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To investigate the importance of effects of Pauli exclusion principle in reactions involving
multinucleon systems, we consider reactions in which deuterons are incident on a recoilless
nucleus. First, the binding energy of a model deuteron in the presence of a nuclear Fermi
gas (an infinite nucleus) is calculated as a function of nuclear density and deuteron kinetic
energy so as to provide some clues to the range of incident energies and nuclear densities
where exclusion effects can be expected to be important. The results show that this model
deuteron is unbound in the presence of infinite nuclear matter, unless it has a kinetic energy,
at least, of the order of 100 MeV. Making some simplifying assumptions, then, we pose a
model problem and obtain for the deuteron breakup, elastic scattering, and stripping reac-
tions, Hilbert-Schmidt integral equations in which the Pauli term, in each case, can be iden-
tified. Corresponding to Pauli breakup term, Pauli breakup cross sections for deuterons
on 180 nucleus have been calculated in a simple model. The dependence of cross -sections on
directions along which the breakup products emerge and the energy partition among them is
investigated. The variation of cross section with incident deuterons’ kinetic energy and with
nuclear density is also studied. The most prominent and important feature of Pauli breakup
is the sharp peaking of cross sections for very asymmetric partition of energy among out-
going particles and is very encouraging for an experimental test. Finally, by considering
Pauli breakup of an artifically tightly bound deuteron, we conclude that the Pauli mechanism
should be of importance in o -particle reactions as well.

I. INTRODUCTION

A. Exclusion Effects in Nuclear Reactions
Involving Multinucleon Projectiles
and Targets

The dominant role played by the Pauli exclusion
principle in atomic collisions involving multielec-
tron atoms has been recognized for several years.!
Recently Brandt and Laubert? have reported data
on cross sections for the ionization of K shells of
Al in collisions with swift heavy atoms. In com-
parison with Coulomb-excitation cross sections,
the cross sections observed by them are enor-
mous - some 10% to 10° times larger. They attri-
bute the large cross sections to the exchange forc-
es set up during collisions by the Pauli exclusion
principle in the overlapping electron clouds of the
interpenetrating atoms. The analogous Pauli mech-
anism, so far, has not received much considera-
tion in nuclear reactions involving multinucleon
bound projectiles and targets. The importance of
Pauli exclusion principle in these reactions has
been recognized by several authors®~® but no ex-
plicit calculation exists which takes into account
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the influence of Pauli exclusion principle on the
projectile as it passes through the region occupied
by the target.

The work of Junkin and Villars® is of special in-

terest to us as it deals with deuteron reactions.
It gives a formally complete treatment of the deu-
teron breakup problem. However, the influence of
Pauli exclusion principle cannot be seen explicitly
in their formal results, nor are the results amen-
able to numerical estimates.

Baumgirtner!® has estimated the influence of
Pauli exclusion principle on the optical model for
elastic deuteron scattering in an infinite-nuclear-
matter approximation and finds the effect to be
small. However, it may be misleading to general-
ize this conclusion to the case of finite nuclei as
Thouless® has shown in another context that the
finite size of the nucleus and curvature of nuclear
surface must be taken into account from the begin-
ning for a complete description of nuclear reac-
tions.

Recently Johnson and Soper!! have also men-
tioned the possible corrections to the deuteron
elastic and stripping reactions arising from the
considerations of Pauli exclusion principle.
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B. Outline of Presentation

In this paper we describe the deuteron breakup
on a recoilless nucleus as the simplest prototype
of reactions involving multinucleon systems. Our
treatment includes the “Pauli exclusion” effects of
antisymmetrization but neglects certain exchange
effects by treating the nucleons in the deuteron as
identical to, but distinguishable from, nucleons in
the nucleus, i.e., it is more in the spirit of a Har-
tree rather than a Hartree-Fock calculation. Then,
a model problem is defined and preliminary infer-
ences regarding the implications of exclusion ef-
fects are drawn.'? Some possible applications and
extensions of the basic formalism are also dis-
cussed.

Section II illustrates the mechanism by which the
Pauli exclusion principle can cause deuteron break-
up. In Sec. III we discuss the bound state of the
deuteron. We also study the variation of its bind-
ing energy inside nulcear matter due to exclusion
principle restrictions as a function of both the
center-of-mass momentum K, and the Fermi mo-
mentum k;. Thereby we get clues to the range of
incident energies and nuclear densities where the
Pauli exclusion principle may be an important
mechanism in deuteron reactions.

In Sec. IV we describe our model deuteron nu-
cleus scattering problem. In Sec. V we obtain a
well-behaved integral equation for the breakup
amplitude, and identify the Pauli breakup ampli-
tude. Section VI obtains similar integral equations
for deuteron elastic scattering and stripping reac-
tions. Section VII is devoted towards obtaining an
approximate formula for Pauli breakup cross sec-
tion on which the numerical calculations are based.
The numerical results are discussed in Sec. VII,
in particular the dependence of cross sections on:
(1) the directions along which breakup products
emerge;

(2) the partition of energy among the outgoing neu-
tron and proton;

(3) incident deuteron’s kinetic energy;

(4) the nuclear density;

(5) compatible sets of deuteron parameters, dis-
cussed in some detail.

Finally, by considering the Pauli breakup of an
artificially tightly bound deuteron, qualitative in-
ferences regarding the importance of Pauli mecha-
nism in @-particle reactions are drawn (Sec. IX).

II. OVERVIEW OF THE PHYSICS OF PAULI
EXCLUSION PRINCIPLE

In this section we describe the mechanism by
which the Pauli exclusion principle can cause deu-
teron breakup. Consider a deuteron propagating
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through free space with a momentum K,. Its com-
plete wave function may be expanded in plane-wave
products, i.e.,

¢o(f)eﬁ("'i=f do(B)et R Trgtk-T-g3p  (2.1)
where K, =K, +K and ¥, =R+ 3 T.

Next consider the deuteron to be propagating
through infinite nuclear matter with the same mo-
mentum K,. Let us assume that infinite nuclear
matter can be described adequately by the Fermi-
gas model; i.e., all plane-wave states with mo-
mentum less than or equal to the Fermi momen-
tum, %;, are filled and all other states are empty.
Then on account of the Pauli exclusion principle
those plane-wave products in Eq. (2.1) which cor-
respond to either %, or k_ less than k, will be for-

(a)
Q- and P- Space Diagrams for Infinite Nuclear Matter

Values of K in P- Space
K2/4-KE+K
kKo

(%—kf)slils '—<z9+k,:; slcoselsl

FIG. 1. Illustration of the operators Q (K, #;) and
P (K, ks), where K =deuteron center-of-mass momen-
tum, %, =Fermi momentum of the nuclear Fermi gas
through which the deuteron is propagating. The value
of K, is considered to be greater than 2k;. Part (a)
illustrates two values (K,k’) of the neutron-proton rela-
tive momentum which are allowed, i.e., are in @ space.
One of these is smaller than 3K ,—% #» While the other,
k’, is greater than %Ko+k,. Similarly part (b) shows
two possible values (1?,'12’) of the neutron-proton relative
momentum that are in P space; P=1-Q. The expres-
sion at the bottom of this figure sums up the extent of
the P space for the case of K greater than 2k,.
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bidden for the deuteron. In other words some of

the relative momenta are not allowed. We shall
refer to the forbidden part of the phase space as

P space and the allowed part as the @ space. Fig-
ure 1 shows two examples in each case of relative
momenta belonging to @ space and P space, respec-
tively, while the equation

I%Ko - kf|<|il<%Ko+ kf ;

lp2_p2,32
259_._kf_i_k._<lc089]<1,

7K, cosf= (K, k)

(2.2)
sums up the extent of P space for the case of K
>2k;. These phase-space restrictions on the in-
ternal motion of the deuteron result in its distor-
tion into a new modified state. This modified state
will have definite nonvanishing overlap with the
free space bound state of the deuteron as well as
its unbound states. As a result the Pauli mecha-
nism can contribute directly to the deuteron elas-
tic scattering and breakup reactions and through
coupling influences the deuteron stripping reac-
tions as well.

III. BOUND STATE OF DEUTERON

Some insight into the role of Pauli mechanism in
deuteron reactions can be obtained by considering
its effect on the bound state of the deuteron. We
derive, in a simple model, an expression for the
binding energy of a deuteron propagating with cen-
ter-of-mass momentum K,, through an infinite nu-
clear Fermi gas with Fermi momentum k,. We
study the variation of this binding energy as a func-
tion of both K, and k,. Thereby we get clues to the
range of incident energies and nuclear densities
where Pauli mechanism can be expected to be im-
portant in deuteron reactions.

Since we are interested in qualitative or semi-
quantitative understanding of a little-studied phe-
nomenon, our simple model for the deuteron as-
sumes the neutron-proton interaction to be given
by a Yamaguchi!® type one-term separable poten-
tial

V(R k)= =) f(R'); f(R)=g/(k*+a®),  (3.1)

thus allowing us to obtain analytic expressions in
many places and keep the discussion transparent
and simple. The parameters a, g of this potential
were chosen to fit the binding energy ¢, and mean
square radius (72) of the deuteron. Details of this
parameter fit are discussed in Appendix A.

A. Deuteron in Free Space

For the purpose of the present work it is advan-
tageous to work in the momentum representation.
Since V,, does not depend on the center-of-mass

| =3

coordinates (translational invariance), we can
write for the complete wave function y,(K, k)

= 63K -K,)¢,(k), with ¢,(k) satisfying the Schro-
dinger equation for relative motion,

B00(8) + [ Vo 1 B) o1V = k2 (8) (3.2)

where k%= ¢, is the deuteron binding energy. Here,
and in the rest of this paper, we use units such
that #7=M =1, where M is the nucleon mass. Then
dimensions of energy are those of (inverse
length),? and the conversion factor is 1 fm~2=41.5
MeV.

Substituting for V,, from Eq. (3.1) into Eq. (3.2),
one gets the result

o) = cflk)/ (k2 + kD), (3.3)
where
c= f TR bo(R")dR" . (3.4)

On substituting from Eq. (3.3) into Eq. (3.4) one
gets the eigenvalue equation

1=fd3k1f<k)12/(k2+k02)— mg”

-—m . (3.5)

However, we shall adopt for k,? the experimentally
known value of deuteron binding energy which in
our units is 0.053 64 fm~2 (2.226 MeV) and consider
Eq. (3.5) to be a condition on the parameters of the
potential V,,.

Next, we proceed to discuss modifications to
these equations which arise from considerations
of Pauli exclusion principle when the deuteron is
propagating through infinite nuclear matter.

B. Deuteron in Infinite Nuclear Matter:
Effects of Pauli Exclusion Principle

Some results on the variation of the binding ener-
gy of a deuteron propagating through infinite nu-
clear matter have already been reported.'* !5 For
the description of the deuteron, Refs. 14 and 15
use separable potential models similar to the one
used here. We shall report here only the calcula-
tions for the case of center-of-mass momentum
K,>2k;, where k; is the Fermi momentum.'® The
reason for this is as follows. We are interested
in nuclear reactions where the incident deuterons
have positive kinetic energy. On entering nuclear
matter these deuterons will travel with a center-
of-mass momentum*” K > 2k,.

When the deuteron is propagating through infinite
nuclear matter, the translational invariance argu-
ment still holds, and therefore we have ,(K,K)
= 63(.I§—K,)$o(k). The wave function ¢,(k), there-
fore, satisfies the same equation as ¢,(k), i.e.,
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Eq. (3.2). However, due to Pauli exclusion prin-
ciple, @,(k) is nonzero only when K is such that
both |K,+k| and |K, - k| are greater than %,, i.e.,
when K belongs to @ space (see Sec. Il and Fig. 1).
The net result of this boundary condition is that
the effective interaction becomes

Volk| k)= =F (R)F (%), (3.6)
where
F(k)=f(k) whenK is @ space,
=0 when K is P space. (3.7

We therefore get a different eigenvalue, €,=%,2,
given by the following equation:

d3rf(R)?/(R2+E,2) .
space (38)

Comparing this equation with Eq. (3.5), it is ob-
vious that since the integrand is positive definite
over the whole range, the restricted space implies

ko <k,.

1= [ aRFE7/ 0 +B) = f .

€,/€, as a function of Kjor Ty
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FIG. 2. The variation of binding energy €, (considered
a positive quantity) with center-of-mass momentum for
a deuteron propagating through a nuclear Fermi gas
(Fermi momentum =%,) is shown for a few different val-
ues of k;, €, is measured in units of fres space deuteron
binding energy, €.

The integral in Eq. (3.8) can be carried out ex-
actly giving the result

1= (Ko by ) (3.9)
'W-o 0s Fegy g .

where I, is given by

dng [Foz—AB <A2+Eo"’ Bz+a2>
I,= n

(@@ -F2P L 2K, B+, Alva?
P+k2, 2k . _, 2k, :I
*T3g BN rap -kt g g

(3.10)

where A=3K,+k; and B=3K,~k;. An interesting
limiting value of I, arises for the case of K,
>k, a, kg
128g% 4 RS\,  4(3k%-2a%-R?)
kI 3R kr |

(3.11)
K,>ks 0,k .

Thus in the high-energy limit the correction term

€5/€o 0s a function of ke/key
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FIG. 3. The curves in this figure illustrate the varia-
tion of €y/e, as a function of p and, k; [p = (2/372) &,°].
p is measured in units of nuclear matter density, i.e.,
0.17 nucleons/fm?, while ks is measured in units of
corresponding Fermi momentum k;y=1.36 fm™1,
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in the energy eigenvalue Eq. (3.9) as compared to
Eq. (3.5) is linearly proportional to the volume of
Fermi sphere or the density of nuclear matter and
inversely proportional to the cube of deuteron ki-
netic energy.

The solution to Eq. (3.9) for different values of
K, k; is depicted in Figs. 2 and 3.

C. Inferences About the Importance
of Pauli Mechanism in Deuteron Reaction
from Variation of Binding Energy

with Ko,k

One may consider a large but finite nucleus to
be infinite nuclear matter of varying density.'®
Then the result of Figs. 2 and 3 may be used to
infer the range of incident energies and parts of
the nuclear region which are of importance in
Pauli breakup. The steep rise of the curves in
Fig. 2 suggests that the Pauli breakup cross sec-
tions will drop very rapidly with increasing inci-
dent energy. Similarly Fig. 3 suggests that the
contribution to Pauli breakup from the low-density
nuclear tail will be small.

In order to make the above-mentioned qualitative
remarks a little more specific, let us assume that
the circumstances for which the curves in Figs. 2
and 3 predict a 10% or more difference between the
deuteron binding energies in nuclear matter and in
free space, one would expect the Pauli mechanism
to play an important role. Then in Fig. 2, curve
I1,* €,/€,=0.90 at K,=4.71 fm~* or T;=230 MeV.

In these figures K, T, refer to the deuteron cen-
ter-of-mass momentum and kinetic energy, re-
spectively, when propagating inside the nuclear
matter. If the increase in kinetic energy of the
deuteron on entering nuclear matter is 80 MeV
(reasonable number on the basis of what is known
about nucleon-nucleus optical potentials). Then
T4=230 MeV corresponds to an incident deuteron
kinetic energy, E;=150 MeV. Thus for incident
energy E, up to 150 MeV one can expect the Pauli
breakup cross sections to be significant.

Using the same criterion, from Fig. 3, we find
that for K,=4.0 fm™! (E;=~"76 MeV) the region of
the nucleus where density is greater than 0.44p,
(py is the equilibrium nuclear matter density =0.17
nucleons/fm® and corresponds to &,y =1.36 fm™?)
will be important in Pauli breakup. Similarly, for
K,=3.5 fm™! (E; =37 MeV) the nuclear region with
density greater than 0.25p, is important and for
K,=3.0 fm~! (E;=3 MeV) the density threshold is
down to 0.13p,.

These qualitative arguments were quite helpful
in selecting the range of incident energies for which
the Pauli breakup calculations were eventually done
(Sec. VIII).

| =3

IV. FORMAL DERIVATION OF SOUND
AND APPROPRIATE INTEGRAL EQUATIONS
FOR DEUTERON INDUCED REACTIONS

Since the deuteron breakup is a three-body prob-
lem with the usual divergence difficulties, we seek
a formulation for the reaction amplitude in the
form of an integral equation with compact kernel.
We refer to such a formulation as “sound.” In
addition we seek an “appropriate” formulation,
i.e., one in which the contributions by the Pauli
mechanism are essentially separated from the
contribution by other mechanisms.

To enable ourselves to focus on the effects of
the exclusion principle, and to allow the possibili-
ty of as transparent an analysis as is possible, we
make some simplifying assumptions, discussed in
an earlier report.?®

With these assumptions, the asymptotic Hamil-
tonians for the incident channel can be written as
H;=t,+t,+V,,=H,, while the complete Hamiltonian
can be expressed as

H=QW;+V,+V,)Q=QHQ +V,+V,. (4.1)

Here @ is a projection operator which projects
onto the two-particle space spanned by products
of unoccupied single-particle states of the target
nucleus.

The integral equation obtained in Ref. 20 for the
breakup amplitude when generalized to include
other final channels, reads:

T =W; Moy —w )W i+ Wt 0 - w,)G, (05 —w )W}
+ﬁ;iGivc G, (v —w W3 . (4.2)

Here w,, w;, and v, are arbitrary potentials® to be
chosen to obtain sound and appropriate integral
equations for reaction amplitudes. The initial-
(final-) state interactions v, are defined by vy,
=H - H;(s. The Green’s functions G,, G;, and Gy,
are defined by

Goc=[E;"(I—{_Va)]_lz[Eg—Ha]_l> a=i,f, or c.
(4.3)

The initial- and final-state distorted-wave opera-
tors are given by
Wi=l+gw;, g=(Ej-H;-w)™", (4.4)
and
W;t=1+w,g;, g=(Ei~H;-wy)™. (4.5)

The tilde sign over Uj; is a reminder that Eq. (4.2)
can be used for evaluation of reaction cross sec-
tions only if the final-state distortion potential w;,
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is so chosen as to satisfy the condition
(B )w,g; G, |i(E,))=Lim ie(f|w,g,|i)=0.
€—>0
(4.6)

In Eq. (4.2), the obvious choice of a v, that does
not involve any of the two-body potentials in (v,
-w,;) insures that there are no troublesome &-func-
tion singularities in the kernel. As a result it has
a chance of being a compact kernel.

V. DEUTERON BREAKUP

A. Selection of Arbitrary Potentials
for the Breakup Problems

For our model breakup problem we have v, =H
~H;=V,+V,+V,and v, =H - H, =V, +V,+ V,, +V,.
Here V, is the “exclusion potential” defined by
V,=QH;Q —H,, i.e., it is just the difference be-
tween uninhibited deuteron Hamiltonian and the
exclusion principle restricted deuteron Hamilton-
ian. It can also be expressed as

V.= —(PH;+H,P)+PH, P, (5.1)

where the projection operator P is complementary
to @, i.e., P=1-@. Interms of the one-particle
states of the target nucleus, P can be written as
follows:

P=S, o, s(lim)a(p)) ( a(pli(n)| +|i(p)B®)) B®)i(p)]) .

(5.2)

Here index ¢ runs over all one-particle states, a
runs over states occupied in the target nucleus by
protons, and B runs over states occupied by neu-
trons. The symbol S denotes summation over dis-
crete states and integration over continuum of
states. The letters n, p in the parentheses refer
to neutron and proton coordinates. In writing Eq.
(5.2) we have used the assumption that the target
nucleus can be adequately represented by a single
Slater determinant of one-particle states.

Here we choose the final-state distortion poten-
tial to be w,=V,,, so that from Eq. (4.5) the final-
state distortion wave operator is

wit=1+V,, 8, & =(Ei-H,-V,) " =G,.

(5.3)

Thus the condition (4.6) reduces to (f(E,)| V,,,| (¢(E,))
=0, which is obviously satisfied as the initial and
final states have different magnitude for deuteron
center-of-mass momentum, whereas V,, is dia-
gonal in that coordinate.

With the choice (governed by our desire to ex-
hibit the Pauli mechanism in an explicit manner

in the final integral equation) w; =V,+7V,, the most
appropriate intermediate coupling potential, v,
which will make the kernel of the integral Eq. (4.2)
compact, is found to be v,=QV,,Q=V,,. The
Green’s function G, associated with this choice

of v, is

Go=(E} =H) ' =[E}=QU,+V,+V,)Q]™*. (5.4)

With these choices, our integral Eq. (4.2) for
breakup amplitude becomes

Uly=W; (V, + V)W +W; T (V, +V, GV W}
+ WiV, + V)GV, Wi+ UG, V,,G,V,W}.
(5.5)

Here, the wave operator Wi is found from its de-
fining Eq. (4.4) to be (after substituting W,=V,+7,)

Wi=1+(E}-H, =V, =V,)" NV, +V,) =W} ,,.
(5.8)

The kernel of Eq. (5.5) is compact (Appendix B).
As a result, the inhomogeneous terms may be ex-
pected to provide a mathematically meaningful
first approximation to the full transition ampli-
tude U},. We now proceed to discuss these inho-
mogeneous terms.

B. Pauli Breakup Amplitude

In Eq. (5.5), the second set of inhomogeneous
terms,

(U2, =W; T (V,+ V, GV IWS, (5.7)

are specific to the effects of Pauli exclusion, in
the sense that of all potentials in the problem, they
involve only the exclusion potential V, directly.
Also, in the limit of deuteron nucleus potential
(V,+V,) approaching zero, these are the only in-
homogeneous terms that survive. We may there-
fore refer to Eq. (5.7) as the distorted-wave ap-
proximate Pauli breakup amplitude.

On the other hand, the first set of inhomogeneous
terms of Eq. (5.5) give the exact breakup amplitude
in a model without exclusion, i.e., when @ =1.

The remaining set of inhomogeneous terms de-
scribe the leading cross terms between Pauli (V,)
and nuclear potential (V, +V,) breakup.

Physically, the Pauli breakup [Eq. (5.7)] may be
understood to descrioe the following sequence of
events:

(1) The incoming deuteron wave is distorted by
the wave operator Wj, which describes scattering
of nucleons in the deuteron by the potentials 7V,
and V,.
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(2) The deuterons are broken up by the exclusion potential V, or successive applications of it with propa-
gation under Green’s function G,=[E} -Q(H,+V,+V,)Q]™" in between.
(3) The outgoing neutron and proton scatter off each other through interaction V,,. This scattering is de-
scribed by W,‘T.

We now proceed to derive similar equations for Pauli elastic scattering and stripping amplitudes.

VI. PAULI MECHANISM IN‘DEUTERON ELASTIC SCATTERING AND STRIPPING REACTIONS

A. Deuteron Elastic Scattering

In this case we cannot use Eq. (4.2), as condition (4.6) cannot be satisfied for any nontrivial potential wy,.
Therefore, we work with a more general equation,?

Usi = W,‘T(v, —w,)W:f+Wf‘T(v, —Wg)G (Vs —w )W +w, g Gy 1 = G,G(0; —w )W+ UG 0,G (v; —w )W},
(6.1)

in which both the initial- and final-state distortion potentials (w; and w;) are completely arbitrary. In or-
der to exhibit the Pauli effects explicitly, we set

wi=w,=V,+V,
and
Vo=V,
to obtain
Uy = (Vo + VWi Wi T (V, + V.G VIWS = Wi T = 1)V,,G,V, Wi+ Ul G V.GV, Wi (6.2)

In writing Eq. (6.2) we have used w;g;G; ' =w, W} which can be easily verified. All operators other than
Ww;' have already been defined in Sec. VA. The wave operator W; " is adjoint of W#* and describes scat-
tering of deuterons in the final channel by (V,+V,).

In a manner analogous to the identification of Pauli breakup amplitude, from Eq. (6.2) we have distorted-
wave approximate (DWA) Pauli elastic scattering amplitude given by

(Ugd)p=W;T(V:+ VchVx)W; . (63)

The major source of difficulty in evaluating the Pauli elastic scattering amplitude are the distortion-
wave operators W; and Wy *, both of which describe scattering of deuteron plane waves by potentials
(V,,+'I7P). The attenuated accelerated plane-wave-approximation method of Sec. VII could be used for both
the initial- and final-state distortion-wave operators. However, the error involved in using the above-
mentioned approximation is liable to be much more serious here than in the case of breakup where it has
to be used only in the initial-state distortion. For this reason, we shall report calculated results only for
Pauli breakup.

B. Deuteron Stripping Reaction

Turning to the problem of deuteron stripping, we shall consider only the neutron stripping, i.e., the re-
action A+d- (A+n)+p. The corresponding equations for proton stripping can be obtained in an analogous
manner. In this case we have the asymptotic Hamiltonian for the final channel given by

Hp=Q(t,+V,)Q +1,, (6.4)
so that the final-state interaction is v;=H —H;=V,+V,,+V], where

Vi=QUy+V)Q = (£, + V) . (6.5)
Here we use Eq. (4.2) for U}; with the choice w;=V,+V,, w;=V,, and V,=V,,. Then

Tag=W; NV, Wi+ W (VI VIGV W+ W5 TV,,G VWi +Uss G VGV, Wi . (6.6)

The only undefined object in Eq. (6.6) is the final-state distortion-wave operator W, T. From defining Eq.
(4.5) with w;=V, we have

w;t=14V,(E;-H, -V, (6.7)
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Since we have used truncated transition operator U}'{, our choice of w, must satisfy conditicn (4.6). Poten-
tial V, involves only the coordinates of proton with respect to the target and therefore, cannot cause transi-
tions back to the initial channel in which neutron and proton are bound together. The matrix element in the
second member of Eq. (4.6) is therefore finite and the choice w; =7, is consistent with condition (4.6).

As before, we identify the DWA Pauli stripping amplitude to be

(Usa)y=W; " (VL+ VLGV WS (6.8)

The calculation of this amplitude is again an involved one and has been postponed until suitable methods for
evaluating or approximating the initial- and final -state distorted-wave operators have been developed.

We now proceed to derive an approximate formula for the Pauli breakup cross section for the purpose of
numerical results.

VII. APPROXIMATE CALCULATION OF PAULI BREAKUP CROSS SECTION

A. General Discussion of Approximations Used

On the basis of Eq. (5.7) we proceed to estimate the Pauli breakup cross section. The purpose is to ob-
tain some semiquantitative insight into the specific features of the Pauli mechanism. This limited purpose
is consistent with the several approximations we shall make in order to obtain numerical results. One ex-
pects these simplifications to involve errors, but hopefully, not such as to distort beyond recognition the
major over-all magnitudes and specific qualitative features of angle and energy dependence.

The approximations make in calculating the Pauli breakup amplitude are as follows:

(1) The (small) second-ovder term in Eq. (5.7) is neglected. This is because V, has finite matrix ele-
ments only in the space complimentary to Q, and H,=Q(H,+V,+V,)Q (in the Green’s function, G,) has ma-
trix elements only in the space @. Thus, the only nonvanishing contributions to this term occur with the
energy denominator equal to the total energy, and should therefore be small compared with the term re-
tained.

(2) The initial-state distorted wave Wj| ¢0_'KO) is approximated by an attenuated deuteron plane wave
N| cpoK‘;). One is led to this approximation by the fact that one needs a good representation of the initial-
state distorted wave only in the interior of the nucleus and the following considerations:

(a) Assume that (V,+7,) can be replaced by a deuteron optical potential V(r,) +iW(r,).

(b) Assume that the imaginary part of the optical potential reduces the amplitude of the deuteron wave in
the interior by a factor, N, less than 1.

(c) Neglect the focusing effects®? of the spherical nucleus on the incoming wave and replace the wave func-
tion inside by a plane wave with a wave number K} corresponding to kinetic energy E;+¢€,+V,. Here V, is
the average well depth of the real part of deuteron target optical potential. With these approximations,
from Eq. (5.7) we get

(K"K |(US)yldoKo) = Noxa K/ V.| 6K, (1.1)

where E','ﬁ' are relative and center -of-mass momenta of the final out-going particles; K, is the momentum
of incident deuteron and ¢, is the internal wave function of the deuteron. The scattering state (x; K’|

= (1?"I§'|Wf"r is an eigenstate of the Hamiltonian H, with the same energy as that of the state (k’K’|, by vir-
tue of Eq. (5.3) for the wave operator. Now on substituting Eq. (5.1) for V, one gets

1 > - - _— -, - -, -
5 BRI, 95Ro) & = (26, + V) x| Pl 63 + (o R | PH, PR (1.2)

Here E, is the total energy of the incident deuteron as well as that of the outgoing particles. The actual
calculations were performed with

%<E'k'|(vg,),| P K,)=—2(E,+ V,(k'K'| P| 9 K:) + (k' K| PH, P| ¢ K2) (7.3)

which is obtained from Eq. (7.2) when the third approximation, below, is invoked.
(3) The final-state distovtion due to w,=V,, is neglected (see Appendix C) and (xy| is replaced by (K'|.
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B. Approximate Pauli Amplitude for N = Z Target
In this case the projection operator P becomes [from Eq. (5.2)]
P=Sllima(p) alp)itn)] +](p)atn)) alwi(p)l]. (7.4)

i, o
Here i runs over all one-particle states and o runs over only the occupied one-particle states of the target
nucleus.

Notice that, for the present case of N=Z, in Eq. (7.3) for the Pauli breakup amplitude, three objects are
invariant under the exchange of neutron and proton space coordinates. These are the initial state, which
is space symmetric, the projection operator P, and the Hamiltonian H;. Therefore, only the space-sym-
metric part of the final state will contribute to Eq. (7.3) for the Pauli breakup amplitude. As a result the
amplitude will be invariant under the transformation k’ - -K’.

With the operator P given by Eq. (7.4), we have for the first matrix element on the right-hand side of
Eq. (7.3),

(R'RY| Pl 9oR3)= 90(K' + Q) DYREL QK1)+ ¢(K’ - 3Q D2k, - QoKD (7.5)
o
where §=-ﬁ' -'12; is the effective center-of-mass momentum transfer and k' = % +K’ are the momenta of
the outgoing particles.
We evaluate the second matrix element in Eq. (7.3) (i.e., the matrix element of PH, P) in two parts. First
we evaluate the matrix element of PH,P and then that of PV wp P

(R'R| PH,P| 9K = [ @K (k *kz)mwk')wa

X[ 9o (3R =KL T ¥a(KL - KLY oK) + 9o (K = 3R T 95(K} - K)o (K]

o4

+ (same term but with kK’ replaced by -k’). : (7.6)

For V,, we shall use the separable potential defined in Sec. III, and obtain for its matrix element
(RR PV,,P| 0oRD)= - [ a*Ra* R7 R -KD T yo(R-EL(K)

X f(K)<KK| P| ¢,K%) +(same term but with kK’ replaced by -K’). (7.7)

‘When Eq. (7.5) is used to expand the last factor in Eq. (7.7), both Egs. (7.6) and (7.7) are seen to involve
two nuclear state summands and some extra integrations. Further progress can be made only by intro-
ducing a specific model for the occupied nuclear states. We therefore turn to the specific case of Q.

The specific case of 0. For this case we use the isotropic harmonic-oscillator wave functions for the
occupied nuclear states. These wave functions in Cartesian representation are

d)ng y Ny, N2 (-f) = Cnx cnycnanx(ao x)Hny(aoy)Hn‘(aoz)e-rza02/2 ’ (7.8)

where ¢, is the inverse range parameter and n,, n,, n, are quantum numbers for this state. H, denotes
Hermite polynomial of order n. The normalization constants, C’s, are given by C,=(a,/7/22"n!)'/2, The
Fourier-transformed wave function can be written as

iN
zpnx’"y'n‘(k)=—-; 3 Coy CoyCo g, (Bx/ 0l (R @ )H, (k) @) e™/2%7 (7.9)
0

where N is the sum of quantum numbers =,, n,, n,.

The actual nuclear wave functions are eigenstates of angular momentum, 12, However, for the present
purpose, we need not evaluate them, as we need summands of §*) over complete shells, and the result
will be the same whether we use Cartesian wave functions or spherical wave functions (eigenfunctions of
L?).

For 160 there are only four levels involved: (0,0,0), (1,0,0), (0,1,0), and (0,0,1). The numbers in
parentheses are, respectively, the n,, n,, and n, values. Using Eq. (7.9), we obtain

DA (R) = G (1 goha ) B B (7.10)
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Once substitution from Eq. (7.10) is made, the integral involved in the matrix element of PH,P [Eq. (7.6)]
can be carried out exactly. However, the integrals in the matrix element of PV,,P[Eq. (7.7)] could not be
carried out exactly. An approximate method was used to evaluate these integrals (see Appendix D).

The final result is

1, - -, -
N(k’K'I(Ung DKy T, +T,+T,+(K'K'| PV,,P| ¢, K2). (7.11)

Here the first term is

¢0(E, - % Q)

T1= ao31r3/2 exp("A1/a02){%Qoz+[2Eo +—V-o" %kl-z— %aoz] [1 +2(A1 - %Qz)/aoz]} ’ (712)
while T, can be obtained from T, by the transformation k’ ~ -k’,
~o (k' +% - -
T,= ————_(pfx(o%:’:@ e™42/%* {10 2+ (2E,+V, - 172 = Sa,)[1+2(4, - $@/a,?]} (7.13)

and T, is given by

Ty= a;*e: 5 e A0 [[,A, Ay +1,(A, - 44K, KL /3, + 41K, K1 /30,1]. (7.14)
The new quantities introduced in the preceding three equations are
A= (3R; +K)2+5Q7, (7.15)
A= 3K -k +5Q7, (7.16)
3= 1K+ E,, (1.17)
Ay=(1+K! Ko ) (1+k. - Koy, (7.18)
and
I,= f "Rk golk)e " (7.19)
0

In the last equation the integral is exactly evaluable in terms of the error functions of a/a, and k,/a, when
one substitutes for ¢, from Eq. (3.3).
Evaluation of the PV, P term of Eq. (7.11) is discussed in Appendix D.

C. Relation Between Breakup Amplitude and Cross Section

Goldberger and Watson? give a general formula relating transition amplitude to the reaction cross sec-
tions. Applied to the deuteron breakup problem it reads

- - 2
Ao:fdﬂE,dﬂE,dSKrbs(ﬁ —P,)b(E,-El)(Zw)“l—%l—. (7.20)
(4]

Integration is over a small volume in the nine-dimensional momentum space about the point ( E,,,l?,, 'IE,.).
Here k,, k,, and K, are the momenta of the proton, neutron, and the target, respectively, in the final
state. P; and P, are the total momenta of the initial and final systems, respectively. E; is the energy of
the final system and E; that of the initial system. T,; is the transition amplitude and v, = %Ko is the velocity
of incident deuteron with respect to the target.

We write d°k, =k, de, dQ, and likewise for d°k,. Then we note that the d°K, integration takes care of mo-
mentum 0 function. The de, integration can be used to eliminate the energy 6 function with the result that

AO=J‘ k,de,dﬂ, kndgnk‘.z(“)'(zﬂ)4‘Tf‘|2. (7.21)
Here k, is determined by energy conservation equation, i.e.,
3k =1K,2 - €, - 1k, (7.22)

and it is understood that the transition operator is evaluated between energy conserving states.
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| =3

Finally, we can write for the triple-differential cross section

d%o _32kk,
aQ,d,de, K,

lei|2

(7.23)

in units where Z7=M =1. When the momenta are measured in units of fm™, one need divide the results by
4.15 to obtain cross section in mb/sr? MeV. The phase-space factor [the factor multiplying T4 in Eq.
(7.23)] under the energy conservation condition [Eq. (7.22)] is maximum for k,=Fk, and decreases monotoni-

cally to zero on either side.

We now proceed to the discussion of numerical calculations and results.

VIII. NUMERICAL ESTIMATES OF PAULI BREAKUP

A. Input Parameters

The isotropic oscillator parameter [see Eq. (7.8)] for O wave functions is taken® to be given by o,™*
=1.76 fm. For the deuteron we take a Yamaguchi-type one-term separable potential [Sec. III, Eq. (3.1)]
with @=0.9 fm™ and g2=0.116"77 fm™~3 chosen to fit the binding energy and mean square radius of the deu-

teron (Appendix A).

For the deuteron nucleus optical potential,®® we assume a volume absorption and take V,=80 MeV and
W,=15 MeV, both assumed to be constant over the nuclear volume described by a sphere of radius R=3.6
fm. With this input, K} can be trivially determined for a given incident energy.

The average cross-section reduction factor due to absorption for an undeflected trajectory with impact
parameter b is N 2%(d)=(1/2z,) [**N?(b, z)dz, where z,>=R?~ b? and

Z 4Mw
Nz(b,z)=exp <'— 2Kt h2K*
0 0

-20

0 dx) —exp <_ 4MW (2 +2,)

(8.1)

The over-all average cross-section reduction factor, N2=(1/mR?) [FN?(b)2nbdb, is then found to be given

by26
N2=(2/A%) [x =1+e“M], rA=8MW,R/%2K} .

(8.2)

For 90-MeV incident energy (for which V,, W, are given above) Eq. (8.2) gives N?=0.5002. Since W, and
K} both increase with incident energy, the values of N? at other incident energies for which calculated re-

sults are reported are about the same.

B. Some Properties of Pauli Breakup on °O

Before we go on to discuss the numerical re-
sults, it is worthwhile to point out some impor-
tant features one can expect on the basis of Egs.
(7.11)-(7.19) and (7.23), which comprise the formu-
la for Pauli breakup cross section. In the expres-
sion for transition amplitude [Eqgs. (7.11)-(7.19)],
of all the functions involved, the exponentials are
the most dominating ones. Therefore, to recog-
nize the important properties of the transition am-
plitude, we look at the exponential factors first.

The arguments of the exponentials involved in
the transition amplitude terms T,, T,, and T, are,
respectively, —-A4,/a2, -A,/a,% and -4,/a,’.

For large amplitude, A, and A, both require that
_Q, the effective momentum transfer, be small.

A, is further reduced if K~ {1&3, while A, requires
that these vectors be equal and opposite. A4, is in-
dependent of the directions of the initial and final
momenta and is always large.

The structure of the exponentials in the fourth

_term, the PV, P term, is similar to that of the ex-

—

ponentials in T, and T, (see Appendix D). However,
this term, T,, is found to be much smaller than
T,+T,. Physically, the damping of T, in compari-
son to T,+T, can be understood as follows. The
part of phase space that contributes to the matrix
elements of T,+7T, is restricted only in the coordi-
nates of one particle at a time, while their rela-
tive coordinate is restricted only by the finite size
of the deuteron wave function. In case of the ma-
trix elements of PV, P, the contributing phase
space is further restricted in the relative coordi-
nate due to the short-range nature of V,,.

Thus we conclude that T, and T, are the only
terms that can have large magnitudes. Therefore
in the regions of large cross sections, the varia-
tion of Pauli breakup with momenta of outgoing
particles is governed mainly by them. We there-
fore conclude that:

(a) The Pauli breakup cross section is large only
for values of the effective momentum transfer
(@=K;-K’) which are at most a few times a,.

(b) It is further required that K’ be of the order of
{ﬁ(’; in magnitude and be as nearly along _IZO (paral-
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lel or antiparallel) as possible. The large magni-
tude of k’ implies that the momenta of the out-
going particles (3K’+K’) will be very unequal.
Also, large values of k’, by energy conservation,
imply small values of K’. This in turn, in general,
implies large value of =K’ -~K’. Thus (a) and (b),
to some extent, compete against each other.

(c) Note that when Q is small and |K’| 3K} [when
conditions (a) and (b) are nearly satisfied], the
deuteron wave function in T, and T, has to be evalu-
ated at approximately %K;. Thus considerations
(a) and (b) have to compete against the availability
of large relative momenta in the deuteron wave
function ¢,. However, since ¢, is not as dominant
a function as the Gaussian exponentials which bring
about (a) and (b), this consideration (c) is of much
lesser consequence.

(d) In evaluating the cross sections, the square of
the transition amplitude has to be multiplied by the
phase-space factor which is maximum for &,=k,
and monotonically decreases to zero on either side.
Thus the phase-space factor also works against the
effect (b) above and is particularly important near
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FIG. 4. The triple-differential cross section vs the
fraction (e,/E) of energy carried by the proton for spec-
ific values of angles (6,, 6,) are plotted for the case of
incident energy E;=91 MeV. By energy conservation
€,/Ey=1-¢,/E,. The specific cross-section reduction
factors, N2~ 0.5, due to absorption are suppressed in
these plots, as indicated by the vertical axis label.
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the end points of the spectrum, i.e., where either
k, or k, is approaching zero.

(e) In regions of small cross sections, e.g. for the
case of symmetric partition of energy, €,/E,=~ %
interference effects between various terms can
cause the violation of (a), (b) which are based on
T, or T, being large.

C. Energy Correlations Among
the Breakup Products

These are depicted in Fig. 4 which shows the var-
iation of d%c/dSQ, dQ2, de, with x=¢,/E,, the fraction
of energy carried by the outgoing proton. These
curves are drawn for fixed values of 6,, 6,, the
angles at which the neutron and proton are ob-
served.

From these curves we observe that the cross
sections are maximal for very asymmetric parti-
tion of energy among the outgoing particles. The
maxima in these curves are a clear demonstration
of the property (b) of the Pauli breakup in competi-
tion with properties (a), (c), and (d) (these proper-
ties are discussed in the preceding section).

Each curve has two maxima. One of these cor-
responds to the situation where term T, [Eq. (7.12)]
of the breakup amplitude is maximal, while the
other corresponds to the situation where T, [Eq.
(7.13)] is maximal. Since they attain maximal val-
ues for equal but opposite values of E’, the two
maxima are equally spaced from x=%. That is
they correspond to conjugate values of x, e.g. x,
and 1 - x,.

In the curves with 6,=6,|, (20° -20°), the heights
of both maxima are equal in agreement with the in-
variance of the Pauli breakup amplitude under the
transformation k'~ -K’. For the present case,
this implies identical cross sections for ¢,/E,
=x,1-x. In the curves with §,#16,|, (20°,-5%
20°,10°), the maxima at lower value of x=x, is
orders of magnitude higher than the maxima at
the higher (conjugate) value x,=1 - x;. It can be
easily verified that x, < 3 corresponds to a lower
value of effective momentum transfer Q, than does
the conjugate value x,=1-x,. These conjugate
cases correspond to the same value of |k’| and to
the same magnitudes of the final momenta but with
the role of neutron and proton interchanged. The
two cases differ, essentially, on account of Q.

The above mentioned result, therefore, is a mani-
festation of the strong (Gaussian) dependence of
transition amplitudes on Q

D. Angular Correlations

The angular correlation curves (Fig. 5) show the
variation of cross section with one of the scatter-
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ing angles (here 6,) when the other angle (here §,)
and the energy carried by each of the out-going
particles is considered to be fixed.

The interpretation of these curves in terms of
the observations (a)—(e) of Sec. VIIIB is compli-
cated by the fact that all of these effects enter the
picture simultaneously and in varying degrees de-
pending on 6,, 6,, and x. However, combining the
results of this figure with those of Fig. 4, one can
conclude that the energy-integrated cross section
d%0/dS, dQ, (for 6, fixed at 10°) will consist of a
superposition of a narrow peak centered at 6,=0°
and a broad peak centered at 6,~0,, i.e., at §,
corresponding to minimum total momentum trans-
fer. The narrow central peak is very much remi-
niscent of the Serber? theory of deuteron breakup,
which successfully explained the contemporary re-
sults of Helmholst, McMillan, and Swell.®? The
breakup mechanism in Serber theory essentially
assumes complete physical exclusion of neutron
and proton of the deuteron from the nuclear vol-
ume, whereas the Pauli breakup is based on a less

-
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FIG. 5. The triple-differential cross section vs the
proton angle 6, in the forward 75° cone. The curves are
labeled by the fraction of energy carried by the proton
and the average depth of the real part of the deuteron
nucleus optical potential, The strong dependence of
results on the choice of V| is apparent. The reduction
factor, N2~ 0.5, is again suppressed as in Fig. 4.

restrictive exclusion, the Pauli exclusion. There-
fore some similarities in the angular distributions
in the two cases should not be very surprising.

E. Cross Section Versus Ty, the Deuteron
Kinetic Energy in the Interior

From Sec. III and Fig. 2 it is clear that the cross
section for Pauli breakup should strongly depend
on T,. Since T,=E,+V,, where E, is the incident
deuteron’s kinetic energy and V, is the well depth
of the real part of deuteron-nucleus optical poten-
tial, we divide our discussion in two parts.

(a) Cvoss section versus V,. The dotted curves
in Fig. 5 correspond to the calculation with V,;=60
MeV instead of 80 MeV (solid curves). The in-
crease in cross section by about 2 orders of mag-
nitude shows the strong dependence of cross sec-
tion on V, and hence on the momentum of the deu-
teron in the interior region. Thus our approxima-
tion, W}l $.K,)=N| ¢.Ks) (which replaces the inci-
dent channel distorted wave by an attenuated but
accelerated plane wave with a momentum which is
the median of the momenta present in the distorted
wave), gives an underestimate of the cross sec-
tion. A more realistic estimate of the magnitude
of the cross section would have been obtained if
K} were replaced by some effective average K,
obtained by giving extra weight in the averaging
process to the lower deuteron momenta in the dis-
torted wave, W}| ¢.K,).

(b) Dependence of cvoss section on incident enev-
gy. We shall confine our attention only to the re-
gion of large cross sections (forward angles and
small values of x=¢,/E,), where T,+T, give the
dominant contribution to the breakup amplitude
(see Sec. VIIIB). Since T, can be obtained from
T, by the transformation k’~ -k’ and vice versa,
they dominate the breakup amplitude in conjugate
parts of the proton energy spectrum. Therefore,
we need consider only one of them, say T,, for the
following discussion.

T, is dominated by e~41/%”, We rewrite 4, in a
form different from Eq. (7.15),

A, =[R2+ (K- k,)%] /2, (8.3)

where K,(, = $K’+Kk’ are the momenta of the out-
going particles. Neglecting the deuteron binding
energy we set 3k 2~E x,, sk ~E %, X, +%,=1.
Also $K}2=E,+V,, so that we can write

A, ~E4+2(Eq+V,) = 2[2x,E,(Eq+ V) /2 cosb, .

(8.4)
Differentiating with respect to E;, we obtain
dA, 2E.+V,
dEd-3--2w/3c_2 cosb, BB, + VO™ (8.5)



7 PAULI EXCLUSION EFFECTS IN REACTIONS INVOLVING...

Now T, is the dominant amplitude when [from Eq.
(8.3)] , is small (¥, < 3) and k, is large and along
the incident direction. In this region, therefore:
(i) Cross section will have exponential dependence
on E,.

(ii) The slope of semilog plot of cross section vs
E, will decrease linearly with \/3?; cosf,. It slowly
increases with E, [ Eq. (8.5)].

(iii) For the conjugate region (x,< 3), the above
results hold with the role of subscripts 1 and 2
interchanged.

These observations are clearly born out by Figs.
6 and 7.

F. Variation of Cross Sections
with Nuclear Density

Figure 3 shows the variation of binding energy
(€,) of a deuteron propagating through nuclear
matter as a function of the nuclear matter density
(p). The strong dependence of €, on p suggests
that the Pauli breakup cross sections will also
vary drastically with the density nuclear matter
inside the nucleus. For the oscillator model of

603

%0, the local nuclear density is given by?*
p(r) = py(1 +27%a 2)e " **® nucleons/unit volume ,
(8.6)

where p, is determined from normalization condi-
tion, [pdir=A=16, to be

Po=ay°A/47%% nucleons/unit volume.  (8.7)

Thus o, here, plays the role of Fermi momen-
tum. Therefore, to study the dependence of Pauli
breakup or nuclear density, triple differential
cross section was calculated at several points
with @' =1.69 fm and 1.83 fm instead of a,™!
=1.76 fm. These new values of the parameter
correspond to, roughly, +12% change in p,. The
results are compared in Table I. The numbers in
parentheses, below the cross sections with new
parameters, are the factors by which the cross
sections are enhanced or reduced by this 12%
change in central density. The dominant effect

of change in the value of @, comes from the ex-
ponential factors. The larger the numerators
(A, A,, A, etc.) of the negative exponents are,
the larger the enhancement and reduction factors
are expected to be. Hence these factors are larg-
er where the cross sections are smaller and vice

102 = =
- ]
S
21073 -
~ = -
3 — —]
~N L —
E L —
= - ]
=
S |0-4 — -
© — =
< e —
(=] — -
o
z — _
b ._ .
2 —
o I |
ks 5 Cross-section vs. .
10 ™ = Deuteron Kinetic Energy -29 i
= 20 —
— d —
= at specified angles —
| €/E5=0.2 ]
PO T T T B B B

90 100 Il0O 120 130 140 150
Ed (MeV)

FIG. 6. The triple-differential cross section is plotted
as a function of E; (the kinetic energy of incident deuter-
on) at specified angles and fixed value of €,/E(=0.2.

Note the decrease in the slope of the curves with increas-
ing cosé,, i.e., in going from curves 1 to 2 to 3. Also
notice the increase in the slope of each curve from left

to right (cf., Sec. VIIIED).

-2
O ET T T T T T T3
[~ Cross-section vs. Deuteron K.E. =
\__' Eq at specified values of x =€p/E, ]
- - 8, = -20° —
> o
S0 Gt —
N - =
& - —
> — —
b=l — et
E L _
“a
w — —
©
S ot
S 107 |—
s E =
3 — =
0 — .
Z .
o - ]
...| %
1073 — —
- -
A T I I B

90 100

0 120 130 140
Eq (MeV)

1
150

FIG. 7. The triple-differential cross section vs E, at
specified values of x =¢ /E, 6,=-20°, and 6, =+20° be~-
ing fixed. The gradual increase in slope of the curves
with increasing values of x is apparent (cf. Sec. VIIIEb).



604 B. L. GAMBHIR AND J. J. GRIFFIN 1

TABLE I. Dependence of Pauli breakup on nuclear density. Values of cross section at selected points are compared
for three values of oscillator model parameter for 0: a,™'=1.76 fm, a+ 1=1.69 fm, and @-"1=1,83 fm. The param-
eters a, correspond to +12% change in central nuclear density of 1¥0. The numbers in parentheses below the cross sec-
tions for a* are the enhancement or reduction factors corresponding to this +12% change in pg. These numbers speak
for the strong dependence of Pauli breakup on p,. (Cf. Sec. VIIIF.)

Oscillator \ d%/dQ, dQ, de, mb/sr? MeV at the following points
model €, /Eq Ey=91 MeV, 6, =20° E =125 MeV, 6, =20°
parameter 6, —~ —20° -5° +10° 0, — —20° -5° +10°
a+ 0.05 0.1919x1072  0.1848x10'  0.1747x10° 0.4915x10~%  0.1076x10!  0,8761x 107!
(2.627) (1.979) (2.080) (2.995) (2.089) (2.224)
a 0.7289x 1073  0.9339x10°  0.8400x 107!  0.1641x107%®  0.5150x10°  0.3940x 10"
a- 0.2424x 1073 0.4452x10°  0.3797x 107! 0.4708x107%  0.2321x10°  0.1662x 1071
(3.007) (2.098) (2.212) (3.486) (2.219) (2.371)
a+ 0.20 0.4104x10™%  0,1747x10°  0,2528x 1071 0.4954x10™%  0.,1137x10"  0.8529% 1072
(4.084) (2.728) (2.868) (5.392) (3.163) (3.364)
@, 0.1005x107%  0.6404x107!  0.8815x1072  0.9187x107°  0.3595x 10! 0.2535% 1072
.- 0.1691x 104 0.2174x 1071 0.2812x 1072 0.1008x 1075 0.1049%x10~1 0,6881x1073
(5.943) (2.946) (3,135) (9.114) (3.427) (3.684)
versa. The large values of these factors for square radius (»%), values between 18.7 and 14.2
small changes in p, bears out our earlier quali- fm.? These combinations satisfy the condition
tative predictions regarding strong dependence of that the dimensionless quantity (g%/a®) be a con-
cross section on nuclear density. stant.
X On account of these ambiguities, it is both in-
G- Dependence of Results on Choice structive as well as desirable to check on the de-
of Parameters for the Deuteron . A
pendence of the Pauli breakup cross sections on
In our model of the deuteron we found (Appen- the choice of the above-mentioned parameters.
dix A) that a whole range of combinations of the With this in mind, in the region of large cross
values for parameters a and g, which give rise sections, some of the results were recalculated
to the same binding energy but give for the mean with a=1.3 fm™ and g* =0.308 98 fm~ replacing

TABLE II. Dependence of results on the choice of deuteron parameters. Calculated results at selected points are
compared for two sets of deuteron parameters —a=0.9 fm™!, g=0.34172 fm™32 and @’ =1.3 fm™!, g’ =0.55586 fm~3/2,
Both sets correspond to the same deuteron binding energy but slightly different values of mean square radius. The
numbers in parentheses are percentage deviations of cross sections with a’,g’ from those corresponding to a, g. These
numbers show that the cross sections do not depend critically on the parameters of the deuteron model (Cf. Sec. VIIIG).

Parameters of d30/dQ, dQ, de, mb/sr® MeV at the following points
deuteron €5 /Ey Ey=91 MeV, 6§, =20° E,=125 MeV, 6, =20°
model 6, — —20° —5° +10° 0, — —20° -5° +10°
a, g 0.05 0.7289x107%  0.9339x10°  0.8400x 107! 0.1641x1073  0,5150x10° 0,3940x 10!
a,g' 0.9519%x 1073 0.8092x10°  0.8189x 107! 0.2279x 1073  0.4636x10° 0.4066x 10!
(+30.6) (=13.4) (—2.5) (+38.8) (=10.0) (+3.2)
a,g 0.10 0.5853x1073  0.6222x10°  0,6068x 10! 0.1000x1073  0,3590x10° 0,2468x 10!
a', g’ 0.7501x1073  0.,5412x10°  0,5921x 10! 0.1324x 1073 0.3167x10° 0.2497x107!
(+28.2) (—13.0) (~2.4) (+32.4) (—11.8) (+1.2)
‘a,g 0.20 0.1005x1073  0.6404x10~! 0.8815x1072 0.9187x107% 0.3595x10"1 0,2535x1072
a, g 0.1129x 1073~ 0,5729x10"! 0.8689x 102 0.9182x107° 0,3128%107! 0.2498x 102
(+12.34) (—10.54) (1.4) (0.1 (~13.0) (~1.5)
a,g 0.30 0.2638x107°  0.2486x10™% 0.4966x10~% 0.8600x10™7  0.8177x10~3 0.8494x1074
a, g’ 0.8481x107¢  0.2293x107% 0.4826x1073 0.5207x 107  0.7208x107% 0,8043x 1074

(—67.9) (—17.8) (—2.8) (—93.9) (—11.8) (—5.3)
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the values a=0.9 fm™ and g2=0.116 67 fm ™3, which

were used in the calculations of preceding sections.

The cross séctions for the two sets of parameters
are compared in Table II.

A larger value of the deuteron inverse range
parameter a implies comparatively greater prob-
ability for large relative momenta and correspond-
ingly reduced probabilities for low values of rela-
tive momenta in the deuteron wave function. As
a result we find that at some places cross sec-
tions for one set of parameters are larger than
those for the other set and vice versa, depending
on the magnitude of the relative momentum that
is important.

The main point which emerges from these com-
parisons is that the magnitude of the cross section,
in the region where it is significant, does not de-
pend critically on the choice of the set of parame-
ters (from among the acceptable range indicated
in the beginning of this section) used to describe
the deuteron. This is mainly due to the fact that
the binding energy of the deuteron, %2, is very

IOo — —
L~ Energy Division in Pauli Break-up —]
of a-tron at specified angles —
E 107" Eo= 88.7 MeV —
~ —
. —
& ]
e —
E
= 102 —
3 =
o .
=] -
o —
(3
g 6 =
) |O-3 . +20° —
2 +20° 3\
-z +20° ]
10 —
o5 |

25 0.5 0.75 1.0

FIG. 8. Same as in Fig. 4 but for the case of a-tron
(the artifically tightly bound deuteron). The main differ-
ence between a particle and the deuteron (apart from
complexity of structure) is that the a particle is much
more tightly bound. Therefore, the results in this figure
suggest (comparing them with those of Fig. 4) that ina -
particle reactions the Pauli mechanism also plays an
important role.

small compared to the square of inverse range,
i.e., k2 <<a? As a result, in our model of the
deuteron, k2 (which is the same for all sets of
parameters) governs the shape of the deuteron
wave function [Eq. (3.3)] to a great extent.

IX. PAULI MECHANISM IN o-PARTICLE
REACTIONS

The a particle is another among the most fre-
quently used bound multinucleon projectiles in
nuclear reactions. It is a tightly bound system
and therefore, has large values of relative mo-
menta available. The individual particle momen-
ta for an a particle with center-of-mass momen-
tum K, will therefore have a wide spread around
the value :i—KO which is the average momentum of
each of the four constituents in the o particle.

In other words, in the Fourier analysis of the a-
particle wave function into plane-wave products
(in 2 manner analogous to the description of Sec.
II) there will be a large preponderence of the low-

-3
10
=TT T T T T 1S
— o Pauli Break-up Cross-
— 6,=10 i [\ Section for a-tron ]
I~ vs. Bp for different |
— values of €p/E
%’ €,/E :..I_ E°= 88.7 MeV ]
2 p/Eo3 o EL2
& -4 P R0 3 ]
L 107 — V,= 80 MeV ——]
é — o -
3 — -
E - .
’} — -
© b— —
[-%
g L _
[3
g
5100 = —]
z : -
-2 ]
o ep/E0=-é- —
Vo= 80 MeV
10°®

FIG. 9. Same as in Fig. 5 but now for the case of a-
tron. The effect of the availability of large relative mo-
menta in the a-tron wave function is completely offset
by the fact that a greater transfer of energy from center-
of-mass motion to relative motion is required to bring
about the breakup of «v-tron. As a result both the figures
(5 and 9) show similar distributions and magnitudes.
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momentum plane waves. Thus, one expects the
Pauli mechanism to be very important in a-parti-
cle reactions.

However, the major difficulty in dealing with
a -particle reactions is that the a-particle con-
sists of four nucleons as compared to deuteron’s
two. Therefore, the problem of including the
Pauli mechanism, even in the inert and infinitely

heavy target model of Sec. IV, is a formidable one.

Nevertheless, one can perhaps mock up the ef-
fect of tight binding in o particle by considering
an artificially tightly bound deuteron. One can
imagine four nucleons of the a particles to be
bound together by six binary bonds each with a
strength =4€,, where €, is the binding energy
of the a particle. We therefore suggest that the
artificially tightly bound deuteron which we intend
to use as a proxy for the o particle should have a
binding energy = %€, and a size comparable to the
size of the o particle. We shall refer to this
artificial deuteron as the a-tron. We use the
same model for it as that for the deuteron but
with the following parameters

a,=1.4fm™ g,2=0.428 fm™°. (9.1)

These parameters correspond to a binding energy
of 4.7 MeV and mean square radius =8.5 fm?
which are consistent with the above suggestion.

The calculated results for Pauli breakup of ~89-
MeV a-trons on '®0 are shown in Figs. 8 and 9
(cf. Figs. 4 and 5 for the deuteron). The Pauli
mechanism now has to cause a greater transfer
of energy from center-of-mass motion to relative
motion in order to bring about the breakup. This
completely offsets the effects of large relative
momenta being available in a-tron. As a result
there is marked similarity between the a-tron
and the deuteron results. The only pronounced
difference is the existence of relatively pro-
nounced secondary maxima in €,/E,=5 curve in
Fig. 9. This is a consequence of interference
between the forward-peaked (T, +T,) terms on
the one hand and the PV}, P term on the other
(see Sec. VIIB). Since V,, is a much weaker
potential than VJ,, the secondary maxima are
very weak in the case of the deuteron (<107° mb/
sr? MeV).

If our simple model is adequate in simulating
the main qualitative features of the a particle,
then these results show that the Pauli mechanism
plays an equally important role in the o -particle
reactions.

X. CONCULSIONS

In our calculations of deuteron breakup we have
considered only one target nucleus, namely °O.

=3

However, we believe that the general features
for the Pauli breakup will apply to other target
nuclei as well, since they arise not from specific
details of the '°O nucleus, but from qualitative
properties which it shares with other nuclei.
This confidence is reinforced by the success of
our general predictions made in Sec. III on the
basis of variation of the binding energy of the
deuteron with its center-of-mass momentum and
with the density of nuclear matter through which
it propagates. Of course, specific detailed dif-
ferences among target nuclei are to be expected.
They would seem to promise rewarding theoreti-
cal and experimental studies for the future.

Apart from the interesting features of energy
and angular correlations, the quantity of greatest
practical interest is the magnitude of the cross
section, since it determines whether the process
is of experimental interest at the presently avail-
able level of experimental precision. Unfortunate-
ly, in this calculation, as in most, the absolute
magnitude of the cross sections is difficult to esti-
mate reliably.

If one believes with us that our present assump-
tions are reasonable enough, then the strong de-
pendence of the cross section on incident energy
indicates that at lower energies®® (~40-50 MeV)
the process ought to be within the purview of cur-
rent experimental techniques. In particular reac-
tions leading to extremely asymmetric partitions
of energy among breakup products are expected
to have large cross sections, and therefore to be
encouraging for an experimental test.

Finally, by considering Pauli breakup of an
artificially tightly bound deuteron (referred to
as the a-tron), we conclude that the Pauli mech-
anism plays an important role in a-particle reac-
tions also.

APPENDIX A

After determining the normalization constant
CZ=aky(a +k,)®/1°g% =ky(a +k,) for our model deu-
teron of Sec. III, we transform to the coordinate
representation and then obtain for the mean square
radius the following expression which does not
involve the parameter g:

@ =1/2k? +3/2ak,+1/2a® +2/(a +k 2.  (Al)

This quartic equation can be shown?? to have a
unique positive solution for 1/2k,2<(¥2) <5/4k?2.
The values of (*?) used in various deuteron models
all lie within this range. Thus, for all cases of
interest, a simple computer program can be used
to determine the unqiue positive root of Eq. (Al).
Once a is known, the corresponding value of g
can be easily obtained from Eq. (3.5) by substitut-
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TABLE IIl. Choice of deuteron parameters, a and g.
Values of (7%, the mean square radius, and g2, the po-
tential strength parameter, for different values of the
inverse range parameter a. The deuteron binding energy
is the same in each case, i.e., 2.226 MeV.

% deviation of

a (r¥ g g%/a® from a mean
(fm™Y)  (fm? (fm™}) g%/ad value of 0.1530
0.9 18.70 0.11677 0,1552 +1.438

1.0 17.62 0.15369 0,1537 +0.457

1.1 16,75 0.19762 0.1528 -0.131

1.2 16.04 0.24919 0.1523 ~0.457

1.3 15.45 0,30898 0.1522 -0.,523

14 14.95 0.37762 0,1522 -0.523

1.5 14,53 0.45571 0.1525 -0.327

1.6 14,16 0.54385 0.1529 -0.065

ing for a and k,. However, for the present pur-
pose, we calculated the values of (#%), g%, and
g°/a® for several values of a. The results are
shown in Table IIIl. Notice that (*?) does not de-
pend strongly on a. Therefore, uncertainties in
the value of (»?) make it difficult to select a unique
value of a. We picked ¢ =0.9 fm™! for our calcu-
lations as this corresponds to a range of 1.1 fm
for the neutron-proton interaction.

As a side remark, notice from Table III that all
these sets of parameters which correspond to the
same binding energy but somewhat different value
of (»?) satisfy an approximate condition g2/a3~a
dimensionless constant. This is exact analog of
the well-known fact that on the basis of low-energy
two-nucleon data it is difficult to distinguish be-
tween two local potentials with the same value of
V,R?. Here V, and R stand for strength and the
range of the potential.

APPENDIX B. PROOF OF COMPACTNESS
OF THE KERNELS

For all three processes - breakup, elastic scatter-
ing, and stripping - the kernel of the integral equa-
tions is the same:

K=Gi‘7;mcc VxW:; (B1)
with the various operators given by equations in
Sec. VA.

We want to show that K is a compact or Hilbert-
Schmidt (H-S) kernel, i.e.,
or trace KK'<ew,

Trace KK < (B2)

For this purpose we need the following theorems
which are stated without proof. The interested
reader is referred to standard texts.3° 3! These
theorems are usually stated and proved for com-
pletely continuous (CC) operators which include
the H-S integral operators as a subclass.

Theorem 1. If A is a CC operator and B is
bounded operator then both AB and BA are CC
operators.

Theovem 2. If A and B are CC operators then
A +B is also a CC operator.

Returning to the task of proving that the kernel
given in Eq. (B1) is compact, we use Theorem 1
to drop the wave operator W; which is a bounded
operator of norm 1. Thus we need consider only
the kernel

K,=G;V,G.V, . (B3)

However, instead of K, we shall consider® a
simpler but more singular kernel K,, given below,
so that a proof of the H-S property for K, will suf-
fice as a proof of H-S property of K, and hence of
K. We obtain K, by replacing both the Green’s
functions G, and G, by free Green’s function G,.
We also relax some of the restrictions on poten-
tials V,, and V,, i.e., we replace V,, by V,, and
replace V,=-QH,P - PH, by

Vie ==H;P-PH, . (B4)
Thus we define K, to be
K;=GoVapGoViya (B5)

Using plane-wave states as a complete basis,
Trace KkI = [ (RRIK,[R"R") (R"R" |K] |&R)
kK.k "K n

= [ KERIK, [RR"))?.
kKR K" (B6)

Notice that the operator P [Eq. (5.2)] allows &
function in either one particle coordinate or the
other but not in both simultaneously. Therefore
Via can have a 6 function in individual particle
coordinates separately. However, these 6 func-
tions will be taken care of by V,, which restricts
the relative coordinate of the two particles. There-
fore, there are no troublesome 6 functions involved
in the matrix elements of K,. The proof of H-S
property, therefore, involves only substitutions
and finally, power counting to test the convergence
of the integral.

Substituting Eq. (B5) for K, into Eq. (B6), and
inserting another set of plane-wave states between
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V.« and G, we obtain
: k) fk')
K Tzf f( ’ U

Trace K,K, e arr | Bz =B )y B - )(k K|V, [k”K ) (B7)
Here we have used (kK |G,=(kK|(E; —E); E=%K?+F? and (kK|V,, |K’'K’) =V,, (| k")63K - K’). Also E’
=1 K?+R",

Substituting for V,, from Eq. (B4), we get
M =(k’R| V. |k"K"= ~(K’K | P(E" + V, ) + (E’ + V,,, )P|K"K" ), (B8)

where E” =3K"? +k"?. The most singular part of this matrix element is [after substitution for P from
Eq. (7.4)]

M, =E'E"(K'K|P|k"K") == E'E"| 6%k’ = k" +3 Q) Lo Wa& -k} ) +8°K - k" - 5 QPRI p(K - k2),
o [
(BY)
where k” =1 K”+k” and @ =K -K".

The most singular contribution to the trace will be obtained when M, is substituted for the matrix ele-
ment of V,, in Eq. (B7),

2

[f(% )
E; - E;

e g E1YPa&” oK ~k?) +a similar term] (B10)
, 0 o
Here E! is the value of E’ when the 6 function in Eq. (B9) is taken care of.

Using the fact that all nuclear bound-state wave functions die off at least exponentially and can diverge at
the origin at most as ™!, we could have set an upper bound for all of them to be y,(k)<C/(k® +s?), where
C is an arbitrary large number and s?/2m is the separation energy of the last bound particle. Thus we

set an upper limit to I;

2

) (B11)

flk) [f(% Q"-k"E; 1 1

< = r
<A E--El EI-E k7 s+ ([R-F)°

kK R "K"

+a similar term]

where A is another arbitrarily large constant.

Counting the powers, since f(k)=g/(k® +a?), we have 16 powers of momenta in the denominator for a 12-
dimensional integral. Hence the integral converges. Since I; was the most singular contribution to Trace
K,K], we therefore conclude that other contributions are also finite.

As a result

Trace K,K, <o . (B12)
Thus K, and hence K [Eq. (B1)] is a compact kernel.

APPENDIX C

Here we want to investigafe the validity of the third approximation of Sec. VII A which replaced the scat-
tering state (X;+| by the plane-wave state (k’| in Eq. (7.3). With V,, given by 3.1 we get

it | = (k! +(R|C(R") fR)/(R? = k' = i), (1)
where
[C(®]=1/f(k") = (1%/a) f(k')(a? = k" +2iak’). (Cc2)

Thus the correction term for (k’K’|P|$,K:), the first matrix element in Eq. (7.3), due to the scattered
part of final state is

My, = [ FECED G| P ooks) d e C) 22 [ a2y (RIRIPI9,RS), ©3)

where k! is such that |k!|=%".
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The matrix element (K, K’| P| ¢,K;) is strongly
peaked in the forward direction (Sec. VIII B). Thus
when K’ also has proper alignment, i.e., in the re-

.gion of large cross sections,

[ anu Rk Plogk) ~(RR! | PlogKs).
(ca)

Thus in the region of large cross sections, the ra-
tio of final-state scattering correction term to the
term retained is (in magnitude)

A (k") =3mk’ f(R')|C(R")]. (C5)

A (¥') is a measure of the importance of scatter-
ing by V,, in the final state. A (') as a function

of %' is plotted in Fig. 10. It is apparent from this
figure that the contribution to Pauli breakup ampli-
tude from the scattered part of the final state is at
most a few percent of the contribution from the
plane-wave part of the final state, and our approx-
imation is correct to within a few percent.

IN REACTIONS INVOLVING... 609

0™

I I R A

TTTTT

[

As(K)
1072

Ratio of contributions to Pauli
Break-up Amplitude from "scatter-

. " n n .

ing" and “plane wave " parts of Final

[EEET

State vs. Relative Momentum in
Final State

I
|

[
|

Ll Lol
1072 o™ 10°
Kt

FIG. 10, The ratio of contribution to forward Pauli
breakup amplitude from the “scattering part” of final
state to the contribution from plane-wave part is plotted
as a function of %2’, the magnitude of relative momentum
in final state. The figure shows that the error involved

in neglecting final-state distortions due to V,, is less
than 10%.

APPENDIX D

Here we outline the approximate scheme used to evaluate (k’K’|PV,,P|¢K:), the fourth term in transi-
tion amplitude (7.11). We start with Eq. (7.7) and evaluate only the first term (denoted by T,, in the follow-
ing). After substituting for nuclear state sums, we make first the transformation k =4K? +q and then K
=2(k +k~ +B); B=(2k” - £K)3. The purpose of these transformations is to simplify the Gaussian exponents
such that they will involve only the squares of new variables of integration. Thus

T,q ==16C 20,7 e ~A4/20%" f d’qf K3/ 2+§)e~/ %" J' dRf(B ~K)po(D -k ~§) e~/ %’

X[1+2a,72k, 2k +1)]{1 + 20,74 ¢* - & -T)]}, (D1)
where
T=®:-k.)/3, D=(GK!+k.)/3, A,=k7Z+31%, (D2)

At the high incident energies considered here (K} >4f,""), +K}?, B?, and D? are much greater than a 2.
Therefore the ¢, and the f functions do not vary appreciably over the important range of integration deter-
mined by the Gaussian factors. We, therefore, expand the % integrand (leaving the Gaussian exponentials
alone) in Taylor series about # =0 up to second power and then carry out the % integration. Same approxi-
mation was used to perform the final ¢ integration, with the result

Ty =~ K3)f(B)do(D) e ~4/2* F(k’, R’, K3)16/3V3 . (D3)

Here the dimensionless factor F is given by
F=3-212/a2+k, Ta,2(§ -~ 41%/a?) +4(e, +C)f,(B)/3 - 4(c, +C)p,/3
+4(€5 +2C)a’, FL(3 K )/3 + (e, +C)ar{2.50, + 6,2 +2D%6,[ £,(D) fo(D) - 2¢,] - D - K5 6, /(3 K3 )}
+[(D? - 3a%) 1,2(D) + (D? - 3ke?) f2(D) +4D? f,(D) f,(D) + ( K32 - 3a®) 2 (3 K3 ) +2K; - Do, f,(3K )]

X[2x5a 0 =12 +k] -T(19 - 612/a?)/3 +2a,2(e; +C) f,(B)/3 - 20.2¢,(€, +C)/3]. (D4)
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The new quantities in Eq. (D4) are defined below:

€, = (37 +7k;)-B/3, €,=(31 +7k;)-D/3,

€= (3 +13Kk;)-B/3, f(x)=1/(2 +a?),

¢,=1/(a® +D?)+1/(k2 +D?),

€, = (3T +13Kk}) K} /3,

| =3

€,=(31 +13k})-D/3,

fo®)=1/(ke2+x7), ¢ =T-[k; x(k.xK)l/302,

¢, =(a® +D?)72 + (k2 +D?) 2.
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