
metric state, the averaging of the spin dependence
of the N-N interaction is not an unreasonable ap-
proximation.**

Section III of this paper describes the solution
of the Faddeev equations for the triton problem.
We apply a modification of the methods of Malfliet
and Tjon® !° to extract the triton binding energy and
wave function. We present partial-wave expan-
sions for the completely antisymmetrized three-
nucleon wave function and for the triton (or 3He)
form factor for a spatially symmetric J =0 wave
function. The actual calculations of the form fac-
tor include angular momentum states up to /=8 in
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the partial-wave expansion. Previous Faddeev cal-
culations of the form factor!® only include the =0
contribution.

Results of the calculations with phase-shift-equiv-
alent potentials appear in Sec. IV. Large varia-
tions (greater than 1 MeV) in the triton-binding-
energy results occur only for those potentials that
yield significantly different deuteron wave func-
tions. Potentials that predict less binding in the
triton also predict the diffraction minimum in the
triton (or %He) charge form factor at lower values
of the momentum transfer. In fact, the form-fac-
tor calculations seem to suggest that off-shell
changes in the form factor are governed to a high
degree by the off-shell changes in the binding en-
ergy.

In Sec. V we discuss the off-shell dependence of
the results of Sec. IV. The discussion centers
mainly on the dependence of the triton binding en-
ergy on the deuteron wave function. We employ
results obtained from the unitary-pole approxima-
tion (UPA)'® to isolate the role of the deuteron
wave function. The main conclusion is that the tri-
ton-binding -energy results are sensitive to the
relative amounts of distortion present in the deu-
teron wave function (with respect to some fixed
deuteron wave function) in momentum space. Po-
tentials that yield steeper momentum (k) depen-
dence in the deuteron wave function for k<2 fm™!
yield less binding in the triton. In cases where
potentials yield virtually the same deuteron wave
function, changes in the low and intermediate mo-
mentum components (<2 fm™!) of the low-energy
half-shell T matrix seem to govern the off-shell
changes in triton results,

Section VI explores the implications of the ob-
served off-shell dependence of the triton results
with respect to current experimental and theoreti-
cal constraints on the off-shell N-N interaction.
We conclude that the off-shell uncertainty in triton-
binding-energy predictions could be several MeV
even for “reasonably realistic” potentials. This
uncertainty follows mainly from the lack of experi-
mental constraints on the low-energy 1S, interac-
tion. This conclusion is especially important in
view of the fact that Faddeev calculations® for the
Reid potential'” yield an incorrect triton binding
energy (6.5 MeV vs 8.5 MeV experiment). The dis-
crepancy between the *He charge form factor as
calculated with the Reid potential'® with experi-
ment is more mysterious. By the results of this
paper, potentials that differ off shell that give
better agreement with experiment for the position
of the diffraction minimum in the form factor give
worse agreement for the triton binding energy.
This trend may imply an important role for three-
body forces.

II. UNITARILY EQUIVALENT POTENTIALS

Details of the unitary-transformation method of
generating phase-shift-equivalent potentials ap-
pear elsewhere.*® A brief review follows below.

We start with a two-body “untransformed” Ham-
iltonian H=H,+V, where H, is the relative kinetic
energy and V is the two-body potential. We intro-
duce a two-body operator U that is short ranged

FIUIF) o7 am 0F 1)
and unitary (U"U=UU" =1). If the Hamiltonian
H has a spectrum E, and eigenstates ¥, (i.e.,
HY,=E,¥,), then A%, =E, ¥, and ¥ ,(¥),=.¥, (%),
where ¥, =U¥, and A=UHU". Therefore, the two-
body “transformed” Hamiltonian yields the same
spectrum as H and, in particular, will leave the
two-body bound-state energies invariant. By uni-
tarity the eigenstates of A preserve the orthonor-
mality of states ((¥,|¥,)=(¥,|¥,)). Also, since
\il,, and ¥, are asymptotically equal, A preserves
the phase shifts of #. While the two-body poten-
tials V and 17=}7—H0 are unitarily equivalent in
the two-body problem, these two-body potentials
do not yield unitarily equivalent wave functions in
the many-body problem. Therefore, the two-body
potentials V and V, when substituted as the inter-
action between pairs in a many-body Hamiltonian,
do not yield the same many-body spectrum.

In this paper we employ the rank-one unitary
transformation

U=1-2A, (1)
where
(rly|Al7'Vy)=g] () g, (r")5,,0 by -

The variable 7 is the relative displacement. The
quantum numbers ['and !’ stand for relative orbital
angular momentum and y stands for the “good”
quantum numbers J, M (total angular momentum
and projection), S (spin), and II, (isospin and pro-
jection). We choose g} (7) to have the form

&1 (r)=Ce™ %" (B, +B,7 +B,7%) 2

where C is determined by the unitarity condition
I 7%drv[g] )]?=1. In this study the “untrans-
formed” potential V is given by

(rly| V7' U y)y=V@)o - 7') /726, &, , 3)

where V(r) =-574.32¢~%7 /) + 1448.44¢ 1Y /., The
potential (3) is very close to the V potential of Mal-
fliet and Tjon.° It represents the average of sin-
glet and triplet S-wave potentials that individually
give good fits to the 'S, and %S, N-N scattering data
up to 300 MeV (LAB). This potential yields a two-
body bound state at —0.416 MeV. The potential (3),
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while clearly a simplification of the true N-N
force, is a suitable starting point for the purpose
of studying off-shell effects in the triton.

We do not introduce the transformation of Eqs.
(1), (2) on any special physical grounds. The prin-
cipal reason for its use is computational conven-
ience. With the choices of Eqs. (1)-(3), analytic
expressions are available for the matrix elements
of V in momentum space.'®* We do not attempt to
theoretically justify the transformation we employ.
The transformation merely provides a tool to vary
the unknown part of the interaction, i.e., the off-
shell T matrix elements. The main goal is to de-
termine how changes in the off-shell N-N interac-
tion affect predictions of triton properties. Note,
however, that by the proper choice of the parame-
ters a,, B; in Eq. (2), one can limit the range of
the transformation. Therefore, one may choose
the parameters of the transformation such as not
to affect the two-nucleon wave function (or poten-
tial) in the one-pion-exchange (OPE) tail region
(»>2 fm). Thus, with the appropriate choice of
parameters, the transformation (1), (2) is not in-
consistent with our knowledge from meson theory
of the N-N interaction at large distances.

The matrix elements of V determine the two-
body T matrix f(w) through the Lippmann-Schwing-
er equation

(Rly|E(w)| k'L y)
= (Rly| V| k1Y)

> = q%dq (kly| V]qly) (aly| E(w)| k' Uy)
+ .
,1£ w=-q°

(4)

The matrix elements of  (w) provide the input for
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the solution of the Faddeev equations for the three-
body problem.

III. SOLUTION OF THE FADDEEV EQUATIONS
FOR THE TRITON

We now describe our method of solution of the
Faddeev equations. We adhere to the notation of
Maffliet and Tjon.® If the three nucleons have mo-
menta k,, k,, k,, respectively, the ket notation
| $§), indicates a state where particles 2 and 3
have relative momentum P, i.e., p=(k,-k;)/2
(we assume equal masses). The spectator par-
ticle (here particle 1) has a momentum relative
to the center of mass of 2 and 3 proportional to
q, i.e.,

1 > > >
ﬁ=m(k2+k3 - 21(1) .
Clearly, the state |P§), can be expressed in terms

of states where 2 or 3 is the spectator, e.g., in
the three-body center-of-mass frame

|58), = |-B/2+V3 /2, V3 B/2-1/2), etc.

In partial-wave notation the ket | pgaB), indicates
a state where

- 1 - .

b= |T<2"k3‘ /2 y 4 =_2ﬁ IE2+k3 - 2k1|
and the quantum numbers « are [ (relative orbital
angular momentum of 2 and 3), L (spectator or-
bital angular momentum), and J, M (total orbital
angular momentum and projection). We indicate
the spin-isospin quantum numbers by the label 8.
Since we deal with spin-independent potentials,
we will usually omit the spin-isospin label. The
state | pgap), is antisymmetrized with respect to
interchange of particles 2 and 3.

The three-body T matrix satisfies a three-body Lippmann-Schwinger equation

1

T(w)=V+Vw—H,,

T(w),

(5)

where V includes the interaction of all the particles and H, is the total kinetic energy. Standard numerical
techniques of solving integral equations do not apply to Eq. (5) because the kernel of Eq. (5) is noncompact
(e.g., o functions appear in the kernel). Faddeev? overcame this problem by recasting Eq. (5) into the

form
T(@) =T () + TP () + T (),

where

T () = T () + Ty (w) 1H > T(w).

W=ty s

(6)

In Eq. (6) the operator T,(w) is the three-body T matrix for the case where only particles j, k¢ interact.
In the three-body center-of-mass frame T,(w) is related to the two-body 7 matrix by ($§| T,(w)| D' §'),

=(P| tw-¢?)|D)6@E-7").

For S-wave spin-independent forces, the three-body bound-state problem in the triton state [7=0,
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S (spin)=3, I (isospin) =3, we need not consider coupling of J and S] reduces to that of three identical bo-
sons. After partial-wave decomposition'® the Faddeev equations reduce to the two-dimensional integral
equation

T gy WP 0= a)(p'a) )

4 ° ’ ’
\P(p,q)—w(p,q)+7§—5_[) q'dq fm.«:) p w—q7-p? '

where, for any spatially symmetric state ¥
¥(p,9) = (paal TV (w)|¥)= (pga| T (w)|¥) for a: I=L=J=0
[(pga| TV(w)|¥)=0 for a: 1=L+#0,J=0],

o(p,q)=(pga: L=1=J=0|T\(w)|¥),

L(g,q")=12q9 -q'|V3;Ulg,q")= (20 +¢")/V3,
and

p]/.= (p12+q12 _q2)1/2 .
The S-wave two-body T matrix is denoted by ¢(k, k’; s)=(k0a| #(s)| k’0c) with the normalization t(k, k; k% +i€)
= ~2171e*0(® ging (k)/k where 6,(k) is the S-wave phase shift. Implicit in the suppression of spin-isospin
quantum numbers in Eq. (7) is that the three nucleons are interacting in a spatially symmetric spin-isospin

antisymmetric state.
To solve Eq. (7) we apply the method of Padé approximants.!®2° Formally, one can write Eq. (7) as

YA =@ +Akh(A) , ®)

where A =1 for the physical problem. The Neumann series, generated by the iteration of Eq. (8) is simply
a power series in A, i.e.,

PA)(NS) =@ +Akd +2%%D ++ =23 a; N}, o
i-0
where, in reality, the a; are functions of momentum. The Nth Padé approximant to ¢ is given by

N N

zp[N.N](K) = 12 A‘ }\/(1 + 121 Bi l‘) N (10)
=0 =

where one determines the coefficients A;, B; by matching the first 2N +1 coefficients of the power series

for Yry, y7 with the corresponding a; of Eq. (9). We note from Eqgs. (9) and (10) that the Padé approximants

to ¥(A) may have poles whereas the Newmann series cannot predict poles. The physical solution y(x=1)

has a pole when the energy is equal to the triton binding energy, i.e., w=-ME;/%#2 We therefore search

for the value of w such that the Nth Padé approximant to y(1) indicates a pole. Of course, N must be large

enough that an essentially converged result (with increasing N) is obtained. For all potentials of this paper,

convergence occurs by N=12 even when the Newmann series is very divergent.

The solution of Eq. (8) by Padé approximants requires the evaluation of a large number of double inte-
grals. We evaluated the integrals by employing a 16-point Gaussian quadrature formula in the ¢’ variable
of Eq. (7) with the interval (0, 1) mapped to (0, ). In the p’ variable we employed a variable Gaussian
mesh of up to 20 points. The pole position was stable, to within 2%, with varying number of mesh points
in the p’ and ¢’ variables for all potentials studied.

To extract the bound-state wave function ,(pga|¥g) we exploit the Low equation

T(w)=V+V

1
w-H v. (11)
For w= wy, where wp is the bound-state eigenvalue, Eq. (11) implies

(pgal¥e)~ (pga| T(w)|¥)/(p?+q% - wg), (12)

where wg =-M|E,| /72, By employing Eq. (6), the definition of y(p,q) in Eq. (7), and the fact that for iden-
tical particles®® ;(pga| TV (w)| ¥)=,(pga| T (w)| ¥) we obtain, for S-wave interactions and J=0,

6 o ) 3
1<1>qa|‘1’a>~;§+—’°——[w(P,q)6x05L0+f p'zdp’f a'%dg’ Y (pgalp'q o’ l'=L’=J'=0>1¢(P’,q')]. (13)
o V] n=2

2
q" - wg
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|=3

With the recoupling coefficients of Refs. 9 and 19, Eq. (13) becomes

[
m [zp(p, @)01505+ 07, (21+1)12

1<pqal \I’B>~
xfldxw([p2/4+3q2/4 +V3 pgx/2]*2, [3p2/4+q2/4—«/'Ii_pqx/Z]l/z)P,(x):l for even I (14)

=0 for odd [.

The spin-isospin dependence, which is suppressed throughout our treatment, is completely antisymmetric,
i.e., the spin-singlet-isospin~triplet and spin-triplet-isospin-singlet components (with respect to parti-
cles 2 and 3) are of equal magnitude but opposite sign.

The body form factor for the trinucleon is given by

Flg)= [ e (2, 0@ 2,),

(15)

where X is the displacement from the center of mass and p(X) is the matter-density operator. Replacement
of the matter-density operator by the charge-density operator yields the charge form factor of the triton
(or 3He). In terms of the bound-state wave functions in momentum space, the expression for the body form
factor becomes, for a spatially symmetric J=0 wave function derived from an S-wave spin-independent

force
F@)=5 Y
2. 0
o 1= L(even)
J=0

pr""dp' qu'qu'f_l dx (p'q" | ¥g)(¥s| p’,qo(%), ), Py{[q" —qx/V3 1/q,(x)},  (16)

where g,(x)=(q'*+q%/3 ~ 29q’x/Y3)*/2. Eq. (16) is equivalent to Eq. (1) of Harper, Kim, and Tubis?® for a

J =0 spatially symmetric wave function.

Notice that in Eq. (14) for the wave function and in Eq. (16) for the body form factor that contributions
from I=L>0 partial waves occur although the N-N interaction is only in relative S waves. In our calcula-
tions of the triton form factor described later in Sec. IV we include contributions up to /=8 in Eq. (16).
Table I indicates the convergence of the square of the form factor for the potential of Eq. (3) (henceforth
referred to as potential UO) as higher angular momentum states are included. The convergence of the
form factors for the potentials studied in the next section is almost as good as that indicated in Table I for
potential UO. The values of g listed in Table I take into account the relativistic correction

2,2

7% >
2 2
q*[of Eq. (16)]~¢ <1+——36M2(:2 (of Table I).

1)

Having thus described the method of calculation of the triton binding energy and form factor, we now pre-

sent the results of our calculation.

IV. RESULTS

Table II indicates the transformation parameters,
the triton binding energies (E;), and the nuclear
matter properties predicted by the two-term Yuka-
wa potential of Eq. (3), U0, and by seven phase-
shift-equivalent potentials (U1-UT). Table II also
indicates the values of E; predicted by the UPA
for later discussion in Sec. V. The overlap inte-
gral (g| ¥,), where g(») is the transformation func-
tion and ¢, is the deuteron wave function predicted
by UO, is a measure of how much the “transformed”
deuteron wave function, zld, differs from ¥;. This
can be seen from the relation

@a-%l@a-¢¢>”2=2l(gl¢a)l .

First consider those potentials in Table I for
which the deuteron wave functions are virtually un-
changed (i.e., U0, Ul, and U2). Despite very large
changes in nuclear matter results (26.6 MeV/A in
the binding energy), these potentials yield a maxi-
mum variation of only about one MeV in E,. The
variations in E, are in the same direction as those
in nuclear matter but much smaller. In fact, the
variations in E, are comparable to the variations
in nuclear-matter binding energy calculated at den-
sities of k,=0.6 to 1.0 fm™*, which are well below
the empirical nuclear-matter density of k;=1.36
fm~!, The comparison of the triton and nuclear
matter results for U0-2 may merely reflect the
fact that the triton is a less dense system than nu-
clear matter. Hadjimichael and Jackson'® report
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TABLE I. The triton form factor F2(¢% as a function of the maximum angular momentum state (Jma) included in the
partial wave expansion (16).

F¥(q?
g (fm%) Lmax = 0 2 4 6 8
1.0 4.0289x 107! 4.,0235%x 107! 4,0254x 101 4.0258x 10-1 4.0248x 101
4,0 4.,3713%x 1072 4.3662x 1072 4,3758x 102 4.3766% 102 4,3762x 1072
8.0 3.3056x 10~ 3.3697x 1073 3.3829%x 1073 3.3808x 1073 3.3794%x 1073
12.5 1.5186x 104 1.6918x 1074 1.6892x 1074 1.6813x 1074 1.6791x 1074
16.0 3.8828x 1078 6.3523x 1076 6.0395x 10~¢ 5.9089% 1078 5.8854x 1078
20.0 2.4794x 1078 1.5372x 1078 1.7599% 10-8 1.8114x 1078 1.8161x1078

somewhat larger variations (over 3 MeV) in E, for
potentials that give similar deuteron properties;
however, the overlaps (g| ;) for the potentials of
Ref. 13 become as large as -0.04.

If we lift the restriction of nearly identical deu-
teron wave functions, much larger variations in
E, (up to 6 MeV) occur. The direction of the vari-
ations in E, are usually, but not always, in the
same direction as the variations in nuclear -matter
binding energy. Comparisons of the triton and nu-
clear-matter binding energies of U0 with U3 and
U2 with U5 show variations in opposite directions.
Interestingly, there seems to be a correlation be-
tween the overlap (g|#,) and E;, with potentials
giving smaller positive or greater negative over-
laps yielding more binding in the triton. Evidently,
the triton binding energy is mainly sensitive to
some property of the deuteron wave function.

Figure 1 illustrates the deuteron wave functions,
in momentum space, of potentials U0, U3, U5,
and U7. Up to k=0.5 fm~! the wave functions are
relatively close. This closeness probably reflects
the short-rangedness of the transformations and
the fact that all potentials have the same deuteron
binding energy (0.416 MeV) and scattering length.
We observe that potentials that yield deuteron
wave functions that decrease more rapidly with
momentum at moderate values of k give less bind-
ing in the triton. Figure 2 shows a similar pattern

between the triton binding energy and.the deuteron
form factor? | f(¢%| as a function of the momentum -
transfer (g). Since we do not deal with potentials
with tensor forces, the deuteron form factors have
only monopole terms and may give diffraction min-
ima. Potentials that give the first diffraction mini-
mum at smaller ¢? yield less binding in the triton
(Fig. 2). We include Fig. 2 because the form fac-
tor is more closely related to experiment (i.e.,
elastic electron-deuteron scattering experiments)
than is the wave function.

The results presented in Table II and Figs. 1 and
2 imply that a consistent relation exists between
the triton binding energy and deuteron wave func-
tion (or form factor). Just which part of the deu-
teron wave function in momentum space is impor-
tant in determining the triton binding energy is not
yet clear. Differences in the deuteron wave func-
tions that distinguish potentials in the triton prob-
lem persist over large regions of momentum space.
The later discussion of Sec. V attacks the relation
between E, and y,(k) more quantitatively. Next we
consider the variations in the triton-charge-form-
factor results for phase-shift-equivalent potentials.

Figure 3 illustrates the triton-charge form fac-
tor for potentialz UO, U2, and U7. With a spatially
symmetric J=0 wave function and the assumption
of a zero electric form factor for the neutron,
there is no distinction between the charge form

TABLE II. Triton and nuclear-matter properties of the transformed potentials, Binding energies are indicated by
positive values,

Potential Uo Ul U2 U3 U4 U5 U6 U
a, (fm't) . o 2.40 1.80 2.00 2.40 2.40 2.80 2.80
Bo see 1.00 1.00 0.00 1.00 1.00 0.00 0.00
By (fm-l) e -0.8392 -0.681 1.00 -0.82 -0.80 1.00 1.00
By (fm™?) ‘e 0.00 0.00 ~0.64 0.00 0.00 -0.68 —0.64
E/A nuclear

matter (MeV) 33.0 15.5 6.4 ~0.0 15.3 13.9 6.7 3.4

Saturationk (fm") 2.00 1.35 1.00 ~0.0 1.33 1.20 0.95 0.75
(g] qu) v 0.000 28 0.000 38 -0.117 0.0098 0.0194 0.0666 0.0986
E; (MeV) 7.65 7.03 6.59 9.68 6.65 6.25 4.57 3.66
E¥PA (MeV) 7.55 7.55 7.55 50 7.22 6.86 5.19 3.61
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FIG. 1. The deuteron momentum-space wave functions
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factors of the triton and *He. (We ignore Coulomb
effects or possible charge-dependent nuclear
forces.) For all potentials the integration meshes
in the p’ and ¢’ variables in Eq. (16) consist of 16
Gaussian points mapped to the interval (0,«). For
potentials U0 and U2 we employ a 16-point Gaussian
quadrature in the x variable of Eqs. (14) and (16).
We employ a 32-point quadrature for U7. The dot-
ted error bars represent estimates of the computa-
tional errors. These computational errors are
mainly attributable to interpolation uncertainties.
The numerical solution of Eq. (7) provides ¥(p, q)
as an array on a fixed mesh. The evaluation of the
wave function [ Eq. (14)] and form factor [ Eq. (16)]
requires values of §(p, g) both on and off the fixed
mesh. To determine the values of y(p,q) off the
fixed mesh, we employed a modified form of linear
interpolation.?® Once the body form factor of Eq.
(16) is evaluated, multiplication by the proton elec-
tric form factor, which we take from the analytic
expressions of Janssens et al.,? yields the triton-
charge form factor. The values of ¢? in Fig. 3 in-
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FIG. 3. The triton charge form factor |Fqy(g?)| and
triton binding energy for potentials U0, U2, and U7.
The experimental points are from Ref, 24, The dotted
error bars represent estimates on the computational
error. In the approximations of this paper there is no
distinction between the form factor of the triton and that
of *He,
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clude the same relativistic connection as those of
Table I [ see Eq. (17)]. The neutron form factor is
taken to be zero.

The form factors predicted by the phase-shift-
equivalent potentials of Fig. 3 have qualitatively
similar shapes up to the first diffraction minimum;
however, potentials that yield less binding in the
triton give form factors that are more “com-
pressed” in ¢? and predict diffraction minima at
lower momentum transfers. The observed rela-
tion between E, and the position of the diffraction
minimum is similar to the trend between E, and
the diffraction minimum of the deuteron form fac-
tor. At low momentum transfers (%< 6 fm™2) the
binding energy alone seems to determine the form
factor. Note, for example, the excellent agree-
ment between the form factor of potential U0 and
the experimental form factor of *He for q%< 6 fm™2.
The binding energy of U0 is, in fact, very close to
the experimental binding energy of He (7.65 MeV
vs 7.8 MeV). At larger momentum transfers the
qualitative features of the triton form factor re-

semble those of the deuteron form factor (e.g. com-

pare the form factors of U0 and U7 in Figs. 2 and
3). The above results suggest that off-shell varia-
tions in the N-N interaction affect the deuteron-
form-factor, triton-binding-energy, and triton-
form-factor results in a correlated manner. We
do not gain much off-shell information from cal-
culating the triton form factor that we cannot ob-
tain from the triton binding energy and the deuter-
on form factor.

Potential U0 gives a triton form factor similar

to that obtained from the more realistic Reid soft-
core potential.’® Like with the Reid potential, the
diffraction minimum occurs at too large a momen-
tum transfer (g2~ 18 fm~2). The calculation pre-
sented here raises the question whether any two-
nucleon potential that fits the two-body data can
yield agreement with experiment for the triton
(and ®He). The cost of matching the experimental
diffraction minimum?® at ¢%= 11.5 fm~2 seems to
be to lower the binding energy. Realistic poten-
tials already predict too little binding in the triton®
(e.g., 6.5 MeV for the Reid potential vs 8.5 MeV
experiment). Furthermore, all of the potentials
fail, by at least an order of magnitude, to predict
‘the experimental charge form factor for q*=20
fm~2, We shall return to the significance of our
form factor results with respect to experiments
and other calculations!® 1% 26 in Sec. VI.

Due to computational difficulties, we have pre-
sented the calculations of the triton form factor
for only three phase-shift-equivalent potentials.
These three cases provide, numerically, the
most accurate results. Preliminary calculations
with some of the other phase-shift-equivalent po-

tentials, although less accurate numerically, in-
dicate the same observed trends between E,

| Feu(g®)|, and |f(g?)|. In the next section we dis-
cuss the relation between the triton observables,
the deuteron wave function, and the off-shell T
matrix more quantitatively.

V. DISCUSSION OF RESULTS

From the results of Sec. IV, the dominant in-
fluence in the off-shell variations of triton-binding-
energy results are changes in the deuteron wave
function. To isolate the role of the deuteron wave
function, we first study the dependence of the tri-
ton binding energy, as predicted by the UPA,® on
the deuteron wave function. The discussion of this
dependence, which appears later in this section,
involves essentially the effects of scale transfor-
mations and scale distortions of the two-body po-
tentials and wave functions. First, however, we
review the relevant UPA equations.

Suppose a potential V predicts a deuteron wave
function ¥s and two-body binding energy E,. The
UPA employs the simple fact that one can write a
one-term separable potential, VUPA that predicts
the same wave function and bound-state energy as
V. The UPA potential becomes for S waves

VAR, k') = =g g4(R) g4(R') s (18)

where

&a(k) = (F* - wa)Y,(k)

and

wa==|ME,/#?|,

-1
o= [ [ Cargt et -0 ]
The UPA T matrix is given by
tUPA(R, B'; w) = =Xy g4(R) g4(R")/D(w) , (19)

where D(w) =1 -2, [q*dq g,%(q)/(q* - w). Since the
UPA T matrix preserves the bound-state pole and
residue of the full T matrix, ¢, the approximation
t=~ tUPA should be good for w=~ .w;. For |w - w,| >0,
the UPA may not be a good approximation. For
example, the UPA to potential U0 gives phase
shifts at intermediate energies (20 MeVs E,|,;

< 150 MeV) that are only in fair agreement with
those of the full potential (see Table III). The
usual justification for applying the UPA to the tri-
ton problem is that one expects triton results to
be sensitive to only the low-energy properties of
the two-body T matrix. The chief advantage of the
UPA is that the separability of ¢tY** reduces the
two-dimensional integral equation (7) to a one di-
mensional integral equation.
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The triton binding energies predicted by the UPA
appear on the bottom line of Table I. In all cases
except U3 the UPA is a fairly good approximation
in predicting E,. We shall see later that potential
U3 is an extreme case that corresponds to a trans-
formation of range 4.5 fm. For the moment we
concentrate on those potentials for which E,=~ EJPA,

To relate changes in E, (or EYA) and F (¢?) to
changes in the deuteron wave function, we first
show that the off-shell effects described in Sec. IV
are similar to the effects produced by scale trans-
formations. Suppose a two-nucleon potential with
matrix elements V(k, k') yields a many-body (A-
body) wave function y(k,, k,. . . k,) with eigenvalue
E,. By making a scale transformation k; -~ Ak; in
the many-body Schrdedinger equation in momen-
tum space one can convince oneself that the
“scaled” potential V,(k, k') =AV(\E, AR’) yields a
wave function

Iaky, By o R )~ (AR, MRy . . AR ,) (20)
with eigenvalue
EA)\EEA(V)\)=EA/x2. (21)

Some other useful relations obtained from the
scaled potentials are

Eqn=E, /A%,
Yar () =2*"2p,(\E)
H(@*)=10%?), (22)
by (R, k' w) =At(R, AR X 2w) ,
F 1\(@®) =F ,(0%%),
where

FA(q2)=dee"‘;;pA(i) (p4=matter density) .

The first three equations of Eq. (22) refer to deu-
teron properties, the fourth to the two-body 7 ma-
trix, and the last to any A-body (including three-
body) form factor. By changing the momentum
variables of Eq. (7) to the scaled momenta Ap, Aq,
D', Ag’, one can verify that ¥, (p, g)=P(rp, Aq) is

a solution with respect to the spatially symmetric
state ¥, (P, §)=22¥(\P, A§) with the 7 matrix

t, (R, k'; w) at energy w/A\?if Y(p,q) is a solution

of Eq. (7) with respect to ¥(H,§) at energy w.

. Therefore, if the T matrix #(k, k’; w) yields a pole
in Y(p,q) at energy wp, the T matrix ¢,(k,k’; w)
yields a pole at energy wyz/A2, which verifies Eq.
(21) for A=3. Equations (20)-(22) indicate that if
two potentials (or two sets of two-body wave func-
tions) are related by the scale transformation

k- Ak, the binding energies and form factors scale
in a correlated manner. Specifically, scaled po-
tentials (or scaled deuteron wave functions in the
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UPA) that give less binding in the three-body sys-
tem yield three-body form factors that fall off
more rapidly with g2 with diffraction minima at
lower g%. This relation between the binding ener-
gy and form factor under a scale transformation
is qualitatively similar to the off-shell variations
of E; and | F(g?)| observed in Sec. IV. To some
degree, therefore, the triton predictions respond
to off-shell changes in the potential as if the two-
body potentials (or deuteron wave functions in the
UPA) were related by scale transformations.

The following situation exists. In the deuteron
problem the unitarily equivalent potentials V and
V yield the same deuteron binding energy and thus
do not yield deuteron wave functions that are con-
nected by a simple scale transformation. If they
were so connected, the two-body binding energies
would not be invariant under the scale transforma-
tion, except for the trivial case A=1 [ see Eq. (21)].
In the three-body case, the binding energy and
form factor results suggest that, under the poten-
tial V, the triton feels an “effective scaled poten-
tial” V,,, where V,,(k, k') =xV(rpk, Apk') for
some value of A,. Equivalently, in the UPA, the
triton feels an “effective deuteron wave function”
zpw(k) =x;*%y,(\pk). Empirically, the distortion
parameter A, can be determined by Eq. (21) with
E,~Egp, E4~E;and V,~V. The question aris-
es: What properties of the deuteron wave function
determine A, ?

Suppose triton observables were only sensitive
to the Fourier components of the deuteron wave
function in a narrow range of momenta about &
~k,. In this case if a potential V yields a deuter-
on wave function y,(k), such that

Dalk) = X3/2(ko) Yy PA(R,)]  for k=F, (23)
the triton would effectively “feel” a deuteron wave

l.1
1.0

0.9
0.8

Bk = \32(k) ¥ (kA (k)

03 @ XK=\;

K (fm-1)

FIG. 4. The distortion function 1/A*(%), as determined
from the deuteron wave functions of potentials U4, U5,
‘and U6 [A(k)=1for UOl. The heavy dot indicates where
1/A%(k)=1/Ap2=E PB4,
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function ¥y .. 4(k) =x*" %P, (Apk), Where Az =x(k).
Therefore the triton observables of the potentials
V and V would be related through Eqgs. (21) and
(22) with V-V, E,~E;, E,~E;, F\-~F, and
X=x(R,).

Figure 4 illustrates the values of 1/A%(k) as func-
tions of the momentum % as obtained from the deu-
teron wave functions of potentials U4-6 through
the relation (&) =A%/%(R)y[ kr(k)]. The reference
potential V[A(k)=1] is UO. The heavy dots in Fig.
4 indicate the points on the curves at which 1/A%(k)
=1/x,2=EJPA/EYPA for each potential. We refer to
the points so described as “centroids.” We have
the remarkable fact that the centroids fall near
k~=1.45 fm~! relatively independent of the poten-
tial.?” The centroid falls close to k=1.45 fm~!
even for potential U6, which is a fairly radical po-
tential for the triton as indicated by its triton bind-
ing energy in Table II. In other words, for the
transformed potentials considered, the triton bind-
ing energy results are varying as if the triton were
only influenced by Fourier components in the deu-
teron wave function for k~1.45 fm~2.

An important question arises concerning the gen-
erality of the results of Fig. 4, i.e., A;=) (k=1.45
fm™). Does this relation somehow depend on the
types of deuteron wave functions we consider? We
would expect the triton results to be sensitive to a
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FIG. 5. The distortion functions 1/A%(%) and UPA tri-
ton binding energies for three hypothetical deuteron wave
functions, For purposes of calculation, the deuteron
binding energy was fixed at £;=0.416 MeV. The heavy
dots have the same meaning as in Fig. 4. Again, A(2)=1
for potential U0.

spread of Fourier components in the deuteron wave
function rather than just the behavior over a very
narrow range of momenta. Remember that all the
deuteron wave functions we treat (except that of
U3) are appreciably different only inside a range
(in » space) of 1.5 fm or less. In momentum space,
all of the deuteron wave functions are approximate-
ly equal for k< 0.5 fm~1. Also, all of the deuteron
wave functions (except that of U3) have qualitative-
ly similar features (see Fig. 1).

To test the sensitivity of the triton binding ener-
gy to different Fourier components in ¥, (k), we
computed E;, in the UPA from deuteron wave func-
tions that differ from that of UO over finite regions
in momentum space. The resulting binding ener-
gies and distortion functions 1/A%(k) appear as
curves C1-3 in Fig. 5. A fourth deuteron wave
function (not shown in Fig. 5) was considered that
altered the Fourier components for k> 2 fm™.

The binding energy obtained with this wave func-
tion was virtually the same as that of U0, which
indicates the insensitivity of E, to momentum com-
ponents for 2>2 fm~'. We note that for curves

C 1-3 the positions of the centroids occur at dif-
ferent values of k; however, in each case the em-
pirically determined value of A, (i.e., 1/Ap2

= EYPA/EYPA) is not inconsistent with A, being
some kind of weighted average of the distortion
function A(k). The wave functions and binding en-
ergies represented in Fig. 5 indicate that the tri-
ton is sensitive to a spread of momenta in the deu-
teron wave function rather than just to a narrow
range of momenta. There is no guarantee, how-
ever, that the deuteron wave functions in Fig. 5
correspond to transformations of suitably short
range in 7 space; curve C1, in fact, corresponds
to a very long-range transformation.

An interpretation of the three-body results of
this paper might be as follows: The empirically
determined value of A, (i.e., 1/x,2=EUPA/EUPA)
represents some “average” value of the distortion
function A(R) over a distribution of momenta rele-
vant to the triton problem. For the short-range
transformations considered, the differences in the
triton binding energy results are likely attributable
to different distortions present in §,(k) over a re-
gion of momentum space centered about k= 1.45
fm~*. This does not mean that E, is more sensi-
tive to changes in momentum components for &
=~ 1.45 fm™! than it is to lower momenta. This in-
terpretation only means that the low Fourier com-
ponents of the wave functions do not differ suffi-
ciently under short-range transformations to ac-
count for the observed changes in E;. The situa-
tion is analagous to the sensitivity of the wound
integral « of nuclear matter to off-shell 7 matrix
elements. According to Haftel and Tabakin® the
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peak of sensitivity of the wound integral to half-
off-shell T matrix elements occurs when the T
matrix element is 1 to 2 fm~?! off energy shell
(Fig. 12 of Ref. 6). However, most of the changes
in k between potentials are mainly attributable to
differences in T matrix elements that are 3 fm™*
or more off energy shell (Fig. 14 of Ref. 6). In the
triton the peak of sensitivity may come at fairly
low % (this seems to be indicated by Fig. 5); how-
ever, for potentials whose deuteron wave functions
differ only at short distances, the changes in E,
seem to be coming from differences in distortions
in §,(k) at moderate (1.0 fm™'< £< 2.0 fm™!) val-
ues of k.

Admittedly, the above discussion is in.uitive.
The results of Figs. 4 and 5 are at least consis-
tent with the arguments presented. A rigorous
treatment involves considering the effects of scale
distortions rather than constant scale transforma-
tions, on the energies and wave functions of the
three-body system. Even in the two-body case the
effects of scale distortion are nontrivial. In the
Appendix we show that under a slowly varying scale
distortion of the potential the two-body eigenvalue
is approximately determined by the expectation
value of the distortion function between the two-
body wave functions. This result makes plausible,

a0k ko =0.20 fm=!
30f
2.0
£
~ o+
xo
&<
0
\ \\UO E;=7.65 Mev
\.\\ Ul E;=7.03 MeV
A\
-10f ~ ]
U2 E;=6.59 MeV N~
US E;=6.25 MeV
- N | s | N L
205 0 20 30
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FIG. 6. The half-shell T matrix ¢(k,k¢=0.2 fm™!) and
triton binding energies for potentials U0, U2, and US5.
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but does not prove, that A, is the average value

of A(k) over the two-body relative momentum dis-
tribution of the three-body wave function. Clearly,
the role of scale distortion in the two- and three-
body problems requires further study. A question
of utmost importance is whether the connection
between the triton results and distortion in the deu-
teron wave function is a general result of a pecu-
liarity of the types of off-shell changes studied
here.

What about the cases where the deuteron wave
function does not change? The results of Sec. IV
indicate a residual (about 1-MeV) dependence on
the off-shell properties of the T matrix not domi-
nated by the deuteron pole. In Fig. 6 we plot half-
shell T matrix elements® #(k, k,) as functions of
k for £=0.2 fm™! for potentials U0, U1, U2, and
U5. We include U5 for comparison even though its
deuteron wave function differs somewhat from that
of UO. Like in the case of the dependence of E, on
¥4(k), potentials whose half-shell T matrix ele-
ments vary more steeply with k (for <2 fm™?)
generally yield less binding in the triton. The low-
energy half-shell T matrix, as a function of k&,
seems to play a role analagous to the deuteron
wave function. This role of the half-shell T ma-
trix is not surprising in light of the similar ways
the T matrix and deuteron wave function scale in
Eq. (22). The main point here is that although
changes do not appear in the deuteron wave func-
tion, variations in E; occur if changes appear in
the low-energy half-shell T matrix. Interestingly
further calculations of half-shell T matrix ele-
ments for k,>0.4 fm™ (not presented here) indi-
cate a breakdown between the observed relation
between E ; and #(k, k). This breakdown perhaps
indicates that E ; is sensitive to only the low-en-
ergy properties of the off-shell 7 matrix.

So far we have ignored the unusual properties of
potential U3, i.e., the large disagreement between
E; and EYFA (Table II). Two properties of poten-
tial U3 account for the failure of the UPA in the
triton problem. First, the phase shifts as pre-
dicted by the UPA for U3 differ radically from
those predicted by the full potential, as shown in
Table III. Even at low energies (e.g., #,=0.4 fm™?,
E sz = 13 MeV) the UPA phase shifts for potential
U3 are much more attractive than the true phase
shifts. Potential U3 is the only potential in this
paper for which the UPA destroys approximate
phase-shift equivalence at such low energies. The
second unusual property of U3 is the extreme en-
ergy dependence of the half-shell 7 matrix at very
low energies. Figure 7 depicts #(k, k,) obtained
from potentials U0 and U3 for %,=0.0 and 0.4 fm™,
For the potential U3 the k dependence of ik, k,) is
strikingly different at k;=0.4 fm~! than at k,=0.0
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TABLE III. Phase-shifts in the unitary-pole approxi-
mation E =2/ %E/M.

ko
fm=Y) 6 (rad) Uo U3 Us

0.2 1.7654  1.7620 1.7800 1.7616
0.4 1.3159  1,2993 1.4235 1.2970
0.6 1.0271  0.9852 1.3967 0.9778
0.8 0.8025  0.7278 1.6019 0.7117
1.0 0.6170  0.5100 1.7652 0.4817
1.2 0.4593  0.3287 1.7440 0.2863
1.4 0.3224  0.1848 1,5953 0.1317
1.6 0.2019  0.0806 1.4037 0.0286
1.8 0.0945  0,0187 1.1889 0.0026
2.0 —0.0019  0.0001 0.9776 0.0912
2.4 —0.1684  0.0719 0.6007 0.5990
2.6 -0.2408  0.1349  0.4442 0.7955
2.8 -0.3070  0,1935 0.3122 0.8825

fm~. None of the other potentials studied (e.g.
UO0) exhibit this extreme energy dependence in the
low-energy half-shell T matrix. The large dis-
agreement between 6 and 6 p, (Table III) for U3 is
no doubt a result of the rapid energy dependence
of the T matrix. For potential U3 the deuteron
pole simply does not dominate the two-nucleon T
matrix at low energies. Evidently, the potential
U3 produces strong two-body virtual states or anti-
bound states near zero energy. The lack of pole
dominance at low energies is indicative of a poten-
tial of longer range than what we would believe
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FIG. 7. The half-shell T matrix £(k, %) for potentials
U0 and U3 for k¢=0.0 and 0.4 fm™1,

reasonable for the N-N interaction.® In fact, the
range of the transformation that produces poten-
tial U3 is about 4.5 fm, which is well into the OPE
region.

While the pathological properties of the potential
U3 are interesting from a theoretical standpoint,
they are of little practical consequence. Potentials
like U3 may be rejected on both theoretical and ex-
perimental grounds. A more practical question
emerges from the discussion of this section.
Namely, how do the off-shell results observed
here affect the current status of the three-nucleon
problem with respect to experiment and with re-
spect to current phenomenological models of the
N-N interaction? We devote the next section to
this question.

V1. CONSEQUENCES OF RESULTS

The results and discussion of Secs. IV and V in-
dicate that the predictions of triton observables for
phase-shift-equivalent potentials critically depend
on the relative distortion of the deuteron wave
function. The question arises —how may experi-
mental uncertainties in the deuteron wave function
affect predictions of the triton binding energy?
The best measurements available of the deuteron
wave function come from electron-deuteron elastic
scattering experiments. These experiments essen-
tially measure the electromagnetic form factors
of the deuteron.3®

From Eq. (22) it becomes apparent that one could
employ the deuteron form factor, f(g%), as the ba-
sis of a scale distortion analysis instead of using
the deuteron wave function. Plots like Fig. 4 that
employ f(¢?) instead of J,(k) suggest that the ob-
served changes in E; are attributable to changes
in the deuteron form factors over a range of
momentum transfers (g) centered about g2~ 12
fm~%, For ¢%= 12 fm~2, the experimental er-
ror in f(g?) is about +5% .3° This experimental
error implies an uncertainty in the relevant
distortion function A(g?), as deduced from ex-
perimental plots f(g?) with error bars, of about
4.5%. Extrapolated to the Reid soft-core po-
tential, which gives a good fit to the experimen-
tal deuteron-electric form factor, the experi-
mental error in f(g®) implies about a +0.3-MeV un-
certainty in E,. This uncertainty is only a small
fraction of the 2-MeV disagreement between E, as
predicted by the Reid potential (6.5 MeV) and ex-
periment (E,=8.5 MeV). The estimate of +0.3
MeV presented here should not be taken too liter-
ally since we have ignored possible off-shell ef-
fects due to the tensor force or spin-dependent
aspects of the N-N interaction. However, this
estimate does indicate that one may have to look
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beyond the N-N interaction in the deuteron (triplet-
even) state to attain agreement with experiment.

In realistic N-N interactions the S, interaction
is different from the %S, interaction. The S, inter-
action, while almost as strong as the 3S, interac-
tion, does not support a bound state. Instead, the
virtual bound-state “singlet-deuteron” resonance
dominates the 'S, T matrix at low energies. Pre-
sumably, triton results should be sensitive to the
“singlet-deuteron” form factor as well as to the
deuteron wave function. Unfortunately, direct ex-
perimental measurements of the singlet-deuteron
form factor (or low-energy half-shell 'S, T matrix
elements) are nonexistent. One may ask, however,
what effects do “reasonable” variations of the low-
energy off-shell T matrix in the 'S, state may have
on the predictions of triton observables.

To examine the question of “reasonable” off-shell
variations in the 'S, state, we employ the model of
Picker, Redish, and Stephenson®! for the half-shell
T matrix. The model of Picker, Redish, and Ste-
phenson®! applies certain smoothness constraints
to the two-nucleon scattering wave functions at
distances of less than 1.4 fm. The solid curves
in Fig. 8 indicate the maximum variation in the
1S, zero-energy half-shell 7 matrix in the model
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FIG. 8. The zero-energy !S, half-shell T matrix in
the model of Picker, Redish, and Stephenson. The pa-
rameter 7 is defined in Ref. 30. The values of 7=0.1
and n=-0.4 represent the maximum and minimum val-
ues of 7 permitted by the smoothness constraints of the
model.
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of Picker, Redish, and Stephenson. Aside from
normalization, the zero-energy half-shell T ma-
trix elements are the 'S, analog to the functions
g,(%) of Fig. 1. Notice that in comparison to Fig.
1, the half-shell T matrix curves n=-0.4 and
1n=0.1 of Fig. 8 show even a wider variation in
their k& dependence than curves U0 and U7 of Fig.
1. This wide variation in ¢(k,0) in the S, state
occurs even though the wave functions at short
distances are constrained to be relatively smooth.
If the scale-distortion techniques of Sec. V are
general and can be extrapolated to realistic inter-
actions, the T matrix variations of Fig. 8 could
account for about 4-MeV or more uncertainty in
E;. Further experimental constraints on the 'S,
interaction are necessary.?® The estimates of this
section indicate that the triton binding energy it-
self could provide a very useful constraint on the
singlet-deuteron form factor.

The situation with regards to the discrepancy
between theory and experiment for the form factor
of *He is more complicated. Results from this
paper suggest that it may be impossible to find a
potential that simultaneously predicts the correct
N-N phase shifts, triton binding energy, and the
3He form factor near and past the diffraction mini-
mum. Of course further off-shell studies with
more general off-shell variations and with more
realistic potentials are necessary to verify the ob-
served trend between E, and F(g?). If the trend is
a general one, it may indicate an important role
for three-body forces®® or charge-dependent nu-
clear forces®* in the N-N interaction. One must
remember, however, that the variational calcula-
tion of the form factor of *He of Yang and Jackson?
with the Reid potential yields better agreement
with experiment than do Faddeev calculations.'®
Also, Hadjimichael and Jackson,® in a variational
calculation with phase-shift-equivalent potentials,
find one potential (their potential 3) that yields less
binding in the triton than the Reid potential yet has
the diffraction minimum at slightly larger g®. Ob-
viously, the disagreement between Faddeev calcu-
lations and variational calculations of the form fac-
tor of *He should be resolved.

VII. SUMMARY

The principal factor dominating the off-shell var-
iations in the triton-binding-energy results are
changes in the pole behavior of the N-N T matrix.
A maximum variation of 6 MeV occurs in triton-
binding-energy predictions for the phase-shift-
equivalent potentials studied here with all but one
MeV being attributable to changes in the deuteron
wave function. The discussion of Sec. V suggests
that off -shell changes in the triton binding energy
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is likely related to the relative distortion in the
deuteron wave function. For potentials whose deu-
teron wave functions differ mainly for separations
of less than 1.5 fm, the changes in triton-binding-
energy results are probably attributable to changes
in the Fourier components for 1 fm~'<k<2 fm™,
Potentials that yield more “compressed” deuteron
wave functions for 2<2 fm~!, i.e., fall off more
rapidly in k, give less binding in the triton. The
scale-distortion techniques discussed in Sec. V
provide a possible means of estimating in advance
how potentials with different deuteron wave func-
tions may differ in triton predictions.

One important result of this paper is the appar-
ent incompatibility of the experimentally measured
triton binding energy and the experimental posi-
tion of the diffraction minimum of the charge form
factor of 3He. The phase-shift-equivalent potentials
that predict less binding in the triton predict the
diffraction minimum at lower values of the momen-
tum transfer. This trend is opposite to what we
would hope for to simultaneously improve the bind-
ing energy and form-factor predictions of the cur-
rent potential models (e.g., the Reid potential) vis
a vis experiment.

Two main conclusions follow from the discussion
of Sec. VI of this work. The first is that the cur-

rent experimental measurements of the deuteron
eleciric form factor may be sufficiently accurate
as to eliminate most of the off-shell uncertainty

in the triplet-even interaction relevant to the tri-
ton problem. The lack of experimental or theoret-
ical constraints on the 1S, interaction, however,
could lead to considerable uncertainty in the pre-
dictions of triton (or 3He) observables. The sec-
ond conclusion is that the incompatibility between
the binding energy and form-factor results men-
tioned in the preceding paragraph point the way
for a role for three-body forces in the three-nu-
cleon problem. Of course both of the conclusions
mentioned here should be subjected to further tests
with more realistic forces, i.e., with spin-depen-
dent interactions with tensor forces. Also, the
role of higher partial waves requires examination,
possibly by perturbation theory.
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APPENDIX. SCALE DISTORTION IN TWO-BODY PROBLEM

We consider the effect on the two-body binding energy of a “scaled” potential V, = AS(\)VS~(A), where
r=x(R), SM)p(R)=7"52(R)p( A (k)), and AP(k)=1/(RZ)A2(R)Y(k)/A"4(k). The choices of S and A are such as to
make V, Hermitian and reduce to V, of Sec. V for A (k) =Ak. Specifically, the matrix elements of V, are

Valk, k') = A2 (R )V (X (R), MR") /[ A2/ (RN X(R")] .

1
We shall derive an expression for the eigenvalue E, that (1) holds pertubatively, i.e., for A(k) =k + O6x(E),

where 6X(k) is infinitesmal, and (2) reduces to Egs. (21) and (22) for A(k) =A% [ here A'(k) =1].
We first write down the Schréedinger equation

E Y= (Hy+ASVS™ )y (A.1)

and consider the effect of letting A (k) go to A(k) +6x(k) [ we take the limit of A (k) =k later]. Using Eq. (A.1)
and differentiating both sides of Eq. (A.1) we obtain

OE = (9| SAA™YE —H,) +AOSS™'A™NE - H,) - (E —~ H,) 655~ 9, ), (A.2)

where O0E=E,,s) — E,, with similar expressions for 6A and 6S. If we assume A has an inverse function A _
@i.e., E=x_[1(k)]), we can derive,

6SS™y (k) =[ 1’ (k) + 6)" (R)]*/2{A_[ A () + OX(R)] /A"572(R)} 5 (A [ X (R) + 6N (R)]) = 9y (R) . (A.3)
With the fact that dx_(A)/dr=dk/dr=1/\'(k), Eq. (A.3) becomes to first order in X, 5)’
0SS~ (B) = 3 [ ON/(R)/N"(R) = A" (k)X (R)/N"2(R)] y (B) + O (R)D " (B)/\" (k) . (A.4)

With Eq. (A.4) and the definitions of 6A, A, we can evaluate the three terms of Eq. (A.2). After some
lengthy algebra we can combine the three terms and obtain, to first order in 6x, )’ and for AR)=F

OF = (Y(R)] ~ 400 (£)(E — k) + 200 (k) (& = 20%)| y(8) (4.5)
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Now note that the expression

Exw =E/[(p(®)| 21" (B) — X(R)/E| p(R))]? - ((k)| 4k [ M(k) - kX' (R)] ¥(%)) , (A.6)

where y, E are the wave function and eigenvalue for \(k) =k, holds [ to first order in dx(k), 60’ (k)] for a per-
turbative scale distortion [ (k) =k +6x(k)] and for a constant scale transformation [ A(k) =Ak]. With a slow-
ly varying scale distortion, i.e., 2A’(2)=r(k), Eq. (A.6) becomes

Exwy = E/[(p(R)| N ()| $(R))]?,
~ E/[(y(R)| A(k)/R| ¥ (®))]?,

(A7)

i.e., the energy scales as the expectation value of the distortion function. [ The distortion function A(k)

here corresponds to kx(k) of Sec. V.]
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A nonlinear integrodifferential equation for the correlation function between two nucleons
in nuclear matter is obtained. This equation results by writing the (trial) expression of the
energy per particle in nuclear matter in a suitable form and applying subsequently the varia-
tional principle. The investigation of the behavior of the equation for large internucleon dis-
tances 7, leads to a new integral constraint on the correlation function.

1. INTRODUCTION

The determination of the nucleon-nucleon corre-
lation function, which is used in the variational
or “Jastrow” approach to nuclear matter!~® has
been a thorny problem for a long time.

In this approach the trial many-body wave func-
tion

N
Uy =Sy 1 fryy) (1)
i<i
is employed for the calculation of the (trial) ex-
pression of the energy per particle E/N.

In expression (1), S, is a Slater determinant in
which the orbital parts of the single-particle wave
functions are plane waves and f the nucleon-nucle-
on correlation function. This should be chosen to
be zero inside and at the hard-core radius c of the
nucleon-nucleon potential and to approach unity
sufficiently rapidly for large internucleon dis-
tances.

The E/N is written in the form of a cluster ex-
pansion

E
F=81+82+é’3+--- (2)

in which only the first few terms are retained. The

expansion is often truncated at §, and the energy
per particle depends upon the correlation function
only through the second term, which is proportion-
al to the constant density p of the (infinite) nuclear
matter. The first term is just the Fermi energy:
3 I°K,*
8:=% ——F—Zm . 3

The problem of determining f has been faced in
two ways:

In the first, a suitable analytic form is assumed
for the f in which there are certain parameters
and the E/N is minimized with respect to them.

It was realized, however, that the correlation
function has to be restricted in order to avoid the
so called “Emery difficulty,”® * which is due to the
absence of normalization in the above-mentioned
truncated cluster expansion of E/N. Various re-
strictions have been used. The early types of
them have been suggested in Ref. 3. The condi-
tions which were employed recently are of inte-
gral form, and one of the parameters in the ex-
pression of the f is fixed by the requirement that
the considered condition is satisfied. It should be
noted, however, that it is not clear which of the
various conditions is the appropriate one to be
used, and consequently there is a degree of arbi-



