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In this paper, we include off-shell two-body T matrices in both the unary and binary terms
of the optical potential derived from Watson's multiple-scattering theory. We take a wholly
momentum-space-oriented approach: All calculations are performed in terms of momentum
variables and spatial coordinates do not appear. We conclude that it is not possible at pre-
sent to obtain definitive information on the off-shell nucleon-nucleon T matrix from inter-
mediate-energy elastic nucleon-nucleus scattering. On the other hand, the size of the off-
shell effect is sufficiently large that it is not possible to unambiguously select a model for
the pair-correlation function without a definite model for the off-shell nucleon-nucleon scat-
tering amplitude.

I. INTRODUCTION

Watson' has derived an optical-potential opera-
tor U for elastic nucleon-nucleus scattering as an
expansion in terms of the scattering operator 7', (E').
which is defined by

~, (E') = v, +v, Q,G(E')r, (E').
with

G(E') = (E'+e, +ig -E -H„) '.
Both the potential, U, and the scattering operators
are defined in the nucleon-nucleus barycentric sub-
space at the kinetic-energy eigenvalue E' of the
nucleon-nucleus center -of-mass energy operator
E, where a caret is used to denote the operator of
a kinematic variable. v; is the free two-body in-
teraction between the incident and ith target nu-
cleon. Q0&projects off the ground state ~0) with en-
ergy ~, of the nuclear Hamiltonian HN, while P,
= ~0)(0~ projects onto the ground state.

To second order in the r, (E'), the Watson expan-
sion for U is

U(EO) = Qr, (E )+Q'7'((E )QOG(EOQ~(EO) (3).
Unprimed summations extend over all target-
nucleon indices, 1, . . ., A, while primed summa-
tions do not allow any consecutive indices to be
equal.

In this paper we examine the possibility of ob-
taining off-shell two-body information from nu-
cleon-nucleus scattering. We consider the inter-
mediate-energy elastic case in detail and we
conclude that off-shell information cannot be
extracted from this process. The possibility of
using nonelastic collisions to obtain off-shell in-
formation is also discussed. In Sec. II, a review
is made of the extended-impulse-approximation

(EIA) approach introduced by Adelberg and Saper-
stein' (henceforth referred to as AS1). In Sec.
III, the optical potential is expressed up to second
order in the EIA scattering operators, and the
forms of the potential terms are given. In Sec.
IV, an outline of the computational procedure is
given with the goal of describing the numerical
aspects of the calculation and hence showing what
approximations should be made for intermediate-
energy elastic nucleon-nucleus scattering. These
approximations are made in Sec. V to the forms
given in Sec. III. Finally, in Secs. VI and VD,
respectively, the results of several calculations
and our conclusions are discussed.

II. REVIEW OF THE EIA APPROACH

In AS1 we introduced the modified scattering op-
erator

7;(E') = v, +v, G, (E')f;(E')

with

G, (EO) = (Eo+~, +iq -E -a,.)

(4)

(5)

t,(w, ) = v;+ v, g, (w, )t, (w,.).
with

(6)

g, (w, ) =(w, +iq-e, ) ',
where e,. is the operator of the two-body center-
of-mass energy. Both f', and t, are defined only

f, is a many-body operator defined in the nucleon-
nucleus barycentric subspace. G, differs from G
in that H„has been replaced by the model-depen-
dent operator H; which must be diagonal in all mo-
menta so that 7;. has the same momentum-conserv-
ing properties as the free two-body scattering op-
erator t, given by
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v, (Eo) =(oiv(EO)io), (12)

must be reciprocally invariant, 4 the neglect of in-
ternal momenta should maintain reciprocal sym-
metry; this can be accomplished by interpreting
the ground-state wave function as

(1 ~ ~ 1 10)

where

1; =-,' (1; +1', ), f =1, . . . , A.

Thus, internal momenta are neglected by taking
I, -0 in the kinematic relations, rather than taking
both I, -O and TI-0. In this way, we derived in

on the momentum shell of the incident and ith
target nucleons and do not change the momenta of
the other target nucleons. The energy parameter
zo,. in contrast to E which is fixed, varies accord-
ing to the values of the kinematic variables of the
optical-potential matrix elements, when t,. is used
in the approximate construction of U.

The essence of the EIA approach is to establish
an unambiguous relationship between the matrix
elements of f;. and those of t, . This was accom-
plished using nonrelativistic kinematics which im-
ply that the nucleon-nucleon final and initial mo-
menta, k,. and k', , and the nucleon-nucleus final
and initial relative momenta, K and K', are re-
lated by

k, = cK--,'1,. and k',. =cK' ——,'1', , (8)

where

c = (A+1)/2A (9)

and where 1, and 1', are the final and initial mo-
menta of the ith target nucleon relative to the nu-
clear center of mass. By definition, these internal
momenta are not independent ince they must obey

+1(=0=+II . (10)

Because the only absolute momenta changed by 7,.

are those of the incident and ith target nucleons,
the momentum transfer, q, of the incident nucleon
to the nucleus is entirely taken up by the struck
nucleon; this implies that

k;-k', =q=K-K'. (11)

The kinematic relations are wholly contained in

(8) and (11); no approximation besides that of non-
relativistic kinematics need be made. However,
in order to arrive at an expression which is prac-
tical for use in an optical potential, the dependence
of the nucleon-nucleon kinematic variables on in-
ternal momenta is neglected.

Because the optical potential for elastic scatter-
ing'

AS1 the relationship

( K) T( (E ) (
K '

) = ( k, (
t ( (w () )

k',.) (14)

w = (-,'c ——,)(K'+K")/2p. +K,'/2g, (16)

where p, is the reduced mass equal to (1 +1/A) '
times the nucleon mass m and where Ko is the mo-
mentum corresponding to Eo. We obtained (16) by
interpreting

Q I,.'/2m —Q I('/2m =—,
'

(1 —1/A)q'/2m (17)

as the excitation of the kinetic-energy part of the
nucleus and by assuming that the total excitation
should be approximately double the right-hand side
of (17). Thus, H, was chosen. to have the same ki-
nematic part as H~ and a dynamic part approxi-
mately equal to the right-hand side of (17).

The kinematic relations (15) and (16) imply that
the matrix elements of t, given b. y (14) are gen-
erally off their energy sheQ. In other words, one
or both of the equalities, k'/m =w and k "/m =w,
fail. The matrix elements are said to be "on-
shell" only when both equalities hold, " otherwise,
they are "off-shell. " If only one fails, they are
"half-shell, " while if both fail they are "fully off-
shell" in general and "symmetrically off-shell"
only when k =k'. These situations will be denoted
by the lower case abbreviations: oes, fes, hes,
ffs, and sfs, respectively.

Also, (16) shows that the two-body energy pa-
rameter se is not fixed at the energy e'= cE', which
corresponds to the free scattering of two nucleons.
In fact, w is negative when K '+K" is greater than
4A/(A -1) times K,', and w has the maximum
value of E' when both K and K' are zero.

III. EIA POTEN i'IAL TO SECOND ORDER

We expand the potential operator U in terms of
f; by using the identity

&;(E ) =f; (E')+7((E')[Q G (E') -G; (E')]'r((E')

(18)

to replace the v; by the EIA operators. To second

between matrix elements, where the scalars of
the kinematic variables are related by (dropping
the particle index)

k' =-,' (c'+ c)K '+-,' (c' —c)K"+-,' (1 —c')q',

k" =-,'(c' —c)K'+-,' (c'+ c)K"+—,
'

(1 —c')q', (15)

and

kk' cose = —,'c'(K'+K") ——'(1+c')q'

Also, neglecting a very small q-dependent term,
we obtained
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order in the 7'„

r, =7', -fPOGf, +7, (H„-H, )f; . (19)

The second term has previously been considered '
as a correction to the impulse approximation of the
form 7;-f; . This interpretation depends on the
initial choice of modified scattering operator in
terms of which U is expanded. In this payer, only
the last term ot (19) is considered as an impulse
correction. This term repr esents ~ a higher-order
dynamical correction, which hopefully could be
made small by the ayyroyriate choi.ee of H, . The
impulse. approximation used here is "extended" in
the sense that the kinematics of a nucleon scatter-
ing from a nucleus are treated consistent with
momentum conservp, tion and the nonrelativistic
definitions of relative momenta.

Thus, neglecting the last term of (19) the EIA
potential operator, to second ol'der ln the 7;, ls

v(zo) = pv, (z') +. Q'~, {z')G(z')t, (z').
—Q~, (Zo)F,G (Zo)i', (Zo) . (20)

The optical potential for elastic scattering is ob-
tained by taking the ground-state expectation value
of (20). Matrix elements af the potential with re-
spect to the nucleon-nucleus relative momenta are
then given by

(kiv (zo)ik'} =v (R R'zo)+v (R, R'zo)

The first-order term is

U, (K, K'; Zo) =(koigi, iok'), (22)

G, (z') =(0]G{z')[0}= (z'+i~ -z)-'. {25)

For the second-order terms, the label "C" in (24)
refers to the fact that this part of the optical po-
tential depends upon correlations between two tar-
get nucleons. The potential in (25) wiS, the label"P" is independent of correlations because of the
projection operator &p onto the nuclear ground
state.

The first-ol der potential was evaluated ln A81.
Complete sets of final and initial internal momen-

while the second-order potential has the terms

v, (R, R';z') =II,(R, R';z'} -v, (R, R';z'),
(23)

which are given by

v, (K, K';zo}=(koz'v, G(zo)I;(0K'}, (24)

P (K, K';z') —(ko(g~,.)0)G, (z')(ozt, (oz'},
(25)

turn states were inserted to the left and right,
respectively, ot the EIA operators in (22). The
momentum conserving properties of the f; and
GaQilean invarianee were used. Finally, the
evaluation was made in what we shall refer to as
"the form-factor approximation, " that is, the
vector-average internal momenta are taken as
zero in the kinematic relations Eqs. (15) and (16)
between the nucleon-nucleon and nucleon-nucleus
momentum and energy variables. The resulting
first-order potential is

IJ,(K, R';z') -M, (u, 0', s;u )F,(q) .

E, is the "one-body" form factor, which is the
Fourier transform of the one-body probability
density in coordinate space. M~ is the spin-iso-
spin average of Qt, times factors of proportion-
ality determined by normalization conventions; it
is constructed from the generally fes two-body
partial-wave amplitudes as a linear combination
whose coefficients depend only on symmetries of
the nuclear state and the two-body interaction, so
that the coefficients are the same fes as well as
08S ~

The second-order terms, like the first-order
potential, are evaluated by inserting complete
sets of final and initial internal momentum states,
but it is also necessary to insert a complete set
of intermediate nucleon-nucleus momentum states.
Denoting the intermediate momentum as K", the
momentum transfers of the second and first scat-
terings are given, resyectively, by

(28)

An additional difficulty is incurred in the U~ term,
because the Green's function G (Zo) depends upon
the intermediate state of the nucleus. Thus, we
make the model-dependent apyroximation,

G(z') = (zo+zq -~ -z)-', (29)

which is a modification of the closure approxima-
tion in which 6 is taken as zero. Our model for ~
is discussed in Sec. V. The resulting second-
order terms are

(HA' zo) jdz (z+g~ n z ) a

x tM~FRD(q„q&) +MsFmz{q„q~)]

tf, (z, z'; zo) =
JI d'z"(zo+iq -z")-'M F, (q.)F,(q,).

(31)

M~, M~, and M~ are spin-isosyin averages that are
quadratic in the nucleon-nucleon amplitude; they
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depend upon nucleon-nucleon kinematic vax iables
k„k,', 8„and m, for the second scattering and k„
k„8„and ub for the first scattering, that axe given
by relations analogous to (15) and (16), using K,
K, g and @ ~+ ~ gbp respect1vely, 1n place of +
K', q. I',n and E» are two-body form factors ('D"
for direct and "Z" for exchange) that are the Fou-
rier transforms of corresponding two-body co-
ordinate space densities, which in turn are related
to the one-body density and so-called correlation
functions. Our models for the correlation function
and final approximations are given in Sec. V.

IV. OVERVIEW OF THE MOMENTUM-SPACE-

IMPULSE APPROACH

In AS1, we found that the fes effects on the elas-
tic observables calculated from the unary poten-
tial were of insufficient size to allow fes informa-
tion to be extracted from the calculation, especial-
ly since double scattering, depending on unknown

nuclear correlation functions, was not considered.
In this paper, we seek the answer to the converse:
can nucleax-structure information be extracted
from the intermediate-energy elastic calculation
1n view of the fes unceltalnty?

In this section we discuss the calculational pro-
cedure of the momentum-space approach. Our ob-
jectives are to ascertain what information we can
reasonably hope to obtain about the off-energy-
shell parts of the nucleon-nucleon interaction
from nucleon-nucleus collisions, in particular
from intermediate-energy elastic scattering of
nucleons from completely spinless nuclei and to
see what this combination of data and fes informa-
tion can tell us about nuclear structure, specifi-
cally, nuclear correlation functions. By com-
pletely spinless we mean that total neutron and

proton spins are separately zero and that total
isospin is also zero. Moreover, we calculate ob-
servables only for ~He, "C, and ' Ca, which are
not only completely spinless but also have equal
numbers of neutrons and protons. Thus, outside
of the Coulomb interference region, observables
should be the same for either incident neutrons or
incident protons. %'e make these specializations
in order to simplify the calculation, in paxticular,
the evaluation of the spin averages, and to facili-
tate comparison of cross sections and polariza-
tions, as calculated from potentials which keep
the two-body matrices oes, with those that ex-
trapolate the t,. fes,

Because of rotational symmetry, the optical po-
tential is a function of three scalar kinematic vari-
ables, K,K', and 8. To solve scattering equations
in momentum space, finite sets of points are se-
lected to represent the continuous variables. For

example, we choose a set of momentum values in
(0, K,) as well as their reciprocals in (K„~).
%e call Ko, which corresponds to E, the on-shell
value of the nucleon-nucleus momentum; thus, we
are referring to the nucleon-nucleus energy shell,
which must be clearly distinguished from the nu-
cleon-nucleon energy shell. %e shall use the up-
percase abbreviations, OES, FES, HES, SFS, and
FFS, to refer to the many-body shell analogously
to the lowercase abbreviations used for the two-
body shell.

In the simplest coordinate-space approach, ' E
and E' are fixed at K„and the OES matrix ele-
ments of the potential, illustrated by the dotted
line in Fig. I, are Fourier transformed with re-
spect to q to give a local potential. A Schrodinger
equation is then solved. In momentum space, non-
locality of the potential plays no special role.
%ithout extra work, we can retain the information
contained in the FES matrix elements of the opti-
cal potential. This is important because (as dis-
cussed in ASl) the fes effects on the elastic nu-
cleon-nucleus observables are essentially nonlocal,
i.e., they stem from the FES potential matrix ele-
ments. The coordinate-space approach "works"
because the form factors are rapidly decreasing
functions of momentum transfer, thereby making
the potential a very peaked function in q, hence
only weakly dependent on K and K' when q is small
and the matrix elements significantly large. In
Fig. I, the regions where q is small are inside

~K—,
K0

Ko

FIG. 1, Three-dimensional domain of the optical po-
tential. Here X is the initial momentum, X' the final
momentum, and 8 is the scattering angle in the nucleon-
nucleus center-of-mass frame. Xo is the on-shell mo-
mentum, corresponding to the incident energy E . The
OES line represents the range in scattering angle from
0 to x for E =Ho -—E'. The dashed surface encloses the
volume outside of which the matrix elements are insig-
nificant.
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for the HES vector B»(K)=A~~{K,K,), of the re-
duced reaction matrix. Principal value numbers,
Il~ ~, are obtained through the principal-value
quadrature,

K dK Ko -K U~~ E R~~(K, 33

where U~~(K) is the HES vector of the reduced po-
tential. From the m~~ and the OES U~~, we obtain
the OES, reduced reaction and T matrix elements„
which are given, respectively, by

RggUJg+IiggpTI JAjg/(1+'LAN/) (34)

Finally, from the numbers T~~, the observables
are calculated.

AGES PT.

FIG. 2. Two-dimensional domain of the reduced opti-
cal potential. E and X' are the initial and final momenta,
Xo is the on-shell value, the half-sheO line represents
X =%0 or E' =Ho, and the symmetric-off-shell line is
the locus of X =E'.

the dashed lines; outside, the matrix elements are
nearly zero.

The momentum-space method continues by re-
ducing the three-dimensional potential to partial-
wave potentials- U~~ indexed by nucleon-nucleus
orbital angular momentum I and total angular mo-
mentum, /=I. ~ ,' (for s-pinless nuclei). The next
step is to obtain the solution (for which the entire
FFS reduced potential matrix is required) to the
integral equation with the standing wave Green's
funchon Gg )

ft„(K,K') =U„(K,K')

+U„(K,K")G,(K")ft„(K",K)

(32)

For a given choice: of points used to represent
the momentum variable on (0, K,), a matrix equa-
tion approximates the integral equation (32) and a
sum approximates the quadrature (33). The choice
of points is discussed' with the goal of improving
the per formance of the program for a given de-
sired accuracy in the calculated observables. In
particular, a method is given for exploiting the
reciprocal symmetry of the optical potential:
Each matrix element of the potential U~~(K, K') is
multiplied by two weighti;ng factors which are
+(K '-K') '" when K&K -(K ' -K ') '" when

K&KO, unity when K =Ko, and with the identical
convention used for K'. Thus, the reduced poten-
tial matrix as well as the calculated reaction ma-
trix are both symmetric with respect to K and K'.

In Fig. 2, the domain of a reduced (potential or
reaction) matrix is illustrated. The matrix is
symmetrical with respect to the main diagonal.
Also, corresponding to the dashed cuxves of Fig.
1, there is a dashed curve in Fig. 2; outside of
this oval, the yotential matr ix elements are nearly
zero, and they do not significantly effect the HES
reaction matrix elements. Thus, the significantly
large matrix elements (potential and reaction) are
near the main diagonal. If the information we seek
is far from the main diagonal (i.e., outside the
oval) elastic scattering cannot provide us with ad-
ditional knowledge.

Moreover, from (34) we see that all of the phys-
ical information obtamable from the elastic p10-
cess is contained in the two sets of numbers, U~~
and li~z . For the middle values of I. (about 5-10)
where most of the intermediate energy scattering
occurs, our calculations show that the II~~ are
about an order of magnitude smaller than the U~~ .
Therefore, for any input to have a large effect on
the elastic observables, it must significantly
change the U» and/or drastically alter the II~ ~ .

Our ealeulations have clearly shown that the U~~
are quite insensitive (always less than 5%%u~) to fes
{vs oes) input. Thus, the differences found in the
observables due to going fes are due to changes in
the II~~, which can change as much as 50%%uo for the
small I, but only about 5-20%%uo for the middle I.
Since most of the intermediate-energy elastic
scattering occurs in the middle values of I., this
process is not sensitive to the fes extrapolation
of the I,

It should be noted that, in addition to the rapid
diminuition of Uo with increasing q, there is
another reason that matrix elements near and on
the main diagonal are the most significant. The
two-body t matrix, like the optical potential, must
be reciprocally symmetric. In a partial-wave
representation, this implies that the diagonal ma-
trix elements (which are generally somewhat
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larger than the nondiagonal that occur only in the
coupled triplet channels) of the reduced t are sym-
metric with respect to the two-nucleon momentum
variables k and O'. Therefore, the most rapid
variation of the fes extrapolation occurs sfs. It
follows from (15) that the k = k' if and only if K =K'.
Thus, the largest changes in the optical potential
are found in SFS matrix elements. The U~~(K, K)
stay significantly large to greater FES distances
than do the HES matrix elements; moreover, the

U~~(K, K) are constructed from only sfs t„while
the HES matrix elements of U~~ are constructed
from t, whose k and k' are on the opposite sides
of the oes value «given by m =«'/I . This discus-
sion explains why we found changes due to fes ex-
trapolation in the HES R~(K) were 2-4 times
larger than changes in the HES U»(K). Our con-
clusions are that fes effects and the nonlocality of
the optical potential are made manifest by the SFS
matrix elements U«(K, K).

Prom the above analysis, we conclude that elas-
tic scattering is unlikely to provide information on
the fes nature of the nucleon-nucleon interaction.
This has been suspected for some time now. '
What is of current and possibly future interest is
that the fes input manifests itself primarily in a
nonlocal way, as described above, at least for the
elastic process. Thus, in attempts to obtain fes
information from nonelastic nucleon-nucleus pro-
cesses, it is our opinion that the nonlocality of
the potential must be maintained unless it can be
shown that, for these processes, the Born term
(which is HES not OES) manifests fes effects that
dominate those due to the distortion term, which

can be calculated via an optical potential.
However, an examination of the HES vectors

(with fixed two-nucleon input) for the elastic case
has shown their shape to be a plateau about the
OES point. Thus, for the elastic process, the

U»(K) are at or near a maximum for K =K„
while II~~(K') defined by (33) with U~~(K', K), is
at or near a minimum when E'=E, . Thus, unless
the inel.astic transition matrix elements radically
alter the situation, the distortion term should be
relatively more important for a nonelastic process
than for the elastic case.

V. MODELS AND APPROXIMATIONS

In this section, we discuss our models and ap-
proximations made in the construction of the opti-
cal potential. We do not attempt to obtain a po-
tential whose calculated observables very closely
(within a few percent) fit the experimental data;
To accomplish this fit, we would have to include
in the potential many corrections whose evaluations
are very tedious, but whose sizes have been esti-

mated to be several percent of the unary term.
Our primary goal is to describe reasonable models
and to demonstrate that, vis-a-vis the double-
scattering corrections, the fes effects cannot be
ignored. We also would like to demonstrate the
practicality of performing the entire potential
construction in terms of momentum-space vari-
ables. Thus, we evaluate (30) and (31) by momen-
tum-space principa1-value quadratures rather
than the oscillatory quadratures that appear in the
coordinate-space approach.

The two-body information consists of the recent
phase parameter set determined at Livermore"
and one- and two-term separable potentials used
by Mongan" to fit these phases. From these sep-
arable models, so-called half-shell factors can be
calculated for positive-energy partial waves with
orbital angular momentum less than six. In AS1,
we discussed and justified the use of the approxi-
mation"

tf„(k, k';m) =hEh;w)toe, (m)h(k';w) (35)

and (36)

h (k; so) = 1 +k'( ') (k/« —1) +h" (e') (k/« —1)' for k & «,

where e' is half the lab energy and ~ is the two-
body momentum corresponding to m. The param-
eters, h', and h", , were chosen to fit the half-shell
factor curves at values of k/k, (k, corresponding
to e') roughly equal to 0.1, 0.5, 1.1, and 2.

The nuclear-structure models consist of form
factors and correlation function. For the one-body
form factor, we use a modified Gaussian form
suggested by Ravenhall"

E, (q) = (1 -yq') exp(-R, 'q'/4). (3V)

The parameter y was chosen to fit the position of
the first diffraction minimum determined from
elastic e -nucleus scattering, ' ' and then Ro was
taken to give the rms radius, also obtained from
electron experiments. " Our models of the two-
body form factors are the Fourier transforms of
two-body densities of the special form (expected
to be valid in the interior of the nucleus)

D,~ (r„r,) = [1 + C„(s)j p(r, )p (r,), (38)

where s =
~
r, —r, ~. Since (38) is valid only for a

large nucleus, 1/A corrections are not considered.
C,b is called the correlation function between par-
ticles "a" and "b." Because of the identity of all

for all diagonal nucleon-nucleon partial-wave t
matrix elements, while the nondiagonal matrix
elements in the coupled triplet cases are left oes.
In this paper, the half-shell factor is approxi-
mated by

h(k;te)=1+h+(e')(1 -«/k)+h„"(e')(1 «/k)' for-k&«,
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C(s) = C~(s) + Cs(s)IB, (39)

where P is the operator for spatial exchange.
The special form (38) leads to a correspondingly

special form in momentum space, when p in (38)
is taken to be the Gaussian

7r R) sex-p( &z/R (40)

nucleons, C„can depend only on s and the relative
spatial, spin, and isospin symmetries. Following
Lax and Feshbach, "we will consider only spatial
symmetry to be significant, so that the correlation
function is of the form

E~, the so-called Fermi momentum. Johnston
and Watson evaluate this summation by replacing
it by integration over a zero-temperature Fermi
distribution. We perform our calculation with a
Gaussian momentum distribution corresponding
to the density (40), so that we get a Gaussian re-
sult for C„(s). Applying (43) to this result, we

obtain

B„(Q)= exp(=,'R'Q') —5 '"exp(-R'Q'/10) . (49)

Our momentum-space Fermi-Gauss model (FG)
can be written in a direct-plus-exchange form; it
follows from (4'7)-(49) that this form is

We choose R so that (40) gives the same rms
radius as given by (37). Defining Q by

Q =B(q. -q&) (41)

B~(Q) = exp(--,'R'Q') —5 '"(1+-,'A) ' exp(-R'Q'/10)

+5 (1+4/A) 'exp(-R'Q'/10)P. ( 0)

we obtain from (38), (39), and (40)

E,(q„q,) =B(Q)exp(-R'q'/8),

where

(42)

B( )(=)(2 s'B) "'f d ss'2' exy(=,'B's')[1sc(s)].
(43)

We call B the momentum-space correlation func-
tion and consider two models.

Our first model is of the Hrueckner-Gammel type.
It arises from short-range forces due to nucleonic
cores. We consider the soft-core finite (SCF)
model used by Chalmers"

Ce(s) =-(1 —s'/b' )e ' '~ (44)

which via (43) leads to

B,(q) = exp(--'R'q') —(R"q'/3R') exp(=,'R"q')

(45)

The special form (42) is very convenient in the
integrations of (30) and (31). First, these inte-
grations are written in terms of Q by noting from
the definition (41) that

q=-, (K+K') -K"=K, -K", (51

so that

r
00 Ey+E' ' 2r .dsK"=

i
K"dK" Qdq/Ki ' dQ",

0
1g

(52)

where Q" is the azimuthal angle measured from
the nucleon-nucleus plane of scattering deter-
mined by K and K'. The calculation of the integrals
is intractable when the entire angular variation
of the spin averages is considered. As an im-
provement over the forward-angle approximation,
where j,=0 =q„ in the evaluation of the binary
terms, Chalmers and Saperstein' introduced the
"half -angle" approximation

where q = q=Qa (53)

1/R" = 1/R'+ 2/b' (48)

C~ depends only on s, so that C~ as well as B~ is
the same for either space symmetric or antisym-
metric states.

Our second model is of the Fermi type. It arises
from the Pauli principle which, when applied to a
Fermi gas of identical nucleons, leads to space
symmetric and antisymmetric correlation func-
tions. These functions are, respectively, given
by ~8

C (s) = (—,'A-1)(—,'A+1) 'C„(s)

and

C„(s)=[—,'A(1 --'A)] ' Q [e""&~&"], (48)
ky, k~

where the summation in (48) is over all nonequal
values of k~ and k~ whose magnitudes are less than

Q i = Ki (1 K"/Ki) . - (55)

Note that (54) maintains both first and second scat-
terings in the plane of K and K', so that the azi-
muthal dependence of the two-body matrices need
not be explicitly considered. Note also that the
magnitude of Q& is the minimum value that Q can
have for given K and K'. The evaluation of the
spin averages can thus be made for each value of

so that the spin averages are evaluated with Q =0
and taken outside of the integrations of (30) and
(31). However, taking Q= 0 is identical to taking
K"=K, ; this suggests that (53) may be generalized
by taking

K"=K"K, /K,

in the spin averages, so that they are evaluated at
the value



VO M. L. ADE LBERG AND A. M. SAP ERSTE IN

a~ =[q'/8+ (A -2)Q'/2A+Q (1,+ 1,)

+-,'q (1,-1,)]/2m.

(5'I)

The last two terms involve integration over the
average internal momenta, and in consistency
with (15) and (16), where internal momenta are
neglected in a reciprocally invariant manner,
these terms are dropped. Our final model is ob-
tained by assuming that the potential excitation
equals the kinetic part and by evaluating the result
at Q, . This leads to a model excitation given by

n, =q'/8m + (A —2)Q, '/2Am . (58)

The model ~, significantly alters the singularity
structure of the integrand in (30), whereas (31)
still has singularities at K"=+K, . Thus,
(E'-n, -K"'/2p) ' has poles at positions K~ and

Kp given by
1 1 I 1 1

KJ =-, A, +2D~ and KI =—,A, -pD

where

A, = (A —2)/(A --,')

and

(59)

Do=((A, ' -2A, )K,'+[(A+1)KO' -Aq']/( —,
' A ——,')]"'.

(60)

In terms of the quantities K~ and K„' given by

K =([(A+-,')K ' -Aq']/(A —2)PI2

and

K„' =K, /(1 --.' A,)"'
(61)

the model exhibits one positive and one negative
pole for K, in (0, K„); two positive poles for K, in

K" used to perform the quadratures in (30) and

(31), use being made of kinematic relations anal-
ogous to (15) and (16) with q, and q, given by

qg =~ q +(K~-K") +~(K -K' )(1 -K"/K~)

(56)

and

q(, =~ q2+ (K~-K") —g(K -K' )(1 -K"/K, ).
Our model for the excitation energy is derived

in the same way that the local part of the energy
parameter was derived in AS1. We interpret the
ground state as being a distribution in the average
internal momenta, so that+i, '/2m-Ql', "/2m
represents excitation of the kinetic-energy part of
the nuclear Hamiltonian in the intermediate state.
An evaluation of this difference, ~~, gives

The factor 2n comes from the azimuthal integra-
tion, Jdg"; a is given by n, , for the Uc terms and

by zero for the U~ term; and M is one of the
binary-spin averages, which depends upon K, K',
K", and q. Through relations analogous to (15)
and (16) two-body first and second scattering-
momentum variables are calculated; these vari-
ables are then used to construct the M . The B
are integrals of the B; they are defined by

gl
&(Q„Q,') =J Qd Q&(Q),

Qy

(63)

where Q', =K, +K" is the maximum value that Q
atta1.ns.

The approach based on (62) has several advan-
tages over the approach in which the intermediate-
angle quadrature is handled in terms of coordi-
nate-space variables. In the latter method, the
integrands of (30) and (31) are subjected to Fourier
transformation, but the M must be fixed and ~
must be taken as zero for all terms. The reason
for this is that the Fourier transform is used to
avoid the singularity (here, at K~ =K, since a =0);
inclusion of ~ or the K" angular variation of the
M would result in extremely tedious computations
in obtaining the transform. The Fourier trans-
formation is unnecessary; the singularities in (62)
are readily handled by principal-value quadrature.
In fact, we have used Gauss-Legendre quadrature
in segments for the L =0 and M fixed case, for
both the coordinate-space oscillatory integrals
and the momentum-space principal-value integrals;
the former take about twice as many grid points
to achieve four place accuracy as does the latter.
Finally, we point out that for the M fixed case,
there are two coordinate quadraiures (one real and

one imaginary), while (62) leads to a single real
principal-value quadrature plus imaginary contri-
butions from the residues of poles.

Although the computation involved in (62) is pres-
ently possible, it would be expensive and difficult.
Also, the most significant matrix elements of the
potential are OES for which K, is nearly K, and

(Ks, Ka); and no real poles for K, &Ks . When

K, =K„', the residues from the two poles cancel
exactly.

Now we shall show how the models so far de-
scribed in this section are used to construct the
binary terms of the optical potential. Each of the
three ("D","&," and "P') binary terms is of the
form

U„,(K, K';z')=mezz, J x')((("(@+(a-&-&") '
0

x M(Q, )fl(Q„Q,).
(62)
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q/K, is nearly zero. Thus, inclusion of the Q,
variation of the M in the quadrature is a second-
order correction to the distortion term, which,
for intermediate-energy elastic scattering, is
dominated by the Born term, which is QES. In
view of other approximations made in constructing
the potential, the effort to evaluate (62) with M
varied is probably not justified -at least for the
process under consideration.

We evaluate M with (53), but we still use n,
given by (58). Our expression for U, now takes
the form

is given by the sum of residues,

-in[(A +1)/(2A —1)][KGB~» Kp-BQrI]Dc 2,

(66)

where either residue is included only if the pole
occurs at a positive position.

VI. RESULTS AND COMPARISON

WITH EXPERIMENT

We have calculated the elastic cross section and
polarization for ~He, "C, and "Ca using the ma-
trix methods described in Sec. IV for various en-
ergies between 95 and 350 MeV. These calcula-
tions used both the oes and fes two-body matrix
elements to construct the unary-plus-binary po-
tential, and both the effect of excitation and the
effect of energy-parameter variation were con-
sidered. In these calculations, only the case I
models of Mongan were used.

Qur results using oes matrix elements and ne-
glecting excitation and energy-parameter varia-
tion are quite similar to those of Chalmers. '"
This was expected because these calculations dif-
fer essentially only in the kinematics and the use
of the EIA kinematics instead of the kinematics of
two free nucleons was seen in AS1 to produce a
very small effect in observables calculated from
the unary potential. In Figs. 3 and 4, respectively,
cross sections and polarizations are calculated
for n -"C from the unary-plus-binary potential;
in these and subsequent figures, data are indi-
cated by open circles. The 95-, 137-, 210-, and
350-MeV data are taken from Refs. 19, 20, 21,
and 22, respectively. The oes curves without ex-
citation or energy parameter variation for SCF

U, =a(K, K', q;~)M(0), (64)

where

x B(Q„Q',), (65)

where db, is given by a, or 0, and where Q = 0 in
the M. The integrations are performed using 6
four-point Gauss-Legendre segments when K, is
in (K„,K„') and 3 eight-point segments otherwise;
this yields the real part of 8. The imaginary part
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O4J
CO

(o)
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FIG. 3. Elastic differential cross section for n- C.
(a) Incident lab energy is 95 MeV, data are from Ref. 19.
(b) Incident lab energy is 137 MeV, data are from Ref.
20. (c) Incident lab energy is 350 MeV, data are from
Ref. 22. The solid and dashed lines, respectively, use
the SCF and FG correlation models with oes t matrices
and no energy-parameter variation. SCF and FG models
with fes t matrices and energy-parameter variation are
shown with single dot-dash and double dot-dash curves,
respectively. The dotted extensions to other curves
represent the inclusion of excitation energy in the inter-
meditate state. The data is indicated by open circles.
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FIG. 4. Elastic nucleon-carbon polarization: (a) In-
cident lab energy is 137 MeV, data are from Ref. 20.
(b) Incident lab energy is 210 MeV, data are from Ref.
21. (c) Incident lab energy is 350 MeV, data are from
Ref. 22. Notation is the same as in Fig. 3.
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and FQ correlations, respectively, are inustrated
with solid and dashed lines. The most important
thing to note is that the data are generally between
or near these two lines. Hence, the fes, energy
parameter, and excitation effects are not required
to explain the experimental results, especially
since these effects are small relative to that
caused by the addition of the binary potential to
the unary. Therefore, the choice of correlation
function is the dominant consideration for the elas-
tic intermediate-energy calculations of nucleon-
nucleus scattering.

The inclusion of the fes and energy-parameter
variations are illustrated with single-dot-dash and
double-dot-dash lines for the SCF and FQ cor-
relations, respectively. At 137 Me7, there is a
slight dip in the SCF poh, rization at the position
of the former maximum; also, there is a reduction
ot 18/g in the small-angle cross sections. Both of
these changes are improvements in the fit of the
SCF curve to the data. At 95 MeV, the fes cross
section lays about 20% higher than the oes; again

the FQ curve gives a better fit than the SCF. At
350 MeV, the fes and energy-parameter effects
on cross section are too small to be plotted in the
figure, while there is an appreciable effect on po-
larization. Here, for both observables, the SCF
curve gives a better fit to the data than the FQ.

The effects of including the excitation 4, in U~
are disappointingly small. They are illustrat;ed,
for several curves, with dotted-line extensions
to the curves without excitation. It is of interest
to note that inclusion of the excitation leads to a
smoothing of the polarization curves and a small
tail in the cross sections. Although both effects
are in the right direction, they are far too small
to appreciably reduce the differences between
calculated and experimental observables.

In Fig. 5, calculated observables for neutrons
incident at 142 MeV on 4He are compared with the
p-4He data of Cormack et a/. 23 The fes FQ gives
the best over-all fit, although the cross section is
still too high and the polarization is still too low.
Even discounting the Coulomb interference region,

0.1-

K
Ql

~0.01-
LLI
CO

CD
GO
C3
lX

K
C3
I-
c3 10
CA

CO

O
lK

0.1—

0.001- 0
I
I

20
I I

LAB ANGLE (deg)

00

40
I 0.01-

~ 0.5-
I-
l4

0 ~

CL

-0.5—

40
I

0 20
j I

LAB ANGLE (deg)

/

FIG. 5. Nucleon-4He elastic cross section and polari-
zation at 142 MeV. Data are from Pef. 23. Notation is
the same as in Fig. 3.

FIG. 6. Nucleon- Ca elastic cross section and polari-
zation at 220 MeV. Data are from Ref. 21. Notation is
the same as in Fig, 3.



OBTAINABILITY OP T%0-BODY OFF-SHELL INFORMATION. . .

the low-energy 'He fits are the wox'st we have
seen, which is not surprising considering the l/A
approximations we have made.

In Fig. 6, calculated observables for neutrons
incident at 220 MeV on 4'Ca are compared with
the p-~'Ca data of Ref. 21. This calculation is of
particular interest because data are available at
large angles for a heavier nucleus than we have
previously considered. The SCF (both oes and
fes) produce a definite diffraction minimum, while
the FG curves do not. Considering the whole an-
gular range, the fes SCF curve is somewhat
favored by the cross section. On the other hand,
the polarization shape of the experimental data is
most closely reproduced by the fes FQ curve. In
particular, both FQ curves show two pronounced
dips in the polarization, while the oes SCF curve
is x'ather flat and the fes SCF curve has a single
shallow dip. The dotted lines on the oes FG curve
indicate the smoothing effect of 6, on the sharp
spikes. However, this effect is smaller than that
due to including the fes and energy-parameter
variations.

This paper was based on the hope that use of an
optical potential, derived from multiple-scatter-
ing theory and applied to intermediate-energy
elastic nucleon-nucleus scattering, would lead to
information on the fes matrix elements of the nu-
cleon-nucleon t matrix. A second hope was to ob-
tain very close fits between calculated and experi-
mental observables. Neither goal can be achieved
at this time.

Little, if any, information on fes matrix ele-
ments can at this time be obtained fx om the elastic
or any other process. This is true even if the fes
effect should prove very large, because there is
far too much variability allowed in the Fredholm
reduction (35) or in the approach of Baranger
et al. '~ %hat is needed is an off-shell extrapola-
tion that depends on a few adjustable parameters—
instead of many unknown functions. Thus we
"adjusted" our aim to be the investigation of the
probable size of fes effects in the elastic process.

Some of the curves in Figs. 3 to 6 do give good
fits to the data. Yet, any vex'y good fit should be
considered fortuitous, because numerous correc-
tions, 2' each of which has been estimated to be
within a few to ten percent, have to be made.
Among the approximations made are the multiyle-
scattering theory itself, 28 exchange between the
incident and target nucleons, '~ relativistic correc-

tions to the kinematics, inclusion of average in-
ternal momenta in the kinematics (and, hence, in
the spin averages), and "1/A" corrections to the
formalism. 2' A computation involving all of these
corrections is too formidable at this time.

However, in our investigation of the elastic yrob-
lem, we feel that some valuable things have been
learned. The fes effects are certainly too small
to be disentangled from other considerations,
particularly, the uncertainty in nuclear structure
brought in by the correlation functions. On the
other hand, the fes effects are probably too large
to allow a definitive choice to be made for the cor-
relation function, without also considering the pos-
sible effect of extrapolation of the two-body t-ma-
trix fes. Most importantly and most definitely,
we found that fes effects are manifest in the non-
loeal manner desex'ibed in Sec. IV.

Our investigation has achieved two goals that
we did not anticipate. First, in order to take the
two-body matrix. fes, it was found necessary to
handle the kinematics mox e carefully than previous
works have, and to do this we had to interpret the
essence of the impulse-approximation concept
more carefully. Our solution was the EIA formal-
ism discussed in Sec. II and AS1. This formalism
has the advantage of being a minimal change from
previous treatments, but aQowing the unambigu-
ous and straight-forward fes definition of the two-
body kinematic variables. Finally, the formalism
can be extended to consider, simultaneously with
the fes effects, corrections to a number of ap-
proximations, such as including the internal mo-
menta in the evaluation of the two-body matrix
elements. The second goal we achieved was the
momentum-syace-oriented approach to the eval-
uation of the blnax'y term8. Th18 approach allows
more generality in the computation (and is much
faster) than the coordinate-space treatment of
binary terms and correlation functions. In addi-
tion, the approach introduced in this paper has
led to the development of a vector-momentum
principal-value quadrature, which could possibly
be modified for computing the distortion term in
the scattering equation for a nonelastic process.

Finally, we repeat that the elastic process is the
least likely process to manifest fes effects, be-
cause the Born term is OES and dominates the
distortion term. %e feel, however, that the care-
ful treatment of nonlocality by means of the mo-
mentum-space approach will prove to be of value
in calculations of observables for nonelastic pro-
cesses.
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The binding energy problem of AH in the ground state and in a possible excited state has
been investigated in the light of the recent experimental and theoretical results available
for the low-energy parameters of A-nucleon interaction. The calculations are performed
in Faddeev's formalism with two-body nonlocal separable potentials between pairs of parti-
cles, two of which are of unequal masses. For each of the sets of A-N potentials, the bind-
ing energy of the A particle within the hypertriton has been evaluated. One of our results
for the binding energy of the hypertriton in an excited state (J =&) is in reasonably good
agreement with that of Toepfer and Schick. We have also discussed the possible-qualitative
effects of charge-symmetry breaking in the A-N interaction in relation to the quantitative
comparisons of the A binding energies.

1. INTRODUCTION

Making use of Faddeev's' elegant approach, a
series of papers' have appeared on the three-body
bound-state problem. This technique has been ap-
plied to the A-d scattering problems by Hethering-
ton and Schick. '4 They make use of a multiple-
scattering formalism. ' The two-body interactions
are taken to be spin-dependent nonlocal separable
(NLS) s-wave potentials. '

The low-energy A-N parameters are now better
known from the recent experimental studies of
A-N elastic scattering. In the light of the present-
ly available A-. nucleon scattering lengths and ef-
fective ranges, ' ' we evaluate binding energies"
of the hypertriton in the ground state (J = —,') and
in the possible excited state (J= —,), taking into
consideration only the attractive potential between
any two of the three particles.

The ground-state" spin of the hypertriton is J


